


Design of Prestressed 
Concrete to Eurocode 2

Second Edition



http://taylorandfrancis.com


Design of Prestressed 
Concrete to Eurocode 2

Second Edition

Raymond Ian Gilbert
Neil Colin Mickleborough

Gianluca Ranzi



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Raymond Ian Gilbert, Neil Colin Mickleborough, and Gianluca Ranzi
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161209

International Standard Book Number-13: 978-1-4665-7310-9 (Hardback)
International Standard Book Number-13: 978-1-3153-8952-3 (eBook)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher 
cannot assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced in 
this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know 
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit orga-
nization that provides licenses and registration for a variety of users. For organizations that have 
been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com


v

Contents

Preface	 xv
Authors	 xix
Acknowledgements	 xxi
Notation and sign convention	 xxiii

	 1	 Basic concepts	 1

1.1	 Introduction  1
1.2	 Methods of prestressing  4

1.2.1	 Pretensioned concrete  4
1.2.2	 Post-tensioned concrete  5
1.2.3	 Other methods of prestressing  6

1.3	� Transverse forces induced by draped tendons  7
1.4	 Calculation of elastic stresses  10

1.4.1	 Combined load approach  10
1.4.2	 Internal couple concept  12
1.4.3	 Load balancing approach  13
1.4.4	 Introductory example  13

1.4.4.1	 Combined load approach  14
1.4.4.2	 Internal couple concept  15
1.4.4.3	 Load balancing approach  15

1.5	� Introduction to structural behaviour: 
Initial to ultimate loads  16

	 2	 Design procedures and applied actions	 21

2.1	 Limit states design philosophy  21
2.2	 Structural modelling and analysis  23

2.2.1	 Structural modelling  23
2.2.2	 Structural analysis  24



vi  Contents

2.3	 Actions and combinations of actions  26
2.3.1	 General  26
2.3.2	� Load combinations for the strength limit states  29
2.3.3	� Load combinations for the stability 

or equilibrium limit states  31
2.3.4	� Load combinations for the 

serviceability limit states  32
2.4	 Design for the strength limit states  33

2.4.1	 General  33
2.4.2	 Partial factors for materials  33

2.5	 Design for the serviceability limit states  34
2.5.1	 General  34
2.5.2	 Deflection limits  35
2.5.3	 Vibration control  37
2.5.4	 Crack width limits  37
2.5.5	 Partial factors for materials  38

2.6	 Design for durability  38
2.7	 Design for fire resistance  40
2.8	 Design for robustness  43
References  44

	 3	 Prestressing systems	 47

3.1	 Introduction  47
3.2	 Types of prestressing steel  47
3.3	 Pretensioning  49
3.4	 Post-tensioning  51
3.5	� Bonded and unbonded post-tensioned construction  58
3.6	 Circular prestressing  59
3.7	 External prestressing  60

	 4	 Material properties	 63

4.1	 Introduction  63
4.2	 Concrete  63

4.2.1	 Composition of concrete  64
4.2.2	 Strength of concrete  65
4.2.3	 Strength specifications in Eurocode 2  68

4.2.3.1	 Compressive strength  68
4.2.3.2	 Tensile strength  69
4.2.3.3	 Design compressive and tensile strengths  70



Contents  vii

4.2.3.4	� Compressive stress–strain curves 
for concrete for non-linear 
structural analysis  72

4.2.4	 Deformation of concrete  73
4.2.4.1	 Discussion  73
4.2.4.2	 Instantaneous strain  74
4.2.4.3	 Creep strain  76
4.2.4.4	 Shrinkage strain  81

4.2.5	� Deformational characteristics 
specified in Eurocode 2  82
4.2.5.1	 Introduction  82
4.2.5.2	 Modulus of elasticity  83
4.2.5.3	 Creep coefficient  84
4.2.5.4	 Shrinkage strain  86
4.2.5.5	 Thermal expansion  87

4.3	 Steel reinforcement  87
4.3.1	 General  87
4.3.2	 Specification in Eurocode 2  88

4.3.2.1	 Strength and ductility  88
4.3.2.2	 Elastic modulus  89
4.3.2.3	 Stress–strain curves: 

Design assumptions  90
4.3.2.4	 Coefficient of thermal 

expansion and density  91
4.4	 Steel used for prestressing  91

4.4.1	 General  91
4.4.2	 Specification in Eurocode 2  94

4.4.2.1	 Strength and ductility  94
4.4.2.2	 Elastic modulus  94
4.4.2.3	 Stress–strain curve  96
4.4.2.4	 Steel relaxation  96

References  98

	 5	 Design for serviceability	 101

5.1	 Introduction  101
5.2	� Concrete stresses at transfer and under full service loads  102
5.3	 Maximum jacking force  105
5.4	� Determination of prestress and 

eccentricity in flexural members  106
5.4.1	 Satisfaction of stress limits  106
5.4.2	 Load balancing  114



viii  Contents

5.5	 Cable profiles  116
5.6	� Short-term analysis of uncracked cross-sections  118

5.6.1	 General  118
5.6.2	 Short-term cross-sectional analysis  120

5.7	� Time-dependent analysis of uncracked cross-sections  136
5.7.1	 Introduction  136
5.7.2	 The age-adjusted effective modulus method  136
5.7.3	� Long-term analysis of an uncracked 

cross-section subjected to combined axial 
force and bending using AEMM  138

5.7.4	 Discussion  156
5.8	� Short-term analysis of cracked cross-sections  158

5.8.1	 General  158
5.8.2	 Assumptions  160
5.8.3	 Analysis  160

5.9	� Time-dependent analysis of cracked cross-sections  170
5.9.1	 Simplifying assumption  170
5.9.2	� Long-term analysis of a cracked cross-section 

subjected to combined axial force and 
bending using the AEMM  170

5.10	 Losses of prestress  175
5.10.1	 Definitions  175
5.10.2	 Immediate losses  176

5.10.2.1	 Elastic deformation losses  176
5.10.2.2	 Friction in the jack and anchorage  177
5.10.2.3	 Friction along the tendon  177
5.10.2.4	 Anchorage losses  179
5.10.2.5	 Other causes of immediate losses  180

5.10.3	 Time-dependent losses of prestress  181
5.10.3.1	 Discussion  181
5.10.3.2	 Simplified method specified 

in EN 1992-1-1:2004  182
5.10.3.3	 Alternative simplified method  183

5.11	 Deflection calculations  187
5.11.1	 General  187
5.11.2	� Short-term moment–curvature 

relationship and tension stiffening  190
5.11.3	 Short-term deflection  195
5.11.4	 Long-term deflection  200

5.11.4.1	 Creep-induced curvature  201
5.11.4.2	 Shrinkage-induced curvature  202



Contents  ix

5.12	 Crack control  208
5.12.1	 Minimum reinforcement  208
5.12.2	 Control of cracking without direct calculation  211
5.12.3	 Calculation of crack widths  213
5.12.4	� Crack control for restrained shrinkage 

and temperature effects  215
5.12.5	 Crack control at openings and discontinuities  216

References  216

	 6	 Flexural resistance	 219

6.1	 Introduction  219
6.2	 Flexural behaviour at overloads  219
6.3	 Design flexural resistance  222

6.3.1	 Assumptions  222
6.3.2	� Idealised compressive stress blocks for concrete  223
6.3.3	� Prestressed steel strain components 

(for bonded tendons)  226
6.3.4	� Determination of MRd for a singly 

reinforced section with bonded tendons  228
6.3.5	� Determination of MRd for sections containing 

non-prestressed reinforcement and 
bonded tendons  232

6.3.6	 Members with unbonded tendons  239
6.4	 Design calculations  241

6.4.1	 Discussion  241
6.4.2	� Calculation of additional non-prestressed 

tensile reinforcement  242
6.4.3	 Design of a doubly reinforced cross-section  245

6.5	 Flanged sections  248
6.6	� Ductility and robustness of prestressed concrete beams  254

6.6.1	 Introductory remarks  254
6.6.2	 Calculation of hinge rotations  257
6.6.3	� Quantifying ductility and 

robustness of beams and slabs  257
References  260

	 7	 Design resistance in shear and torsion	 261

7.1	 Introduction  261
7.2	 Shear in beams  261

7.2.1	 Inclined cracking  261



x  Contents

7.2.2	 Effect of prestress  262
7.2.3	 Web reinforcement  264
7.2.4	� Design strength of beams without 

shear reinforcement  267
7.2.5	� Design resistance of beams with 

shear reinforcement  268
7.2.6	 Summary of design requirements for shear  273
7.2.7	 The design procedure for shear  275
7.2.8	� Shear between the web and flange of a T-section  281

7.3	 Torsion in beams  282
7.3.1	 Compatibility torsion and equilibrium torsion  282
7.3.2	 Effects of torsion  284
7.3.3	 Design provisions for torsion  285

7.4	 Shear in slabs and footings  291
7.4.1	 Punching shear  291
7.4.2	 The basic control perimeter  292
7.4.3	 Shear resistance of critical shear perimeters  294
7.4.4	 Design for punching shear  296

References  307

	 8	 Anchorage zones	 309

8.1	 Introduction  309
8.2	� Pretensioned concrete: Force transfer by bond  310
8.3	� Post-tensioned concrete anchorage zones  315

8.3.1	 Introduction  315
8.3.2	 Methods of analysis  319

8.3.2.1	 Single central anchorage  321
8.3.2.2	 Two symmetrically 

placed anchorages  322
8.3.3	 Reinforcement requirements  325
8.3.4	 Bearing stresses behind anchorages  326

8.4	 Strut-and-tie modelling  342
8.4.1	 Introduction  342
8.4.2	 Concrete struts  343

8.4.2.1	 Types of struts  343
8.4.2.2	 Strength of struts  344
8.4.2.3	 Bursting reinforcement in 

bottle-shaped struts  344
8.4.3	 Steel ties  346
8.4.4	 Nodes  346

References  348



Contents  xi

	 9	 Composite members	 351

9.1	� Types and advantages of composite construction  351
9.2	 Behaviour of composite members  352
9.3	 Stages of loading  354
9.4	 Determination of prestress  357
9.5	 Methods of analysis at service loads  359

9.5.1	 Introductory remarks  359
9.5.2	 Short-term analysis  360
9.5.3	 Time-dependent analysis  362

9.6	 Flexural resistance  392
9.7	 Horizontal shear transfer  392

9.7.1	 Discussion  392
9.7.2	 Design provisions for horizontal shear  394

References  398

	10	 Design procedures for determinate beams	 399

10.1	 Introduction  399
10.2	 Types of sections  399
10.3	 Initial trial section  401

10.3.1	 Based on serviceability requirements  401
10.3.2	 Based on strength requirements  402

10.4	� Design procedures: Fully-prestressed beams  404
10.4.1	 Beams with varying eccentricity  405
10.4.2	 Beams with constant eccentricity  422

10.5	� Design procedures: Partially-prestressed beams  432
Reference	 440

	11	 Statically indeterminate members	 441

11.1	 Introduction  441
11.2	 Tendon profiles  443
11.3	 Continuous beams  446

11.3.1	 Effects of prestress  446
11.3.2	� Determination of secondary 

effects using virtual work  447
11.3.3	 Linear transformation of a tendon profile  453
11.3.4	 Analysis using equivalent loads  455

11.3.4.1	 Moment distribution  456
11.3.5	 Practical tendon profiles  465
11.3.6	� Members with varying cross-sectional properties  468
11.3.7	 Effects of creep  470



xii  Contents

11.4	 Statically indeterminate frames  474
11.5	 Design of continuous beams  478

11.5.1	 General  478
11.5.2	 Service load range: Before cracking  479
11.5.3	 Service load range: After cracking  482
11.5.4	� Overload range and design resistance in bending  483

11.5.4.1	 Behaviour  483
11.5.4.2	� Permissible moment redistribution 

at the ultimate limit state condition  484
11.5.4.3	 Secondary effects at the ultimate 

limit state condition  485
11.5.5	 Steps in design  486

References  499

	12	 Two-way slabs: Behaviour and design	 501

12.1	 Introduction  501
12.2	 Effects of prestress  504
12.3	 Balanced load stage  507
12.4	 Initial sizing of slabs  509

12.4.1	 Existing guidelines  509
12.4.2	� Serviceability approach for the 

calculation of slab thickness  510
12.4.2.1	 Slab system factor, K  512

12.4.3	 Discussion  514
12.5	 Other serviceability considerations  516

12.5.1	� Cracking and crack control in prestressed slabs  516
12.5.2	 Long-term deflections  517

12.6	 Design approach: General  519
12.7	 One-way slabs  519
12.8	 Two-way edge-supported slabs  520

12.8.1	 Load balancing  520
12.8.2	 Methods of analysis  522

12.9	 Flat plate slabs  533
12.9.1	 Load balancing  533
12.9.2	 Behaviour under unbalanced load  535
12.9.3	 Frame analysis  537
12.9.4	 Direct design method  539
12.9.5	 Shear resistance  540
12.9.6	 Deflection calculations  541
12.9.7	 Yield line analysis of flat plates  555



Contents  xiii

12.10	Flat slabs with drop panels  559
12.11	Band-beam and slab systems  560
References	 561

	13	 Compression and tension members	 563

13.1	 Types of compression members  563
13.2	� Classification and behaviour of compression members  564
13.3	� Cross-section analysis: Compression and bending  566

13.3.1	 Strength interaction diagram  566
13.3.2	 Strength analysis  568
13.3.3	 Biaxial bending and compression  579

13.4	 Slenderness effects  580
13.4.1	 Background  580
13.4.2	 Slenderness criteria  584
13.4.3	 Moment magnification method  585

13.5	� Reinforcement requirements for compression members  591
13.6	� Transmission of axial force through a floor system  591
13.7	 Tension members  593

13.7.1	 Advantages and applications  593
13.7.2	 Behaviour  594

References  600

	14	 Detailing: Members and connections	 601

14.1	 Introduction  601
14.2	 Principles of detailing  602

14.2.1	 When is steel reinforcement required?  602
14.2.2	 Objectives of detailing  603
14.2.3	 Sources of tension  604

14.2.3.1	 Tension caused by bending 
(and axial tension)  604

14.2.3.2	 Tension caused by load reversals  604
14.2.3.3	 Tension caused by shear and torsion  605
14.2.3.4	 Tension near the supports of beams  605
14.2.3.5	 Tension within the supports 

of beams or slabs  606
14.2.3.6	 Tension within connections  607
14.2.3.7	 Tension at concentrated loads  607
14.2.3.8	� Tension caused by directional 

changes of internal forces  608
14.2.3.9	 Other common sources of tension  610



xiv  Contents

14.3	 Anchorage of deformed bars  610
14.3.1	 Introductory remarks  610
14.3.2	 Design anchorage length  613
14.3.3	 Lapped splices  617

14.4	� Stress development and coupling of tendons  619
14.5	 Detailing of beams  619

14.5.1	� Anchorage of longitudinal 
reinforcement: General  619

14.5.2	� Maximum and minimum requirements 
for longitudinal steel  623

14.5.3	 Curtailment of longitudinal reinforcement  624
14.5.4	 Anchorage of stirrups  625
14.5.5	 Detailing of support and loading points  630

14.6	 Detailing of columns and walls  634
14.6.1	 General requirements  634
14.6.2	 Transverse reinforcement in columns  635
14.6.3	 Longitudinal reinforcement in columns  638
14.6.4	 Requirements for walls  638

14.7	 Detailing of beam–column connections  638
14.7.1	 Introduction  638
14.7.2	� Knee connections (or two-member connections)  639

14.7.2.1	 Closing moments  640
14.7.2.2	 Opening moments  640

14.7.3	 Exterior three-member connections  642
14.7.4	 Interior four-member connections  645

14.8	 Detailing of corbels  646
14.9	 Joints in structures  647

14.9.1	 Introduction  647
14.9.2	 Construction joints  648
14.9.3	 Control joints (contraction joints)  649
14.9.4	 Shrinkage strips  651
14.9.5	 Expansion joints  652
14.9.6	 Structural joints  652

References  654

Index� 655



xv

Preface

For the design of prestressed concrete structures, a sound understanding of 
structural behaviour at all stages of loading is essential. Also essential is a 
thorough knowledge of the design criteria specified in the relevant design 
standard, including the rules and requirements and the background to 
them. The aim of this book is to present a detailed description and expla-
nation of the behaviour of prestressed concrete members and structures 
both at service loads and at ultimate loads and, in doing so, provide a 
comprehensive guide to structural design. Much of the text is based on 
first principles and relies only on the principles of mechanics and the prop-
erties of concrete and steel, with numerous worked examples. Where the 
design requirements are code specific, this book refers to the provisions of 
Eurocode 2 (EN 1992–1–1:2004) and other relevant EN Standards, and, 
where possible, the notation is the same as in the Eurocode. A companion 
edition in accordance with the requirements of the Australian Standard for 
Concrete Structures AS 3600–2009 is also available, with the same nota-
tion as in the Australian Standard.

The first edition of the book was published over 25 years ago, so a com-
prehensive update and revision is long overdue. This edition contains the 
most up-to-date and recent advances in the design of modern prestressed 
concrete structures, as well as the fundamental aspects of prestressed con-
crete behaviour and design that were well received in the first edition. The 
text is written for senior undergraduate and postgraduate students of civil 
and structural engineering and also for practising structural engineers. It 
retains the clear and concise explanations and the easy-to-read style of the 
first edition.

Between them, the authors have almost 100 years of experience in the 
teaching, research and design of prestressed concrete structures, and this 
book reflects this wealth of experience.

The scope of the work ranges from an introduction to the fundamentals 
of prestressed concrete to in-depth treatments of the more advanced topics 
in modern prestressed concrete structures. The basic concepts of prestressed 
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concrete are introduced in Chapter 1, and the limit states design philoso-
phies used in European practice are outlined in Chapter 2. The hardware 
required to pretension and post-tension concrete structures is introduced in 
Chapter 3, including some construction considerations. Material properties 
relevant to design are presented and discussed in Chapter 4. A comprehen-
sive treatment of the design of prestressed concrete beams for serviceability 
is provided in Chapter 5. The instantaneous and time-dependent behaviour 
of cross-sections under service loads are discussed in considerable detail, 
and methods for the analysis of both uncracked and cracked cross-sections 
are considered. Techniques for determining the section size, the magnitude 
and eccentricity of prestress, the losses of prestress and the deflection of 
members are outlined. Each aspect of design is illustrated by numerical 
examples.

Chapters 6 and 7 deal with the design of members for strength in bend-
ing, shear and torsion, and Chapter 8 covers the design of the anchorage 
zones in both pretensioned and post-tensioned members. A guide to the 
design of composite prestressed concrete beams is provided in Chapter 9 
and includes a detailed worked example of the analysis of a composite 
through girder footbridge. Chapter 10 discusses design procedures for stat-
ically determinate beams. Comprehensive self-contained design examples 
are provided for fully-prestressed and partially prestressed, post-tensioned 
and pretensioned concrete members.

The analysis and design of statically indeterminate beams and frames is 
covered in Chapter 11 and provides guidance on the treatment of second-
ary effects at all stages of loading. Chapter 12 provides a detailed discus-
sion of the analysis and design of two-way slab systems, including aspects 
related to both strength and serviceability. Complete design examples are 
provided for panels of an edge-supported slab and a flat slab. The behav-
iour of axially loaded members is dealt with in Chapter 13. Compression 
members, members subjected to combined bending and compression, and 
prestressed concrete tension members are discussed, and design aspects 
are illustrated by examples. Guidelines for successful detailing of the 
structural elements and connections in prestressed concrete structures are 
outlined in Chapter 14.

As in the first edition, the book provides a unique focus on the treatment 
of serviceability aspects of design. Concrete structures are prestressed to 
improve behaviour at service loads and thereby increase the economi-
cal range of concrete as a construction material. In conventional pre-
stressed structures, the level of prestress and the position of the tendons 
are usually based on considerations of serviceability. Practical methods 
for accounting for the non-linear and time-dependent effects of cracking, 
creep, shrinkage and relaxation are presented in a clear and easy-to-
follow format.
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The authors hope that Design of Prestressed Concrete to Eurocode 2 
will be a valuable source of information and a useful guide for students and 
practitioners of structural design.

Ian Gilbert
Neil Mickleborough

Gianluca Ranzi
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Notation and sign convention

All symbols are also defined in the text where they first appear. Throughout 
the book we have assumed that tension is positive and compression is nega-
tive and that positive bending about a horizontal axis causes tension in the 
bottom fibres of a cross-section.

Latin upper-case letters

A	 Cross-sectional area or accidental action
Ac	 Cross-sectional area of concrete
Ac,eff	� Effective area of concrete in tension surrounding the 

tendons with depth hc,ef equal to the lesser of 2.5(h-d), 
(h-x)/3 or h/2

Act	� Area of the concrete in the tensile zone just before 
cracking

Ac0	 Bearing area
Ac1	� Largest area of the concrete supporting surface that is 

geometrically similar to and concentric with Ac0

Ag	 Gross cross-sectional area
Ak	 Area of the age-adjusted transformed section at time tk

Ap	 Cross-sectional area of prestressing steel
Ap(i)	� Cross-sectional area of the prestressing steel at the 

i-th level
Apc	 Cross-sectional area of the precast member
As	� Cross-sectional area of non-prestressed steel rein-

forcement or cross-sectional area of a single bar being 
anchored

As(i)	� Cross-sectional areas of non-prestressed steel reinforce-
ment at the i-th level

Asb	� Area of transverse reinforcement in the end zone of a 
pretensioned member (Equation 8.6)

Asc	� Cross-sectional area of non-prestressed steel reinforce-
ment in the compressive zone
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Ast	� Cross-sectional area of non-prestressed transverse steel 
reinforcement or cross-sectional area of non-prestressed 
reinforcement in the tension zone

As,min	� The minimum area of bonded longitudinal reinforcement 
in the tensile zone (Equation 14.9) or minimum area of 
longitudinal reinforcement in a column (Equation 14.16)

Asw	� Cross-sectional area of the vertical legs of each stirrup 
or area of the single leg of transverse steel in each wall 
of the idealised thin-walled section in torsion

Asw,max	� Maximum cross-sectional area of shear reinforcement 
(Equations 7.13 and 7.14)

Asw,min	� Minimum cross-sectional area of shear reinforcement 
(Equation 7.17)

A0	 Area of the transformed section at time t0

Bc	� First moment of the concrete part of the cross-section 
about the reference axis

Bk	� First moment of the age-adjusted transformed section at 
time tk

B0	� First moment of area of the transformed section about 
the reference axis at time t0

C	 Strength class of concrete or carry-over factor or Celsius
D0	� Matrix of cross-sectional rigidities at time t0 (Equation 

5.42)
E (subscript)	 Effect of actions
Ec,eff(t,  t0),   Ec,eff	� Effective modulus of concrete at time t for concrete first 

loaded at t0 (Equations 4.23 and 5.56)
E t t Ec,eff c,eff( , ),0 	� Age-adjusted effective modulus of concrete at time t for 

concrete first loaded at t0 (Equations 4.25 and 5.57)
Ecm	 Secant modulus of elasticity of concrete
Ecm,0	 Secant modulus of elasticity of concrete at time t0

Ep	� Design value of modulus of elasticity of prestressing steel
Ep(i)	� Design value of modulus of elasticity of the i-th level of 

prestressed steel
Es	� Design value of modulus of elasticity of reinforcing 

steel
Es(i)	� Design value of modulus of elasticity of the i-th level of 

non-prestressed steel
Fbc	� Transverse compressive force due to bursting moment in 

a post-tensioned end block
Fbt	� Transverse tensile force due to bursting in a post-tensioned 

end block (the bursting force)
Fc	 Force carried by the concrete
Fcc	 Compressive force carried by the concrete
Fcd	� Design force carried by the concrete or design compres-

sive force in a strut
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Fcdf	� Design force carried by the concrete flange (Equation 6.36)
Fcdw	� Design force carried by the concrete web of a flanged 

beam (Equation 6.37)
Fe,0	 Age-adjusted creep factor (Equation 5.60)
Fpt	 Tensile force carried by the prestressing steel
Fptd	� Design tensile force carried by the prestressing steel at 

the ultimate limit state
Fs	 Force carried by non-prestressed steel reinforcement
Fsc	� Force carried by non-prestressed compressive steel 

reinforcement
Fsd	� Design force carried by non-prestressed steel 

reinforcement
Fst	� Force carried by non-prestressed tensile steel 

reinforcement
Ft	� Resultant tensile force carried by the steel reinforcement 

and tendons
Fk	� Matrix relating applied actions to strain at time tk 

(Equation 5.102)
F0	� Matrix relating applied actions to strain at time t0 

(Equation 5.46)
G	 Permanent action
Gk	 Characteristic permanent action
I	� Second moment of area (moment of inertia) of the 

cross-section
Iav	 Average second moment of area after cracking
Ic	� Second moment of area of the concrete part of the 

cross-section about the reference axis
Icr	 Second moment of area of a cracked cross-section
Ief	 Effective second moment of area after cracking
Ig	 Second moment of area of the gross cross-section
Ik	 �Second moment of area of the age-adjusted transformed 

section at time tk
Iuncr	 Second moment of area of the uncracked cross-section
I0	� Second moment of area of the transformed section about 

reference axis at time t0

J(t,t0)	� Creep function at time t due to a sustained unit stress 
first applied at t0

K	� Slab system factor or factor that accounts for the position 
of the bars being anchored with respect to the transverse 
reinforcement (Figure 14.14)

Ldi	� Length of draw-in line adjacent to a live-end anchorage 
(Equation 5.150)

M	 Bending moment
M	 Virtual moment
Mb	 Bursting moment in a post-tensioned anchorage zone
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Mc,0	 Moment resisted by the concrete at time t0

Mcr	 Cracking moment
MEd	� Design value of the applied internal bending moment
MEd.x, MEd.y	� Design moments in a two-way slab spanning in the 

x- and y-directions, respectively
Mext,0	 Externally applied moment about reference axis at time t0

Mext,k	� Externally applied moment about reference axis at time tk

MG	 Moment caused by the permanent loads
Mint	 Internal moment about reference axis
Mint,k	 Internal moment about reference axis at time tk

Mint,0	 Internal moment about reference axis at time t0

Mo	� Total static moment in a two-way flat slab or decom-
pression moment

MQ	 Moment caused by the live loads
MRd	 Design moment resistance
Ms	 Spalling moment in a post-tensioned anchorage zone
Msus	 Moment caused by the sustained loads
Msw	 Moment caused by the self-weight of a member
MT	 Moment caused by total service loads
Mu	 Ultimate moment capacity
Mvar	 Moment caused by variable loads
M0	 Moment at a cross-section at transfer
N	 Axial force
Nc,k	 Axial forces resisted by the concrete at time tk

Nc,0	 Axial forces resisted by the concrete at time t0

NEd	� Design value of the applied axial force (tension or 
compression)

Next	 Externally applied axial force
Next,k	 Externally applied axial force at time tk

Next,0	 Externally applied axial force at time t0

Nint	 Internal axial force
Nint,k	 Internal axial force at time tk

Nint,0	 Internal axial force at time t0

Np,k	 Axial force resisted by the prestressing steel at time tk

Np,0	 Axial force resisted by the prestressing steel at time t0

NRd	 Design axial resistance of a column
NRd,t	 Design axial resistance of a tension member
Ns,k	� Axial force resisted by the non-prestressed reinforce-

ment at time tk

Ns,0	� Axial force resisted by the non-prestressed reinforce-
ment at time t0

P	 Prestressing force; applied axial load in a column
Ph	 Horizontal component of prestressing force
Pinit (i)	� Initial prestressing force at the i-th level of prestressing steel
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Pj	 Prestressing force during jacking (the jacking force)
Pm,t	� Effective force in the tendon at time t after the long-term 

losses
Pm0	� Initial force in the tendon immediately after transfer 

after the short-term losses
Px, Py	� Prestressing forces in a slab in the x- and y-directions, 

respectively
Pv	 Vertical component of prestressing force
P0	� Initial force at the active end of the tendon immediately 

after stressing
Q	 Variable action
Qk	 Characteristic variable action
RA,k, RB,k, RI,k	� Cross-sectional rigidities at time tk (Equations 5.84, 

5.85 and 5.89)
RA,p, RB,p, RI,p	� Contribution to section rigidities provided by the bonded 

tendons (Equations 5.125 through 5.127)
RA,s, RB,s, RI,s	� Contribution to section rigidities provided by the steel 

reinforcement (Equations 5.122 through 5.124)
RA,0, RB,0, RI,0	� Cross-sectional rigidities at time t0 (Equations 5.35, 5.36 

and 5.39)
S	 First moment of area
T	 Torsional moment
TEd	 Design value of the applied torsional moment
TRd,c	� Torsion required to cause first cracking in an otherwise 

unloaded beam
TRd,max	 Maximum design torsional resistance (Equation 7.34)
U	 Internal work
V	 Shear force
Vccd	� Shear component of compressive force in an inclined 

compression chord
VEd	 Nett design shear force
VRd	 Design strength in shear
VRd,c	� Design shear strength of a beam without shear rein-

forcement (Equations 7.2 and 7.4)
VRd,max	� Maximum design shear strength for a beam with shear 

reinforcement (Equation 7.8)
VRd,s	� Design strength provided by the yielding shear reinforce-

ment (Equation 7.7)
W	 External work
W1	 Elastic energy (Figure 6.20)
W2	 Plastic energy (Figure 6.20)
Z	 Section modulus of uncracked cross-section
Zbtm	 Bottom fibre section modulus (I/ybtm)
Ztop	 Top fibre section modulus (I/ytop)
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Latin lower-case letters

a, a	 Distance
b	� Overall width of a cross-section or actual flange width 

in a T or L beam
beff	 Effective width of the flange of a flanged cross-section
bw	 Width of the web on T, I or L beams
c	� Concrete cover
d	� Effective depth of a cross-section, that is the depth from 

the extreme compressive fibre to the resultant tensile 
force in the reinforcement and tendons at the ultimate 
limit state

dn	 Depth to neutral axis
dn,0	 Depth to neutral axis at time t0

do	� Depth from the extreme compressive fibre to the centroid 
of the outermost layer of tensile reinforcement

dp	� Depth from the top fibre of a cross-section to the 
prestressing steel

dp(i)	� Depth from the top fibre of a cross-section to the i-th level 
of prestressing steel

dref	� Depth from the top fibre of a cross-section to the refer-
ence axis

ds	� Depth from the top fibre of a cross-section to the non-
prestressed steel reinforcement

ds(i)	� Depth from the top fibre of a cross-section to the i-th level 
of non-prestressed steel reinforcement

dx, dy	� Effective depths to the tendons in the orthogonal x- and 
y-directions, respectively

e	� Eccentricity of prestress; eccentricity of axial load in a 
column; axial deformation

fbd	� Design value of the average ultimate bond stress 
(Equation 14.5)

fc	 Compressive strength of concrete
fcc,t	 Compressive stress limits for concrete under full load
fcc,0	� Compressive stress limits for concrete immediately after 

transfer
fcd	 Design value of the compressive strength of concrete
fck	� Characteristic compressive cylinder strength of concrete 

at 28 days
fcm	 Mean value of concrete cylinder compressive strength
fct	 Uniaxial tensile strength of concrete
fctd	 Design value of the tensile strength of concrete
fctm.fl	 Mean flexural tensile strength of concrete
fctk,0.05	 Lower characteristic axial tensile strength of concrete
fctk,0.95	 Upper characteristic axial tensile strength of concrete



Notation and sign convention  xxix

fctm	 Mean value of axial tensile strength of concrete
fct,t	 Tensile stress limits for concrete under full load
fct,0	� Tensile stress limits for concrete immediately after transfer
fp	 Tensile strength of prestressing steel
fpk	 Characteristic tensile strength of prestressing steel
fp0,1k	 Characteristic 0.1% proof-stress of prestressing steel
ft	 Tensile strength of reinforcement
fy	 Yield strength of reinforcement
fyd	 Design yield strength of reinforcement
fyk	 Characteristic yield strength of reinforcement
fywd	 Design yield strength of shear reinforcement
fcp,0	� Vector of actions to account for unbonded tendons at 

time t0 (Equation 5.100)
fcr,k	� Vector of actions at time tk that accounts for creep dur-

ing previous time period (Equation 5.96)
fcs,k	� Vector of actions at time tk that accounts for shrinkage 

during previous time period (Equation 5.97)
fp,init	 Vector of initial prestressing forces (Equation 5.44)
fp.rel,k	 Vector of relaxation forces at time tk (Equation 5.99)
h	 Overall depth of a cross-section
he	 Depth of the symmetric prism
hp	 Dimension of a post-tensioning anchorage plate
h0	 Notional size or hypothetical thickness
i	 Radius of gyration
i, j, k	 Integers
k	� Coefficient or factor or angular deviation (in radians/m) 

or stiffness coefficient
kr	 Shrinkage curvature coefficient
l	 Length or span
lbpd	� Anchorage length required to develop the design stress 

in a tendon at the ultimate limit state
lb,rqd	 Required anchorage length (Equation 14.4)
leff	� Effective span of a slab strip; longer of the two effective 

spans on either side of a column
lh	 Length of plastic hinge
ln	 Clear span as defined in Figure 2.1
lpt	 Transmission length
lt	 Transverse span
lx, ly	� Longer and shorter orthogonal span lengths, respec-

tively, in two-way slabs
l0	� Distance along a beam between the points of zero moment 

or effective length of a column or design lap length
mp	 Number of layers of prestressed steel
ms	 Number of layers of non-prestressed reinforcement
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qk	 Characteristic uniformly distributed variable action
rext,k	 Vector of applied actions at time tk (Equation 5.75)
rext,0	 Vector of applied actions at time t0 (Equation 5.41)
rint,k	 Vector of internal actions at time tk (Equation 5.76)
s	 Spacing between fitments
sf	� Spacing between transverse reinforcement in a flange 

(Figure 7.10)
sl,max	� Maximum spacing between stirrups (or stirrup assem-

blies) measured along the longitudinal axis of the member 
(Equation 14.13)

st	 Stirrup spacing required for torsion
sv	 Stirrup spacing required for shear
sr,max	 Maximum crack spacing (Equation 5.201)
st,max	� Maximum transverse spacing of the legs of a stirrup 

(Equation 14.14)
t	 Thickness or time
t0	 The age of concrete at the time of loading
u	 Perimeter of concrete cross-section
v	 Deflection or shear stress
vcc	 Deflection due to creep
vcs	 Deflection due to shrinkage
vcx, vmx	� Deflection of the column strip and the middle strip in the 

x-direction
vcy, vmy	� Deflection of the column strip and the middle strip in the 

y-direction
v0	 Deflection immediately after transfer
vmax	� Maximum permissible total deflection or maximum 

final total deflection
vmin	 Minimum shear stress
vsus,0	� Short-term deflection at transfer caused by the sustained 

loads
vtot	 Total deflection
w	 Uniformly distributed load or crack width
wbal	 Uniformly distributed balanced load
wEd	 Factored design load at the ultimate limit state
wG	 Uniformly distributed permanent load
wk	 Calculated crack width; design crack width
wp	� Distributed transverse load exerted on a member by a 

draped tendon profile
wpx, wpy	� Transverse loads exerted by tendons in the x- and 

y-directions, respectively
wQ	 Uniformly distributed live load
ws	 Uniformly distributed service load
wsw	� Uniformly distributed load due to self-weight of the 

member
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wu	 Collapse load
wunbal	 Uniformly distributed unbalanced load
wunbal.sus	� Sustained part of the uniformly distributed unbalanced 

load
x	 Neutral axis depth at the ultimate limit state
x,y,z	 Coordinates
ybtm	� Distance from the centroidal axis to the bottom fibre of 

a cross-section
yc	� Distance from reference axis to centroid of the concrete 

cross-section
yn,0	� Distance from the reference axis to the neutral axis at 

time t0

yp(i)	 y-coordinate of i-th level of prestressed steel
ys(i)	 y-coordinate of i-th level of non-prestressed reinforcement
ytop	� Distance from the centroidal axis to the top fibre of a 

cross-section
z	 Lever arm between internal forces
zd	 Sag (or drape) of a parabolic tendon in a span

Greek lower-case letters

α	� Angle or ratio or index or factor
αc	 Modular ratio (Ecm2/Ecm1) in a composite member
αep(i),0	� Effective modular ratio (Ep(i)/Ec,eff) of the i-th layer of 

prestressing steel at time t0

αes(i),0	� Effective modular ratio (Es(i)/Ec,eff) of the i-th layer of 
non-prestressed steel at time t0

αep(i),k	� Age-adjusted effective modular ratio (Ep(i)/Ec,eff ) of the 
i-th layer of prestressing steel at time tk

αes(i),k	� Age-adjusted effective modular ratio (Es(i)/Ec,eff ) of the 
i-th layer of non-prestressed steel at time tk

αp(i),0	� Modular ratio (Ep(i)/Ecm,0) of the i-th layer of prestress-
ing steel at time t0

αs(i),0	� Modular ratio (Es(i)/Ecm,0) of the i-th layer of non-
prestressed steel at time t0

α1, α2	� Creep modification factors for cracked and uncracked 
cross-section (Equations 5.184 and 5.185), respectively, 
or fractions of the span l shown in Figure 11.14

β	� Angle or ratio or coefficient or slope
βcc(t)	� Function describing the development of concrete 

strength with time (Equation 4.2)
βx, βy	� Moment coefficients (Table 12.3)
χ(t,t0)	� Aging coefficient for concrete at time t due to a stress 

first applied at t0
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γ	 Partial factor
γC	 Partial factor for concrete
γG	 Partial factor for permanent actions, G
γP	 Partial factor for actions associated with prestressing, P
γQ	 Partial factor for variable actions, Q
γS	 Partial factor for reinforcing or prestressing steel
Δ	� Increment or change
Δslip	 Slip of the tendon at an anchorage (Equation 5.148)
ΔPc+s+r	� Time-dependent loss of prestress due to creep, shrinkage 

and relaxation
ΔPel	� Loss of prestress due to elastic shortening of the member 

(Equation 5.146)
ΔPdi	� Loss of prestress due to draw-in at the anchorage 

(Equation 5.151)
ΔPμ	� Loss of prestress due to friction along the duct (Equation 

5.148)
Δtk	 Time interval (tk − t0)
Δσp,c+s+r	� Time-dependent change of stress in the tendon due to 

creep, shrinkage and relaxation (Equation 5.152)
Δσp,c	 Change in stress in the tendon due to creep
Δσp,r	 Change in stress in the tendon due to relaxation
Δσp,s	 Change in stress in the tendon due to shrinkage
Δσp,0	 Change in stress in the tendon immediately after transfer
η	� Ratio of uniform compressive stress intensity of the 

idealised rectangular stress block to the design com-
pressive strength of concrete (fcd)

ε	 Strain
εc	 Compressive strain in the concrete
εca	 Autogenous shrinkage strain
εcc	 Creep strain component in the concrete
εcd	 Drying shrinkage strain
εce	� Instantaneous strain component in the concrete
εcs	 Shrinkage strain component in the concrete
εk	 Strain at time tk

εk	 Vector of strain at time tk (Equations 5.94 and 5.101)
εp(i),init	� Initial strain in the i-th layer of prestressing steel pro-

duced by the initial tensile prestressing force Pinit(i)

εp.rel(i),k	� Tensile creep strain in the i-th prestressing tendon at 
time tk (Equation 5.73)

εpe	� Strain in the prestressing steel caused by the effective 
prestress (Equation 6.13)

εptd	 Concrete strain at the level of the tendon (Equation 6.14)
εpud	� Strain in the bonded tendon at the design resistance 

(Equation 6.15)
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εr	 Strain at the level of the reference axis
εr,k	 Strain at the level of the reference axis at time tk

εr,0	 Strain at the level of the reference axis at time t0

εsd	 Design strain in the non-prestressed steel reinforcement
εuk	� Characteristic strain of reinforcement or prestressing 

steel at maximum load
εyk	� Characteristic yield strain of reinforcement or prestress-

ing steel
ε0	 Strain at time t0

ε0	� Vector of strain components at time t0 (Equations 5.43 
and 5.45)

ϕ	 Diameter of a reinforcing bar or of a prestressing duct
φ(t,t0)	� Creep coefficient of concrete, defining creep between 

times t and t0, related to elastic deformation at 28 days
φ(∞,t0)	 Final value of creep coefficient of concrete
φp(i)	 Creep coefficient of the prestressing steel at time tk

κ	 Curvature
κcc, κcc(t)	 Creep-induced curvature (Equation 5.183)
κcr	 Curvature at first cracking
κcs, κcs(t)	 Curvature induced by shrinkage (Equation 5.187)
κef	 Instantaneous effective curvature on a cracked section
κk	 Long-term curvature at time tk

κp	 Curvature of prestressing tendon
κsus	 Curvature caused by the sustained loads
κsus,0	 Curvature caused by the sustained loads at time t0

κud	� Design curvature at the ultimate limit state (Equation 
6.10)

(κud)min	� Minimum design curvature at the ultimate limit state 
(Equation 6.22)

κuncr	 Curvature on the uncracked cross-section
κ0	 Initial curvature at time t0

λ	� Ratio of the depth of the rectangular compressive stress 
block to the depth of the neutral axis at ultimate limit state 

ν	 Poisson’s ratio
θ	� Angle or sum in radians of the absolute values of succes-

sive angular deviations of the tendon over the length x 
or slope

θp	 Angle of inclination of prestressing tendon
θs	 Rotation available at a plastic hinge
θv	� Angle between the axis of the concrete compression 

strut and the longitudinal axis of the member
ρ	� Reinforcement ratio for the bonded steel (As + Ap)/bdo

ρcw	� Longitudinal compressive reinforcement ratio related to 
the web width Asc/(bw d)
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ρw	� Longitudinal reinforcement ratio for the tensile steel 
related to the web width (As + Apt)/(bw d) or shear rein-
forcement ratio

σ	 Stress
σc	 Compressive stress in the concrete
σc,btm	� Stress in the concrete at the bottom of a cross-section
σc0, σc(t0)	 Stress in the concrete at time t0

σc,k, σc(tk)	 Stress in the concrete at time tk

σcp	� Compressive stress in the concrete from axial load or 
prestressing

σcs	� Maximum shrinkage-induced tensile stress on the 
uncracked section (Equation 5.179)

σc,top	� Stress in the concrete at the top of a cross-section (in 
positive bending)

σcy, σcz	� Normal compressive stresses on the control section in 
the orthogonal y- and z-directions, respectively

σp	 Stress in the prestressing steel
σp(i),0	 Stress in the i-th layer of prestressing steel at time t0

σp(i),k	 Stress in the i-th layer of prestressing steel at time tk

σpi	� Initial stress in the prestressing steel immediately after 
tensioning

σpj	� Stress in the prestressing steel at the jack (before losses)
σp,max	� Maximum permissible stress in the prestressing during 

jacking (Equation 5.1)
σpud	 Design stress in the prestressing steel
σp0	� Initial stress in the prestressing steel immediately after 

transfer
σs	 Stress in the non-prestressed steel reinforcement
σs(i),k	 Stress in the i-th layer of non-prestressed steel at time tk

σs(i),0	 Stress in the i-th layer of non-prestressed steel at time t0

σsd	 Design stress in a steel reinforcement bar
σ1, σ2	 Principal stresses in concrete
Ω	� A factor that depends on the time-dependent loss of 

prestress in the concrete (Equation 5.112)
ψ, ψ0, ψ1, ψ2	 Factors defining representative values of variable actions
ζ	� A distribution coefficient that accounts for the moment 

level and the degree of cracking on the effective moment 
of inertia (Equation 5.181)
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Chapter 1

Basic concepts

1.1  INTRODUCTION

For the construction of mankind’s infrastructure, reinforced concrete is the 
most widely used structural material. It has maintained this position since 
the end of the nineteenth century and will continue to do so for the foresee-
able future. Because the tensile strength of concrete is low, steel bars are 
embedded in the concrete to carry the internal tensile forces. Tensile forces 
may be caused by imposed loads or deformations, or by load-independent 
effects such as temperature changes and shrinkage.

Consider the simple reinforced concrete beam shown in Figure 1.1a, 
where the external loads cause tension in the bottom of the beam leading 
to cracking. Practical reinforced concrete beams are usually cracked under 
the day-to-day service loads. On a cracked section, the applied bending 
moment M is resisted by compression in the concrete above the crack and 
tension in the bonded reinforcing steel crossing the crack (Figure 1.1b).

Although the steel reinforcement provides the cracked beam with flex-
ural strength, it prevents neither cracking nor loss of stiffness during crack-
ing. Crack widths are approximately proportional to the strain, and hence 
stress, in the reinforcement. Steel stresses must therefore be limited to some 
appropriately low value under in-service conditions in order to avoid exces-
sively wide cracks. In addition, large steel strain in a beam is the result of 
large curvature, which in turn is associated with large deflection. There 
is little benefit to be gained, therefore, by using higher strength steel or 
concrete, since in order to satisfy serviceability requirements, the increased 
capacity afforded by higher strength steel cannot be utilised.

Prestressed concrete is a particular form of reinforced concrete. 
Prestressing involves the application of an initial compressive load to the 
structure to reduce or eliminate the internal tensile forces and thereby con-
trol or eliminate cracking. The initial compressive load is imposed and sus-
tained by highly tensioned steel reinforcement (tendons) reacting on the 
concrete. With cracking reduced or eliminated, a prestressed concrete sec-
tion is considerably stiffer than the equivalent (usually cracked) reinforced 
concrete section. Prestressing may also impose internal forces that are of 
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opposite sign to the external loads and may therefore significantly reduce 
or even eliminate deflection.

With service load behaviour improved, the use of high-strength steel 
reinforcement and high-strength concrete becomes both economical and 
structurally efficient. As we will see subsequently, only steel that can accom-
modate large initial elastic strains is suitable for prestressing concrete. The 
use of high-strength steel is therefore not only an advantage to prestressed 
concrete, it is a necessity. Prestressing results in lighter members, longer 
spans and an increase in the economical range of application of reinforced 
concrete.

Consider an unreinforced concrete beam of rectangular section, simply-
supported over a span l, and carrying a uniform load w, as shown in Figure 
1.2a. When the tensile strength of concrete (fct) is reached in the bottom 
fibre at mid-span, cracking and a sudden brittle failure will occur. If it 
is assumed that the concrete possesses zero tensile strength (i.e. fct = 0), 
then no load can be carried and failure will occur at any load greater than 
zero. In this case, the collapse load wu is zero. An axial compressive force 
P applied to the beam, as shown in Figure 1.2b, induces a uniform com-
pressive stress of intensity P/A on each cross-section. For failure to occur, 
the maximum moment caused by the external collapse load wu must now 
induce an extreme fibre tensile stress equal in magnitude to P/A. In this 
case, the maximum moment is located at mid-span and, if linear-elastic 
material behaviour is assumed, simple beam theory gives (Figure 1.2b):
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Figure 1.1 � A reinforced concrete beam. (a) Elevation and section. (b) Free-body diagram, 
stress distribution and resultant forces Fc and Fs.
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based on which the collapse load can be determined as:
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If the prestressing force P is applied at an eccentricity of h/6, as shown in 
Figure 1.2c, the compressive stress caused by P in the bottom fibre at mid-
span is equal to:
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and the external load at failure wu must now produce a tensile stress of 
2P/A in the bottom fibre. This can be evaluated as follows (Figure 1.2c):
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and rearranging gives:
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Figure 1.2 � Effect of prestress on the load carrying capacity of a plain concrete beam. 
(a) Zero prestress. (b) Axial prestress (e = 0). (c) Eccentric prestress (e = h/6).
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By locating the prestressing force at an eccentricity of h/6, the load 
carrying capacity of the unreinforced plain concrete beam is effectively 
doubled.

The eccentric prestress induces an internal bending moment Pe which is 
opposite in sign to the moment caused by the external load. An improve-
ment in behaviour is obtained by using a variable eccentricity of prestress 
along the member using a draped cable profile.

If the prestress counter-moment Pe is equal and opposite to the load-
induced moment along the full length of the beam, each cross-section is 
subjected only to axial compression, i.e. each section is subjected to a uni-
form compressive stress of P/A. No cracking can occur and, if the curvature 
on each section is zero, the beam does not deflect. This is known as the 
balanced load stage.

1.2  METHODS OF PRESTRESSING

As mentioned in the previous section, prestress is usually imparted to a con-
crete member by highly tensioned steel reinforcement (in the form of wire, 
strand or bar) reacting on the concrete. The high-strength prestressing steel 
is most often tensioned using hydraulic jacks. The tensioning operation 
may occur before or after the concrete is cast and, accordingly, prestressed 
members are classified as either pretensioned or post-tensioned. More 
information on prestressing systems and prestressing hardware is provided 
in Chapter 3.

1.2.1  Pretensioned concrete

Figure 1.3 illustrates the procedure for pretensioning a concrete member. 
The prestressing tendons are initially tensioned between fixed abutments 
and anchored. With the formwork in place, the concrete is cast around the 
highly stressed steel tendons and cured. When the concrete has reached its 
required strength, the wires are cut or otherwise released from the abut-
ments. As the highly stressed steel attempts to contract, it is restrained by 
the concrete and the concrete is compressed. Prestress is imparted to the 
concrete via bond between the steel and the concrete.

Pretensioned concrete members are often precast in pretensioning beds 
that are long enough to accommodate many identical units simultaneously. 
To decrease the construction cycle time, steam curing may be employed to 
facilitate rapid concrete strength gain, and the prestress is often transferred 
to the concrete within 24 hours of casting. Because the concrete is usu-
ally stressed at such an early age, elastic shortening of the concrete and 
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subsequent creep strains tend to be high. This relatively high time-dependent 
shortening of the concrete causes a significant reduction in the tensile strain 
in the bonded prestressing steel and a relatively high loss of prestress occurs 
with time.

1.2.2  Post-tensioned concrete

The procedure for post-tensioning a concrete member is shown in Figure 1.4. 
With the formwork in position, the concrete is cast around hollow ducts 
which are fixed to any desired profile. The steel tendons are usually in 
place, unstressed in the ducts during the concrete pour, or alternatively may 
be threaded through the ducts at some later time. When the concrete has 
reached its required strength, the tendons are tensioned. Tendons may be 
stressed from one end with the other end anchored or may be stressed from 
both ends, as shown in Figure 1.4b. The tendons are then anchored at each 
stressing end. The concrete is compressed during the stressing operation, 
and the prestress is maintained after the tendons are anchored by bearing 
of the end anchorage plates onto the concrete. The post-tensioned tendons 
also impose a transverse force on the member wherever the direction of the 
cable changes.

(a)

(b)

(c)

Figure 1.3 � Pretensioning procedure. (a) Tendons stressed between abutments. 
(b) Concrete cast and cured. (c) Tendons released and prestress transferred.
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After the tendons have been anchored and no further stressing is 
required, the ducts containing the tendons are often filled with grout under 
pressure. In this way, the tendons are bonded to the concrete and are more 
efficient in controlling cracks and providing ultimate strength. Bonded ten-
dons are also less likely to corrode or lead to safety problems if a tendon 
is subsequently lost or damaged. In some situations, however, tendons are 
not grouted for reasons of economy and remain permanently unbonded. In 
this form of construction, the tendons are coated with grease and encased 
in a plastic sleeve. Although the contribution of unbonded tendons to the 
ultimate strength of a beam or slab is only about 75% of that provided 
by bonded tendons, unbonded post-tensioned slabs are commonly used in 
North America and Europe.

Most in-situ prestressed concrete is post-tensioned. Relatively light and 
portable hydraulic jacks make on-site post-tensioning an attractive proposi-
tion. Post-tensioning is also used for segmental construction of large-span 
bridge girders.

1.2.3  Other methods of prestressing

Prestress may also be imposed on new or existing members using exter-
nal tendons or such other devices as flat jacks. These systems are useful 

(a) 

(b) 

(c)

Hollow duct

Figure 1.4 � Post-tensioning procedure. (a) Concrete cast and cured. (b) Tendons stressed 
and prestress transferred. (c) Tendons anchored and subsequently grouted.
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for temporary prestressing operations but may be subject to high time-
dependent losses. External prestressing is discussed further in Section 3.7.

1.3 � TRANSVERSE FORCES INDUCED 
BY DRAPED TENDONS

In addition to the longitudinal force P exerted on a prestressed member 
at the anchorages, transverse forces are also exerted on the member wher-
ever curvature exists in the tendons. Consider the simply-supported beam 
shown in Figure 1.5a. It is prestressed by a cable with a kink at mid-span. 
The eccentricity of the cable is zero at each end of the beam and equal to e 
at mid-span, as shown. The slope of the two straight segments of cable is θ. 
Because θ is small, it can be calculated as:

	
θ θ θ≈ ≈ =sin tan

/
e

l 2
	 (1.1)

In Figure 1.5b, the forces exerted by the tendon on the concrete are shown. 
At mid-span, the cable exerts an upward force FP on the concrete equal to 
the sum of the vertical component of the prestressing force in the tendon on 
both sides of the kink. From statics:

	
F P

Pe
l

P sin= ≈2
4θ 	 (1.2)

e

Bθ
l/2l/2

A

(a)

C

(b)

CP cos θ ≈ P

P sin θ
A

FP = 2P sin θ B

P cos θ ≈ P

P sin θ

FP = 2P sin θ

P P
θ

(c)

P sin θ l/2 = Pe–

Figure 1.5 � Forces and actions exerted by prestress on a beam with a centrally depressed 
tendon. (a) Elevation. (b) Forces imposed by prestress on concrete. (c) Bending 
moment diagram due to prestress.
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At each anchorage, the cable has a horizontal component of P cos θ 
(which is approximately equal to P for small values of θ) and a vertical 
component equal to P sin θ (approximated by 2Pe/l).

Under this condition, the beam is said to be self-stressed. No external 
reactions are induced at the supports. However, the beam exhibits a non-
zero curvature along its length and deflects upward owing to the internal 
bending moment caused by the prestress. As illustrated in Figure 1.5c, the 
internal bending moment at any section can be calculated from statics and 
is equal to the product of the prestressing force P and the eccentricity of the 
tendon at that cross-section.

If the prestressing cable has a curved profile, the cable exerts trans-
verse forces on the concrete throughout its length. Consider the pre-
stressed beam with the parabolic cable profile shown in Figure 1.6. With 
the x- and y-coordinate axes in the directions shown, the shape of the 
parabolic cable is:

	
y e

x
l

x
l

= − − 



















4
2

	 (1.3)

and its slope and curvature are, respectively:

	

d
d

y
x

e
l

x
l

= − −







4
1

2
	 (1.4)

and

	
d
d

2

p
y

x
e

l2 2

8= + = κ 	 (1.5)

From Equation 1.4, the slope of the cable at each anchorage, i.e. when x = 0 
and x = l, is:

	
θ = = ±d

d
y
x

e
l

4
	 (1.6)

e

l/2l/2

xP

y

θ
P

Figure 1.6 � A simple beam with parabolic tendon profile.
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and, provided the tendon slope is small, the horizontal and vertical compo-
nents of the prestressing force at each anchorage may therefore be taken as 
P and 4Pe/l, respectively.

Equation 1.5 indicates that the curvature of the parabolic cable is constant 
along its length. The curvature κp is the angular change in direction of the 
cable per unit length, as illustrated in Figure 1.7a. From the free-body dia-
gram in Figure 1.7b, for small tendon curvatures, the cable exerts an upward 
transverse force wp = Pκp per unit length over the full length of the cable. This 
upward force is an equivalent distributed load along the member and, for a 
parabolic cable with the constant curvature of Equation 1.5, wp is given by:

	
w P

Pe
l

p p= = +κ 8
2 	 (1.7)

With the sign convention adopted in Figure 1.6, a positive value of wp 
depicts an upward load. If the prestressing force is constant along the beam, 
which is never quite the case in practice, wp is uniformly distributed and 
acts in an upward direction.

A free-body diagram of the concrete beam showing the forces exerted 
by the cable is illustrated in Figure 1.8. The zero reactions induced by the 
prestress imply that the beam is self-stressed. With the maximum eccen-
tricity usually known, Equation 1.7 may be used to calculate the value of 
P required to cause an upward force wp that exactly balances a selected 

FP = 2Psin (κp/2)κp

κp
P

P

P

Fp

Unit length

(a) (b)

P

≈ Pκp

Figure 1.7 � Forces on a curved cable of unit length. (a) Tendon segment of unit length. 
(b) Triangle of forces.

4Pe/l

P
e

l/2l/2

4Pe/l

P

wp = 8Pe/l2 (  )

Figure 1.8 � Forces exerted on a concrete beam by a tendon with a parabolic profile.
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portion of the external load. Under this balanced load, the beam exhibits 
no curvature and is subjected only to the longitudinal compressive force of 
magnitude P. This is the basis of a useful design approach, sensibly known 
as load balancing.

1.4  CALCULATION OF ELASTIC STRESSES

The components of stress on a prestressed cross-section caused by the pre-
stress, the self-weight and the external loads are usually calculated using 
simple beam theory and assuming linear-elastic material behaviour. In 
addition, the properties of the gross concrete section are usually used in 
the calculations, provided the section is not cracked. Indeed, these assump-
tions have already been made in the calculations of the stresses illustrated 
in Figure 1.2.

Concrete, however, does not behave in a linear-elastic manner. At best, 
linear-elastic calculations provide only an approximation of the state of 
stress on a concrete section immediately after the application of the load. 
Creep and shrinkage strains that gradually develop in the concrete usually 
cause a substantial redistribution of stresses with time, particularly on a 
section containing significant amounts of bonded reinforcement.

Elastic calculations are useful, however, in determining, for example, if 
tensile stresses occur at service loads, and therefore if cracking is likely, or 
if compressive stresses are excessive and large time-dependent shortening 
may be expected. Elastic stress calculations may therefore be used to indi-
cate potential serviceability problems.

If an elastic calculation indicates that cracking may occur at service loads, 
the cracked section analysis presented subsequently in Section 5.8.3 should 
be used to determine appropriate section properties for use in serviceabil-
ity calculations. A more comprehensive picture of the variation of concrete 
stresses with time can be obtained using the time analyses described in 
Sections 5.7 and 5.9 to account for the time-dependent deformations caused 
by creep and shrinkage of the concrete.

In the following sections, several different approaches for calculating 
elastic stresses on an uncracked concrete cross-section are described to pro-
vide insight into the effects of prestressing. Tensile (compressive) stresses 
are assumed to be positive (negative).

1.4.1  Combined load approach

The stress distributions on a cross-section caused by prestress, self-weight 
and the applied loads may be calculated separately and summed to obtain 
the combined stress distribution at any particular load stage. We will first 
consider the stresses caused by prestress and ignore all other loads. On a 
cross-section, such as that shown in Figure 1.9, equilibrium requires that 
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the resultant of the concrete stresses is a compressive force that is equal and 
opposite to the tensile force in the steel tendon and located at the level of 
the steel, i.e. at an eccentricity e below the centroidal axis. This is statically 
equivalent to an axial compressive force P and a moment Pe located at the 
centroidal axis, as shown.

The stresses caused by the prestressing force of magnitude P and the 
hogging (−ve) moment Pe are also shown in Figure 1.9. The resultant stress 
induced by the prestress is given by:

	
σ = − +P

A
Pey

I
	 (1.8)

where A and I are the area and second moment of area about the centroidal 
axis of the cross-section, respectively, and y is the distance from the centroi-
dal axis (positive upwards).

It is common in elastic stress calculations to ignore the stiffening effect 
of the reinforcement and to use the properties of the gross cross-section. 
Although this simplification usually results in only small errors, it is not 
encouraged here. For cross-sections containing significant amounts of 
bonded steel reinforcement, the steel should be included in the determina-
tion of the properties of the transformed cross-section.

Section Elevations

P

e Pe

P
ytop

ytop

ybtm
e

ybtm

Centroidal
axis

Centroidal
axis

y

y

Section

e

Due to P Due to Pe Resultant
Stresses due to prestress

=+

–P/A + Pey/I+Pey/I–P/A

Figure 1.9 � Concrete stress resultants and stresses caused by prestress.
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The elastic stresses caused by an applied positive moment M on the 
uncracked cross-section are:

	
σ = − My

I
	 (1.9)

and the combined stress distribution due to prestress and the applied 
moment is shown in Figure 1.10 and given by:

	
σ = − + −P

A
Pey

I
My
I

	 (1.10)

1.4.2  Internal couple concept

The resultant of the combined stress distribution shown in Figure 1.10 is 
a compressive force of magnitude P located at a distance zp above the level 
of the steel tendon, as shown in Figure 1.11. The compressive force in the 
concrete and the tensile force in the steel together form a couple, with mag-
nitude equal to the applied bending moment and calculated as:

	 M = Pzp	 (1.11)

y
y = +ytop

e

y = –ybtm
Due to prestress Due to moment Combined

–My/I–P/A + Pey/I–My/I–P/A + Pey/I

=+
Centroidal

axis

Figure 1.10 � Combined concrete stresses.

P

P

zp M = Pzp

Figure 1.11 � Internal couple.
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When the applied moment M = 0, the lever arm zp is zero and the resultant 
concrete compressive force is located at the steel level. As M increases, the 
compressive stresses in the top fibres increase and those in the bottom fibres 
decrease, and the location of the resultant compressive force moves upward.

It is noted that provided the section is uncracked, the magnitude of P 
does not change appreciably as the applied moment increases and, as a 
consequence, the lever arm zp is almost directly proportional to the applied 
moment. If the magnitude and position of the resultant of the concrete 
stresses are known, the stress distribution can be readily calculated.

1.4.3  Load balancing approach

In Figure 1.8, the forces exerted on a prestressed beam by a parabolic ten-
don with equal end eccentricities are shown and the uniformly distributed 
transverse load wp is calculated from Equation 1.7. In Figure 1.12, all the 
loads acting on such a beam, including the external gravity loads w, are 
shown.

If w = wp, the bending moment and shear force on each cross-section 
caused by the gravity load w are balanced by the equal and opposite values 
caused by wp. With the transverse loads balanced, the beam is subjected 
only to the longitudinal prestress P applied at the anchorage. If the anchor-
age is located at the centroid of the section, a uniform stress distribution of 
intensity P/A occurs on each section and the beam does not deflect.

If w ≠ wp, the bending moment Munbal caused by the unbalanced load 
(w − wp) must be calculated and the resultant stress distribution (given 
by Equation 1.9) must be added to the stresses caused by the axial 
prestress (−P/A).

1.4.4  Introductory example

The elastic stress distribution at mid-span of the simply-supported beam 
shown in Figure 1.13 is to be calculated. The beam spans 12 m and is 
post-tensioned by a single cable with zero eccentricity at each end and 
e = 250 mm at mid-span. The prestressing force in the tendon is assumed to 
be constant along the length of the beam and equal to P = 1760 kN.

w

wp

wl
2

wpl
2

P

l
wl
2

wpl
2

P

Figure 1.12 � Forces on a concrete beam with a parabolic tendon profile.
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Each of the procedures discussed in the preceding sections is illustrated 
in the following calculations.

1.4.4.1  Combined load approach

The extreme fibre stresses at mid-span (σtop, σbtm) due to P, Pe and M are 
calculated separately in the following and then summed.

At mid-span: P = 1760 kN; Pe =1760 × 250 × 10–3 = 440 kNm and

	
M

wl= = × =
2 2

8
30 12

8
540 kNm

	
Due to MPatop btmP

P
A

: .σ σ= = − = − ×
×

= −1760 10
220 10

8 0
3

3

	
Due to

,
MPatop

topPe
Pey

I
: .σ = = × ×

×
= +440 10 485

20 000 10
10 67

6

6

	
σbtm

btm

,
MPa= − = − × ×

×
= −Pey

I
440 10 415

20 000 10
9 13

6

6 .

	
Due to

,
MPatop

topM
My

I
: .σ = − = − × ×

×
= −540 10 485

20 000 10
13 10

6

6

	
σbtm

btm

,
MPa= = × ×

×
= +My

I
540 10 415

20 000 10
11 21

6

6 .
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ytop = 485

ybtm= 415

6000 6000
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e = 250

30 kN/m (includes self-weight)

Parabolic tendon

110
100

430

160

100

450
Section

A = 220 × 103 mm2;   I = 20,000 × 106 mm4;   P = 1760 kN

Figure 1.13 � Beam details (Introductory example). (Notes: P is assumed constant on every 
section; all dimensions are in millimetres.)
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The corresponding concrete stress distributions and the combined elastic stress 
distribution on the concrete section at mid-span are shown in Figure 1.14.

1.4.4.2  Internal couple concept

From Equation 1.11:

	
z

M
P

p mm= = ×
×

=540 10
1760 10

306 8
6

3 .

The resultant compressive force on the concrete section is 1760 kN, and it is 
located 306.8 − 250 = 56.8 mm above the centroidal axis. This is statically 
equivalent to an axial compressive force of 1760 kN (applied at the cen-
troid) plus a moment Munbal = 1760 × 56.8 × 10–3 = 100 kNm. The extreme 
fibre concrete stresses are therefore:

	
σtop

unbal top ,
,

= − − = − ×
×

− × ×
×

P
A

M y
I

1 760 10
220 10

100 10 485
20 000 1

3

3

6

00
10 436 = − . MPa

	
σbtm

unbal btm ,
,

= − + = − ×
×

+ × ×
×

P
A

M y
I

1 760 10
220 10

100 10 415
20 000 1

3

3

6

00
5 926 = − . MPa

and, of course, these are identical with the extreme fibre stresses calculated 
using the combined load approach and shown in Figure 1.14.

1.4.4.3  Load balancing approach

The transverse force imposed on the concrete by the parabolic cable is 
obtained using Equation 1.7 as:

	
w

Pe
l

p
,

,
kN/m (upward)= = × × × =8 8 1 760 10 250

12 000
24 442

3

2 .

–10.43–13.10–8.0 +2.67+10.67

+ –

––

– – +

== ++

–5.92+11.21–17.13–9.13–8.0
Due to: P + Pe P + Pe + MP Pe M

Figure 1.14 � Component stress distributions in introductory example.
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The unbalanced load is therefore:

	 wunbal kN/m (downward)= − =30 0 24 44 5 56. . .

and the resultant unbalanced moment at mid-span is:

	
M

w l
unbal

unbal kNm= = × =
2 2

8
5 56 12

8
100

.

This is identical to the moment Munbal calculated using the internal couple 
concept and, as determined previously, the elastic stresses at mid-span are 
obtained by adding the P/A stresses to those caused by Munbal:

	
σtop

unbal top MPa= − − = −P
A

M y
I

10 43.

	
σbtm

unbal btm MPa= − + = −P
A

M y
I

5 92.

1.5 � INTRODUCTION TO STRUCTURAL 
BEHAVIOUR: INITIAL TO ULTIMATE LOADS

The choice between reinforced and prestressed concrete for the construc-
tion of a particular structure is essentially one of economics. Aesthetics 
may also influence the choice. For relatively short-span beams and slabs, 
reinforced concrete is usually the most economical alternative. As spans 
increase, however, reinforced concrete design is more and more controlled 
by the serviceability requirements. Strength and ductility can still be eco-
nomically achieved but, in order to prevent excessive deflection, cross-
sectional dimensions become uneconomically large. Excessive deflection is 
usually the governing limit state.

For medium- to long-span beams and slabs, the introduction of pre-
stress improves both serviceability and economy. The optimum level of 
prestress depends on the span, the load history and the serviceability 
requirements. The level of prestress is often selected so that cracking at 
service loads does not occur. However, in many situations, there is no 
valid reason why controlled cracking should not be permitted. Insisting on 
enough prestress to eliminate cracking frequently results in unnecessarily 
high initial prestressing forces and, consequently, uneconomical designs. In 
addition, the high initial prestress often leads to excessively large camber 
and/or axial shortening. Members designed to remain uncracked at service 
loads are commonly termed fully prestressed.

In building structures, there are relatively few situations in which it is 
necessary to avoid cracking under the full service loads. In fact, the most 
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economic design often results in significantly less prestress than is required 
for a fully-prestressed member. Frequently, such members are designed to 
remain uncracked under the sustained or permanent load, with cracks open-
ing and closing as the variable live load is applied and removed. Prestressed 
concrete members generally behave satisfactorily in the post-cracking load 
range, provided they contain sufficient bonded reinforcement to control the 
cracks. A cracked prestressed concrete section under service loads is signifi-
cantly stiffer than a cracked reinforced concrete section of similar size and 
containing similar quantities of bonded reinforcement. Members that are 
designed to crack at the full service load are often called partially-prestressed.

The elastic stress calculations presented in the previous section are 
applicable only if material behaviour is linear-elastic and the principle of 
superposition is valid. These conditions may be assumed to apply on a pre-
stressed section prior to cracking, but only immediately after the loads are 
applied. As was mentioned in Section 1.4, the gradual development of creep 
and shrinkage strains with time in the concrete can cause a marked redis-
tribution of stress between the bonded steel and the concrete on the cross-
section. The greater the quantity of bonded reinforcement, the greater is the 
time-dependent redistribution of stress. This is demonstrated subsequently 
in Section 5.7.3 and discussed in Section 5.7.4. For the determination of the 
long-term stress and strain distributions, elastic stress calculations are not 
meaningful and may be misleading.

A typical moment versus instantaneous curvature relationship for a pre-
stressed concrete cross-section is shown in Figure 1.15. Prior to the application 
of moment (i.e. when M = 0), if the prestressing force P acts at an eccentric-
ity e from the centroidal axis of the uncracked cross-section, the curvature 
is κ0 = −Pe/(EcmIuncr), corresponding to point A in Figure 1.15, where Ecm is 
the elastic modulus of the concrete and Iuncr is the second moment of area of 
the uncracked cross-section. The curvature κ0 is negative because the internal 
moment caused by prestress is negative (−Pe). When the applied moment M is 
less than the cracking moment Mcr, the section is uncracked and the moment–
curvature relationship is linear (from point A to point B in Figure 1.15) and κ = 
(M − Pe)/(EcmIuncr) ≤ κcr. It is only in this region (i.e. when M < Mcr) that elastic 
stress calculations may be used and then only for short-term calculations.

If the external loads are sufficient to cause cracking (i.e. when the extreme 
fibre stress calculated from elastic analysis exceeds the tensile strength of 
concrete), the short-term behaviour becomes non-linear and the principle of 
superposition is no longer applicable.

As the applied moment on a cracked prestressed section increases (i.e. as 
the moment increases above Mcr from point B to point C in Figure 1.15), 
the crack height gradually increases from the tension surface towards the 
compression zone and the size of the uncracked part of the cross-section 
in compression above the crack decreases. This is different to the post-
cracking behaviour of a non-prestressed reinforced concrete section, where 
at first cracking the crack suddenly propagates deep into the beam and 
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the crack height and the depth of the concrete compression zone remain 
approximately constant as the applied moment is subsequently varied.

As the moment on a prestressed concrete section increases further into the 
overload region (approaching point D in Figure 1.15), the material behav-
iour becomes increasingly nonlinear. Permanent deformation occurs in the 
bonded prestressing tendons as the stress approaches its ultimate value, 
the non-prestressed conventional reinforcement yields (at or near point C 
where there is a change in direction of the moment curvature graph) and the 
compressive concrete in the ever decreasing region above the crack enters 
the nonlinear range. The external moment is resisted by an internal couple, 
with tension in the reinforcement crossing the crack and compression in the 
concrete and in any reinforcement in the compressive zone. At the ultimate 
load stage (i.e. when the moment reaches the ultimate resistance Mu at a 
curvature κu), the prestressed section behaves in the same way as a rein-
forced concrete section, except that the stress in the high-strength steel ten-
don is very much higher than in conventional reinforcement. A significant 
portion of the very high steel stress and strain is due to the initial prestress. 
For modern prestressing steels, the initial stress in the tendon immediately 
after the transfer of prestress is often about 1400 MPa. If the same higher 
strength steel were to be used without being initially prestressed, excessive 
deformation and unacceptably wide cracks may result at only a small frac-
tion of the ultimate load (well below normal service loads).

Moment (M)

Mu

My

Mcr
B

C

D

Asc

Ap
Ast

A

κuκy

EcmIuncr

Mcr – Pe
κcr =

EcmIuncr

– Peκ0 =

Curvature (κ)(EcmIuncr)

Figure 1.15 � Typical moment versus instantaneous curvature relationship.
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The ultimate strength of a prestressed section depends on the quantity 
and strength of the steel reinforcement and tendons. The level of pre-
stress, however, and therefore the quantity of prestressing steel are deter-
mined from serviceability considerations. In order to provide a suitable 
factor of safety for strength, additional conventional reinforcement may 
be required to supplement the prestressing steel in the tension zone. This 
is particularly so in the case of partially-prestressed members and may 
even apply for fully-prestressed construction. The avoidance of cracking 
at service loads and the satisfaction of selected elastic stress limits do not 
ensure adequate strength. Strength must be determined from a rational 
analysis which accounts for the nonlinear material behaviour of both the 
steel and the concrete. Flexural strength analysis is described and illus-
trated in Chapter 6, and analyses for shear and torsional strength are 
presented in Chapter 7.
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Chapter 2

Design procedures 
and applied actions

2.1  LIMIT STATES DESIGN PHILOSOPHY

The broad design objective for a prestressed concrete structure is that it 
should satisfy the needs for which it was designed and built. In doing so, 
the structural designer must ensure that it is safe and serviceable so that 
the chances of it failing during its design lifetime are sufficiently small. The 
structure must be strong enough and sufficiently ductile to resist, without 
collapsing, the overloads and environmental extremes that may be imposed 
on it. It must also be serviceable by performing satisfactorily under the day-
to-day service loads without deforming, cracking or vibrating excessively. 
The two primary structural design objectives are therefore strength and 
serviceability.

Other structural design objectives are stability and durability. A struc-
ture must be stable and resist overturning or sliding, reinforcement must 
not corrode, concrete must resist abrasion and spalling and the structure 
must not suffer a significant reduction of strength or serviceability with 
time. Further, it must have adequate fire protection, and it must be robust, 
resist fatigue loading and satisfy any special requirements that are related 
to its intended use. A non-structural, but important, objective is aesthet-
ics and, of course, an overarching design objective is economy. Ideally, the 
structure should be in harmony with, and enhance, the environment, and 
this often requires collaboration between the structural engineer, the envi-
ronmental engineer, the architect and other members of the design team. 
The aim is to achieve, at minimum cost, an aesthetically pleasing and func-
tional structure that satisfies the structural objectives of strength, service-
ability, stability and durability.

For structural design calculations, the design objectives must be trans-
lated into quantitative terms called design criteria. For example, the maxi-
mum acceptable deflection for a particular beam or slab may be required, 
or the maximum crack width that can be tolerated in a concrete floor or 
wall. Also required are minimum numerical values for the strength of 
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individual elements and connections. It is also necessary to identify and 
quantify appropriate design loads for the structure depending on the prob-
ability of their occurrence. Reasonable maximum values are required so 
that a suitable compromise is reached between the risk of overload and 
consequent failure and the requirement for economical construction.

Codes of practice specify design criteria that provide a suitable margin 
of safety (called the safety index) against a structure becoming unfit for 
service in any way. The specific form of the design criteria depends on the 
philosophy and method of design adopted by the code and the manner 
in which the inherent variability in both the load and the structural per-
formance is considered. Modern design codes for structures have gener-
ally adopted the limit states method of design, whereby a structure must 
be designed to simultaneously satisfy a number of different limit states 
or design requirements, including adequate strength and serviceability. 
Minimum performance requirements are specified for each of these limit 
states, and any one may become critical and govern the design of a par-
ticular member.

If a structure becomes unfit for service in any way, it is said to have 
entered a limit state. Limit states are the undesirable consequences asso-
ciated with each possible mode of failure. In order to satisfy the design 
criteria set down in codes of practice, methods of design and analysis 
should be used which are appropriate to the limit state being considered. 
For example, if the strength of a cross-section is to be calculated, ultimate 
strength analysis and design procedures are usually adopted. Collapse 
load methods of analysis and design (plastic methods) may be suitable for 
calculating the strength of ductile indeterminate structures. If the service-
ability limit states of excessive deflection (or camber) or excessive cracking 
are considered, an analysis that accounts for the non-linear and inelas-
tic nature of concrete is usually required. The sources of these material 
non-linearities include cracking, tension stiffening, creep and shrinkage. 
In addition, creep of the highly stressed, high-strength prestressing steel 
(more commonly referred to as relaxation) may affect in-service structural 
behaviour.

Each limit state must be considered and designed for separately. 
Satisfaction of the requirements for one does not ensure satisfaction of the 
requirements for others. All undesirable consequences must be avoided. In 
this chapter, the design requirements for prestressed concrete in Europe are 
discussed, including the loads and load combinations for each limit state 
specified in the loading codes EN 1991 Parts 1-1, 1-3 and 1-4 [1–3] and the 
relevant design criteria in EN 1990 [4] and EN 1992-1-1 [5]. If required, 
other design actions may need to be considered in design as specified in 
EN 1991 Part 1-2 [6] for structures exposed to fire, EN 1991 Part 1-5 [7] 
for thermal actions, EN 1991 Part 1-6 [8] for actions during construction 
and EN 1991 Part 1-7 [9] for accidental actions.
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2.2  STRUCTURAL MODELLING AND ANALYSIS

2.2.1  Structural modelling

Structural modelling involves the development of simplified analytical mod-
els of the load distribution, the geometry of the structure and its supports 
and the deformation of the structure. It is an essential part of the design 
process. A concrete structure is extremely complex, if it is considered from 
a microscopic point of view. Even from a more macroscopic viewpoint, the 
degree of complexity is very high. The cross-sectional dimensions vary along 
individual members, with relatively high tolerances on the specified dimen-
sions being accepted. Concrete material properties depend on the degree 
of compaction of the concrete and the location in the structure and vary 
significantly through the thickness of beams and slabs and over the height 
of columns. The location of reinforcement and the concrete cover vary from 
point to point in a structure. Some regions are cracked and others are not. 
It is not possible to account for all these variations and uncertainties in the 
modelling and analysis of structures and, fortunately, it is not necessary.

An idealised analytical model of a concrete structure must be simple 
enough to allow the structural analysis to proceed and the mathematics 
to be tractable. It must also be accurate enough to provide a reasonable 
approximation of the behaviour of the real structure, including the flow of 
forces through the structure. This includes a reasonable quantitative esti-
mate of the internal actions and deformations of the real structure.

As an example of a simplified structural model, consider the design of a 
two-way floor slab in a framed building under gravity loads using the so-
called equivalent frame method. The floor is divided into wide design strips 
centred on column lines in each orthogonal direction. Each one-way design 
strip, together with the columns immediately above and below the floor, is 
then modelled as a two-dimensional frame. The columns above and below 
the slab are usually assumed to be fixed at their far ends. The horizontal 
design strip consists of the slab of width lt (equal to the transverse distance 
between the centrelines of adjacent panels) plus any beams located along the 
column line in question. The effective length of a typical span of the design 
strip leff is defined in EN 1992-1-1 [5] as shown in Figure 2.1. The frame is 
then analysed, usually using a linear-elastic frame analysis and appropri-
ate estimates of member stiffness, and moments and shears in the design 
strip are determined. The design strip is next divided into the column strip 
(of width usually about lt/2 and centred on the column line) and the mid-
dle strips (those portions of the design strip outside the column strip). For 
more details, refer to Section 12.9 (Figure 12.14). The design strip moments 
are then distributed to the column and middle strip, with the column strip 
attracting a greater share than the middle strip (see Table 12.4).

Depending on the degree of accuracy required, a range of possible analyti-
cal models of varying complexity are generally available. Different analytical 
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models may need to be adopted depending on the limit state under consid-
eration. For example, for the two-way floor slab, the simplified structural 
model consisting of one-way design strips spanning in orthogonal directions 
described earlier with actions determined from a linear-elastic analysis may 
be appropriate for an assessment of flexural strength (provided the individ-
ual cross-sections are appropriately ductile). A more complex model, such 
as a finite element model that accounts for cracking, creep and shrinkage of 
concrete, may be more appropriate for an accurate prediction of deforma-
tion at service loads.

Irrespective of the method chosen for the structural analysis or the type 
of structural model selected, when considering and interpreting the results 
of the analysis, the simplifications, idealisations and assumptions implied 
in the analysis and inherent in the structural model must be considered in 
relation to the real three-dimensional concrete structure.

2.2.2  Structural analysis

The structural analysis of an idealised structural model is the process by 
which the distribution of internal actions and the deformational response of 
the model are determined (see Reference [11]). Classical methods of struc-
tural analysis were developed for hand calculation, but today the analysis of 
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Figure 2.1 � Effective span length for a flat slab. Notes: aleft = min(t/2, h/2), aright = min(t/2, h/2).
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members and frames is commonly carried out in design offices using commer-
cial software involving the stiffness method or the finite element approach. 
Most often, the analysis is based on the assumption that material behaviour 
is linear and elastic, even though the response of a concrete structure is 
not linear with respect to load, even under in-service conditions. Concrete 
cracks at relatively low load levels causing a non-linear structural response. 
Under service loads, concrete undergoes creep and shrinkage deformations 
and, at the ultimate limit state, steel yields and concrete behaviour in com-
pression is non-linear and inelastic. Nevertheless, linear-elastic analysis still 
forms the basis for the analysis of most concrete structures, with adjust-
ments made in design to include both material and geometric non-linearities 
when predicting either the ultimate strength or the in-service deformations.

Over the last few decades, significant advances have been made in 
the development of methods for including both material and geometric 
non-linearities in the analysis of concrete structures. Numerous commer-
cial software packages are now available for the non-linear analysis of 
concrete structures under both service loads and ultimate loads. For many 
applications, these packages are unnecessarily complex and time-consuming, 
but in some situations, non-linear analysis is appropriate and its use for the 
analysis of complex structures is likely to increase.

If linear-elastic analysis is used in the design for adequate strength, the 
internal actions caused by the design ultimate loads are determined at the 
critical cross-sections of each structural member. Each critical section is 
then designed to ensure that its design ultimate strength exceeds the design 
ultimate actions. Although a linear-elastic analysis of a particular structural 
model will give a single distribution of internal actions that is in equilib-
rium, it must be understood that this is not the distribution of actions in the 
real structure, where material behaviour under ultimate loads will be non-
linear and inelastic. The use of linear-elastic analysis is only valid provided 
individual cross-sections and members are ductile so that redistribution of 
internal actions can take place as the ultimate load is approached and the 
linear-elastic distribution of actions assumed in design can develop in the 
actual structure.

Alternative methods for the design for adequate strength include plastic 
methods of analysis (or collapse load analysis) and strut-and-tie modelling. 
These are simple forms of non-linear analysis. In plastic analysis, plastic 
hinges with large rotational capacities are assumed to occur at the critical 
regions in a continuous beam or frame, and either upper or lower bound 
estimates of the collapse load may be made. If plastic methods are used, 
ductility of the critical regions is an essential requirement. Strut-and-tie 
modelling is a lower bound method of plastic analysis where a designer 
selects an internal load path and then designs the internal concrete struts 
and steel ties that have been selected to transfer the applied loads through 
the structure. A range of other methods of analysis, including methods 
based on stress analysis, are also available for use in strength design.
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Linear-elastic analysis and various forms of non-linear analysis may also 
be used to predict the actions and deformations of a concrete structure at 
service loads, but account must be taken of the loss of stiffness caused by 
cracking (due to both the applied loads and the restraint to shrinkage and 
temperature changes), the tension stiffening effect and the time-dependent 
effects of creep and shrinkage. These sources of material non-linearity 
complicate structural analysis at service loads. A comprehensive treatment 
of the serviceability of concrete structures is provided in Reference [12], 
and Chapter 5 outlines in some detail appropriate methods for the analysis 
of prestressed concrete structures at service loads.

Codes of practice, including Eurocode 2 [5], provide guidance for 
design using linear-elastic analysis, non-linear analysis, plastic methods, 
strut-and-tie modelling, stress analysis and more approximate methods 
based on moment coefficients.

2.3  ACTIONS AND COMBINATIONS OF ACTIONS

2.3.1  General

In the design of concrete structures, the internal actions arising from appli-
cable combinations of the applied loads should be considered, including where 
appropriate, permanent or dead loads, imposed or live loads, wind loads, snow 
loads, prestressing forces, and loads caused by earthquake, earth pressure 
and liquid pressure. In addition, possible accidental loading due to impact or 
blast should be considered where necessary. Loads arising during construction 
should also be considered where they may adversely affect the various limit 
states’ requirements. Other actions that may cause either stability, strength or 
serviceability failures include creep of concrete; shrinkage of concrete; other 
imposed deformations, such as may result from temperature changes and gradi-
ents, support settlements and foundation movements; fire and dynamic effects.

In the Eurocodes [1–4], the term action is used to describe any effect that 
influences the performance of a structure, and appropriate combinations of 
actions are specified to check the structure at each limit state. Also specified 
are appropriate representative values for each action at each limit state. The 
main actions to be considered are classified as either [4]:

•	 permanent actions (given the symbol G and including the self-weight 
of the structure and its permanently supported elements);

•	 variable actions (given the symbol Q and including imposed or live loads 
on floors, wind loads on walls and roofs, snow loads and so on); or

•	 accidental actions (given the symbol A and including impact loads, 
blast loads and fire).

The magnitude of a particular load (action) for use in design is its char-
acteristic value (Gk, Qk or Ak). Where the statistical distribution of the 
loading is known, the upper (lower) characteristic load is the value with a 
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5% (95%) probability of being exceeded. For a particular load combination, 
either the upper or lower characteristic load is used, whichever produces the 
most adverse effect. Where the statistical distribution of a particular load is 
not known, the characteristic load is an appropriate estimate of either the 
maximum value that should not be exceeded or the minimum value that 
should definitely occur during the lifetime of the structure.

The permanent actions are the permanent dead loads imposed by both 
the structural and non-structural components of the structure, such as the 
self-weight of the structure and the forces imposed by all walls, floors, 
roofs, ceilings, permanent partitions, service machinery and other perma-
nent construction. Permanent actions are usually fixed in position and can 
be estimated reasonably accurately from the mass of the relevant mate-
rial or type of construction. For example, normal-weight concrete weighs 
about 24 kN/m3 and lightweight concrete can be anywhere between 15 and 
20 kN/m3. Unit weights of a range of materials are provided in Table 2.1.

The variable actions are the imposed (live) loads that are attributed to the 
intended use or purpose of the structure, and all other externally imposed loads 
that may reasonably be assumed to act on the structure during its lifetime. The 
specified live load depends on the expected use or occupancy of the structure 
and usually includes allowances for impact and inertia loads (where applicable) 
and for possible overload. Both uniformly distributed and concentrated vari-
able loads for a variety of activities/occupancies are specified in EN 1991-1-1 
[1] and the characteristic values for some common usages are given in Table 2.2. 

Table 2.1  �Weights of common construction materials 
and building materials [1]

Material Weight (kN/m3) 

Aluminium 27.0
Bitumin 10.0–14.0
Concrete – normal weight 24.0a,b

Glass, in sheets 25.0
Granite 27.0–30.0
Iron, cast 71.0–72.5
Lead 112.0–114.0
Limestone (dense) 20.0–29.0
Masonry (solid brick) 19.0
Plywood (softwood) 5.0
Sand (dry) 15.0–16.0
Sandstone 22.5
Steel 77.0–78.5
Timber – softwood (hardwood) 5–7 (8–11)
a	 Increase by 1 kN/m3 for normal percentage of reinforcing and 

prestressing steel.
b	 Increase by 1 kN/m3 for unhardened (wet) concrete.
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The distributed and concentrated characteristic live loads should be considered 
separately and design carried out for the most adverse effect.

At the time the structure is being designed, the magnitude and distribution 
of the actual imposed load are never known exactly and it is not certain that 
the specified imposed load will not be exceeded at some stage during the life-
time of the structure. Imposed loads may or may not be present at any partic-
ular time, they are not constant and their position can vary. Although part of 
the imposed load is transient (short-term), some portion may be applied for 
extended periods (long-term) and have effects similar to dead loads. Imposed 
loads also arise during construction due to stacking of building materi-
als, equipment or the construction procedure (such as the loads induced by 
floor-to-floor propping in multi-storey buildings). These construction loads 

Table 2.2  �Some characteristic imposed (live) loads specified in EN 1991-1-1 [1]

Type of activity/occupancy 

Uniformly 
distributed load, 

qk (kN/m2) 
Concentrated 
load, Qk (kN) 

Category A: areas for domestic and residential 
activities

Floors 1.5 – 2.0 2.0 – 3.0
Stairs 2.0 – 4.0 2.0 – 4.0
Balconies 2.5 – 4.0 2.0 – 3.0

Category B: office areas 2.0 – 3.0 1.5 – 4.5
Category C: areas where people may congregate 
(not considered in Categories A, B and D)

C1: areas with tables 2.0 – 3.0 3.0 – 4.0
C2: areas with fixed seats 3.0 – 4.0 2.5 – 7.0 (4.0)
C3: areas without obstacles for moving people 3.0 – 5.0 4.0 – 7.0
C4: areas with possible physical activities 4.5 – 5.0 3.5 – 7.0
C5: areas susceptible to large crowds 5.0 – 7.5 3.5 – 4.5

Category D: shopping areas
D1: areas in general retail shops 4.0 – 5.0 3.5 – 7.0 (4.0)
D2: areas in department stores 4.0 – 5.0 3.5 – 7.0

Category E: Storage areas 6.5 7.0
Category F: traffic and parking areas for light 
vehicles (≤30 kN gross vehicle weight and ≤8 seats 
not including driver)

1.0 – 2.5 10.0 – 20.0

Category G: traffic and parking areas for medium 
vehicles (>30, ≤160 kN gross weight on two axles)

5.0 40.0 – 90.0

Category H: roofs not accessible except for normal 
maintenance and repair (roof slope <30°)

0.0 – 1.0 (0.4) 0.9 – 1.5 (1.0)

Notes:	 When a range is given in the table, the value may be set by the National Annex. Recommended 
values, intended for separate applications, are underlined. Category E loads vary depending on 
the storage height and the nature of what is being stored, refer EN 1991-1-1 [1]. The minimum 
values for general storage are shown.



Design procedures and applied actions  29

must be anticipated and considered by the designer. Other variable actions 
include the specified wind, earthquake, snow and temperature loads, and 
these depend on the geographical location and the relative importance of the 
structure (the mean return period). Wind loads on structures also depend on 
the surrounding terrain and the height of the structure above the ground, and 
characteristic values are specified in EN 1991-1-4 [3].

In design according to the Eurocodes, when different types of variable 
actions are combined and assumed to act simultaneously, the characteristic 
values are multiplied by combination factors, ψ0, ψ1 or ψ2. The action ψ0Qk 
is the combination value used for checking ultimate limit states and the 
irreversible serviceability limit states to account for the reduced probability 
that two or more independent variable actions will act simultaneously. The 
action ψ1Qk is termed the frequent value used to check both the ultimate 
limit states when variable actions are combined with accidental actions and 
the serviceability limit states under frequent levels of variable load.

The action ψ2Qk is the quasi-permanent value representing that por-
tion of Qk that is acting permanently or over a considerable part of each 
day (more than 50%). It is used to check the ultimate limit states involving 
accidental loads and for long-term serviceability limit states. Values of the 
combination factors for some variable actions are given in Table 2.3.

2.3.2 � Load combinations for the strength 
limit states

The design loads used in the design for strength are the specified values dis-
cussed earlier multiplied by specified minimum load factors. With the built-
in allowance for overloads, the specified loads will not often be exceeded in 

Table 2.3  �Combination factors for some variable actions on buildings [4]

Variable action ψ0 ψ1 ψ2 

Imposed loads in buildings
Category A: domestic, residential areas 0.7 0.5 0.3
Category B: office areas 0.7 0.5 0.3
Category C: areas where people may congregate 0.7 0.7 0.6
Category D: shopping areas 0.7 0.7 0.6
Category E: storage areas, industrial use, access areas 1.0 0.9 0.8
Category F: traffic areas – light vehicles (≤30 kN) 0.7 0.7 0.6
Category G: traffic areas – heavy vehicles (≤160 kN) 0.7 0.5 0.3
Category H: roofs that are not accessible (except for 
normal maintenance and repair)

0.0 0.0 0.0

Snow loads on buildings
For sites at altitudes >1000 m 0.7 0.5 0.2
For sites at altitudes ≤1000 m 0.5 0.2 0.0

Wind loads on buildings 0.6 0.2 0.0
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the life of a structure. The load factors applied to each load type, together 
with factors of safety applied to the material strength (discussed subse-
quently), ensure that the probability of strength failure is extremely low. The 
load factors depend on the type of load and the load combination under con-
sideration. For example, the load factors associated with permanent actions 
(dead loads) are generally less than those for the variable actions (such as live 
or wind loads) because the dead load is known more reliably and therefore 
less likely to be exceeded. Load factors for the strength limit states are gener-
ally greater than 1.0. The exception is where one load type opposes another 
load type. For example, when considering uplift caused by wind on a roof 
member, the load factor on the weight of the roof is equal to 1.0.

The most common design load combination used to assess the strength 
of a structural member in a building is the factored combination of the 
permanent action Gk and the imposed action (termed the primary variable 
action Qk,1) given by:

	 γGGk + γQ,1Qk,1 	 (2.1)

where γG is the partial safety factor to be applied to the permanent actions 
and equals 1.35 when the permanent action is in the same direction as the 
variable action (i.e. the unfavourable case) and 1.0 when the permanent 
action opposes the variable action (i.e. the favourable case) and γQ,1 is the 
partial safety factor to be applied to the primary variable action and equals 
1.5 for the unfavourable case and 0.0 for the favourable case.

More generally, EN 1990 [4] specifies that the design load at the ultimate 
limits state should be taken as:
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where: 
+ implies ‘to be combined with’
Σ implies ‘the combined effect of’
γG, j is the partial safety factor for the j-th permanent action (Gk,j)

γG, j = 1.35 (unfavourable)
γG, j = 1.0 (favourable)

γP is the partial safety factor for the prestress (P)
γP = 1.3 for local effects (unfavourable)
γP = 1.0 for persistent and transfer design situations (favourable)

γQ,1 is the partial safety factor for the primary variable action (Qk,1)
γQ,1 = 1.5 (unfavourable)
γQ,1 = 0.0 (favourable)

γQ, i is the partial safety factor for the i-th accompanying variable action (Qk,i)
γQ, i = 1.5 (unfavourable)
γQ, i = 0.0 (favourable)

ψ0, i is the combination factor associated with i-th accompanying vari-
able action
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Where the magnitudes of the permanent actions vary from place to place 
in a structure, the unfavourable and favourable parts should be considered 
individually. EN 1990 [4] notes that the characteristic values of all per-
manent actions from one source are multiplied by γG = 1.35, if the total 
resulting action effect is unfavourable, and by γG = 1.0, if the total resulting 
action effect is favourable. It is further noted that all actions originating 
from the self-weight of the structure may be considered as coming from one 
source even if different construction materials are involved.

An alternative to Equation 2.2, EN 1990 [4] specifies that the design 
load may be taken as the lesser of the values given by the following 
equations:
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where ξj = 0.85 is a reduction factor for any unfavourable permanent action 
so that ξjγG,j = 1.15.

2.3.3 � Load combinations for the stability 
or equilibrium limit states

All structures should be designed so that the factor of safety against insta-
bility due to overturning, uplift or sliding is suitably high. EN 1990 [4] 
requires that the structure remains stable under the design load given in 
Equation 2.2, except that for the stability limit states:

γG, j = 1.10 (unfavourable), γG,j = 0.90 (favourable)
γQ,1 = 1.5 (unfavourable), γQ,1 = 0.0 (favourable)
γQ, i = 1.5 (unfavourable), γQ,i = 0.0 (favourable)
γP = 1.3 for global analysis (unfavourable), γP = 1.0 (favourable)

The loads causing instability should be separated from those tending to 
resist it. The design action effect is then calculated from the loads and 
forces tending to cause a destabilising effect (with unfavourable factors). 
The design resistance effect is calculated from the permanent actions or 
loads tending to cause a stabilising effect, i.e. resisting instability (with 
favourable factors). The structure should be so proportioned that its design 
resistance effect is not less than the design action effect.

Consider, for example, the case of a standard cantilever retaining wall. 
The overturning moment caused by both the lateral earth pressure and the 
lateral thrust of any permanent and imposed action surcharge is calculated 
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using load factors 1.10 for all permanent actions and 1.50 for all imposed 
loads. To provide a suitable margin of safety against stability failure, the 
factored overturning moment should not be greater than 0.9 times the sum 
of the restoring moments caused by the self-weight of the wall, the weight of 
the backfill and any other permanent surcharge above the wall.

2.3.4 � Load combinations for the serviceability 
limit states

The design actions to be used in serviceability calculations are the day-to-day 
service loads, and these may be less than the specified actions. For example, 
the specified imposed actions Q have a built-in allowance for overload and 
impact. There is a low probability that they will be exceeded. It is usually 
not necessary, therefore, to ensure acceptable deflections and crack widths 
under the full specified loads. The use of the actual load combinations under 
normal conditions of service (i.e. the expected loads) is more appropriate.

The combinations of actions for the serviceability limit states also utilise 
the combination factors ψ0, ψ1 and ψ2 as specified in Table 2.3 and are as 
follows [4]:

	 1.	Characteristic combination:
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		  The characteristic combination is used for the irreversible limit states, 
i.e. the serviceability limit states where some consequences of actions 
exceeding the specified service requirements will remain when the 
actions are removed.

	 2.	Frequent combination:
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		  The frequent combination is used for the reversible limit states, i.e. 
the serviceability limit states where no consequence of actions exceed-
ing the specified service requirements will remain when the actions 
are removed.

	 3.	Quasi-permanent combination:
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		  The quasi-permanent combination is used for long-term effects and 
the appearance of the structure.
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2.4  DESIGN FOR THE STRENGTH LIMIT STATES

2.4.1  General

The design strength of a member or connection must always be greater 
than the design action effect produced by the most severe factored load 
combination (as outlined in Section 2.3.2). On a particular cross-section, 
the design action effect may be the design axial load NEd, the design shear 
force VEd, the design bending moment MEd, a design twisting moment TEd 
or a combination of these. The design strength of a cross-section is a con-
servative estimate of the actual strength of the cross-section obtained using 
partial safety factors applied to the strengths of the concrete, tendons and 
conventional reinforcement.

2.4.2  Partial factors for materials

The design value Xd of a material property is expressed in general terms as:
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where Xk is the characteristic material property (see Chapter 4); η is the 
mean value of the conversion factor taking into account volume and scale 
effects, the effects of moisture and temperature and any other relevant 
parameter and γm is the partial factor for the material property taking 
account of the possibility of an unfavourable deviation of a material prop-
erty from its characteristic value and the random part of the conversion 
factor η.

Alternatively, in appropriate cases, the conversion factor η may be implic-
itly taken into account within the characteristic value itself or by using γM 
instead of γm:
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The design value Xd can be determined by using values of Xk obtained 
from measured physical properties, empirical estimates from known chem-
ical composition, previous experience, or from values given in European 
Standards or other appropriate documents.

The partial factors for materials account for the inherent uncertainties 
in the estimation of material strengths, variations in member sizes and 
steel positions, uncertainties in the accuracy of the method used to predict 
member or cross-sectional behaviour, uncertainties in construction and 
workmanship and the ductility of the material. The recommended partial 
factors for materials specified in EN 1992-1-1 [5] for use in Equation 2.9 
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for ‘persistent and transient’ design situations and for ‘accidental’ design 
situations are given in Table 2.4.

In certain situations, where measures are taken to reduce the uncertainty 
in the calculated design strength, reduced values for γC and γS may be used. 
For example, for persistent and transient design situations, γC may be reduced 
to 1.4 and γS reduced to 1.1, if the construction is to be subject to quality con-
trol sufficient to satisfy the tolerances given in Table A.1 in EN 1992-1-1 [5].

2.5  DESIGN FOR THE SERVICEABILITY LIMIT STATES

2.5.1  General

When designing for serviceability, the designer must ensure that the 
structure behaves satisfactorily and can perform its intended function at 
service loads. Deflection (or camber) must not be excessive, cracks must be 
adequately controlled and no portion of the structure should suffer exces-
sive vibration. Design for serviceability usually first involves a linear-elastic 
analysis of the structure to determine the internal actions under the most 
severe combination of actions for the serviceability limit states (see Section 
2.3.4) and then the determination of the deformation of the structure 
accounting for the non-linear and inelastic behaviour of concrete under 
in-service conditions.

The design for serviceability is possibly the most difficult and least 
well-understood aspect of the design of concrete structures. Service load 
behaviour depends primarily on the properties of the concrete, which are 
often not known reliably. Moreover, concrete behaves in a non-linear man-
ner at service loads. The non-linear behaviour of concrete that complicates 
serviceability calculations is caused by cracking, tension stiffening, creep 
and shrinkage.

In modern concrete structures, serviceability failures are relatively 
common. The tendency towards higher-strength materials and the use of 
ultimate strength design procedures for the proportioning of structures has 
led to shallower, more slender elements, and consequently, an increase in 
deformations at service loads. As far back as 1967 [13], the most common 
cause of damage in concrete structures was due to excessive slab deflec-
tions. If the incidence of serviceability failure is to decrease, the design for 
serviceability must play a more significant part in routine structural design, 

Table 2.4  �Partial factors for materials for ultimate limit states [5]

Design situation γC for concrete γS for reinforcing steel γS for prestressing steel 

Persistent and 
transient

1.5 1.15 1.15

Accidental 1.2 1.0 1.0
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and the structural designer must resort more often to analytical tools that 
are more accurate than those found in most building codes. The analytical 
models for the estimation of in-service deformations outlined in Chapter 5 
provide designers with reliable and rational means for predicting both the 
short-term and time-dependent deformations in prestressed concrete struc-
tures. A comprehensive treatment of the in-service and time-dependent 
analysis of concrete structures is provided in Reference [12].

The level of prestress in beams and slabs is generally selected to satisfy 
the serviceability requirements. The control of cracking in a prestressed 
concrete structure is usually achieved by limiting the stress increment in the 
bonded reinforcement (caused by the application of the full service load) to 
some appropriately low value and ensuring that the bonded reinforcement 
is suitably distributed.

2.5.2  Deflection limits

The design for serviceability, particularly the control of deflections, is fre-
quently the primary consideration when determining the cross-sectional 
dimensions of beams and floor slabs in concrete structures. This is par-
ticularly so in the case of slabs, as they are typically thin in relation to 
their spans and are therefore deflection sensitive. It is stiffness rather than 
strength that usually controls the design of slabs.

EN 1992-1-1 [5] specifies two basic approaches for deflection control. 
The first and simplest approach is deflection control by the satisfaction of a 
maximum span-to-depth ratio. However, the code only provides guidance 
on limiting span-to-depth ratios for reinforced concrete beams and slabs in 
buildings and does not cover prestressed concrete. The second approach is 
deflection control by the calculation of deflection (or camber) using appro-
priate models of material and structural behaviour. This calculated deflec-
tion should not exceed the deflection limits that are appropriate to the 
structure and its intended use. The deflection limits should be selected by 
the designer and are often a matter of engineering judgement.

There are three main types of deflection problem that may affect the 
serviceability of a concrete structure:

	 1.	where excessive deflection causes either aesthetic or functional 
problems;

	 2.	where excessive deflection results in unintended load paths or damage 
to either structural or non-structural elements attached or adjacent to 
the member; and

	 3.	where dynamic effects due to insufficient stiffness cause discomfort to 
occupants.

Examples of deflection problems of Type 1 include visually unacceptable 
sagging (or hogging) of slabs and beams and ponding of water on roofs. 
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Type 1 problems are generally overcome by limiting the magnitude of the 
final long-term deflection (here called total deflection) to some appropri-
ately low value. The total deflection of a beam or slab in a building is 
usually the sum of the short-term and time-dependent deflections caused 
by the permanent actions (including self-weight), the prestress (if any), the 
expected imposed actions and the load-independent effects of shrinkage 
and temperature change.

EN 1992-1-1 [5] supports the ISO 4356 [14] recommendation that the 
appearance of a structure or its ability to perform its intended function may 
be impaired, if the calculated final sag of a beam or slab under the quasi-
permanent loads exceeds span/250. However, the total deflection limits 
that are appropriate for a particular member and its intended function will 
vary from member to member and structure to structure depending on its 
use and purpose. For example, a total deflection limit of span/250 may be 
appropriate for the floor of a car park but would be entirely inadequate 
for a gymnasium floor that is required to remain essentially plane under 
service conditions and where functional problems arise at very small total 
deflections.

Examples of Type 2 problems include, among others, deflection-induced 
damage to ceiling or floor finishes, cracking of masonry walls and other 
brittle partitions, improper functioning of sliding windows and doors, tilt-
ing of storage racking and so on. To avoid these problems, a limit must be 
placed on that part of the total deflection that occurs after the attachment 
of the non-structural elements in question, i.e. the incremental deflection. 
The incremental deflection that occurs after construction is the sum of the 
long-term deflection due to all the sustained loads and shrinkage, the short-
term deflection due to the transitory imposed actions and the short-term 
deflection due to any permanent actions applied to the structure after the 
attachment of the non-structural elements under consideration, together 
with any temperature-induced deflection.

EN 1992-1-1 [5] confirms the recommendation of ISO 4356 [14] that 
the deflection that occurs after construction under the quasi-permanent 
loads should normally not exceed span/500. However, the deflection that 
could damage adjacent parts of the structure (including brittle partitions 
and finishes) should be assessed and limited depending on the sensitivity 
of the adjacent elements. In many cases, a limiting deflection of span/500 
will be acceptable, but in some situations a more onerous requirement may 
be appropriate depending on the provisions made to minimise the effect of 
movement. Incremental deflections of span/500 can, in fact, cause crack-
ing in supported masonry walls, particularly when doorways or corners 
prevent arching and when no provisions are made to minimise the effect 
of movement.

Type 3 deflection problems include the perceptible springy vertical motion 
of floor systems and other vibration-related problems. Very little quantita-
tive information for limiting this type of deflection problem is available in 
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codes of practice. For a member subjected to vehicular or pedestrian traf-
fic, the Australian Standard AS3600-2009 [15] requires that the deflection 
caused by imposed actions be less than span/800. For a floor that is not 
supporting or attached to non-structural elements likely to be damaged 
by large deflection, ACI 318M-14 [16] places a limit of span/360 on the 
short-term deflection due to imposed actions. These limits provide mini-
mum requirements for the stiffness of members that may, in some cases, 
be sufficient to avoid Type 3 problems. Such problems are potentially the 
most common for prestressed concrete floors, where load balancing is often 
employed to produce a nearly horizontal floor under the permanent actions 
and the bulk of the final deflection is due to the transient imposed actions. 
Such structures are generally uncracked at service loads, the total deflection 
is small and Types 1 and 2 deflection problems are easily avoided.

2.5.3  Vibration control

Where a structure supports vibrating machinery or is subjected to any other 
significant dynamic load (such as pedestrian traffic), or where a structure 
may be subjected to ground motion caused by earthquake, blast or adjacent 
road or rail traffic, vibration control becomes an important design require-
ment. This is particularly so for slender structures, such as tall buildings or 
long-span beams or slabs.

Vibration is best controlled by isolating the structure from the source of 
vibration. Where this is not possible, vibration may be controlled by limit-
ing the frequency of the fundamental mode of vibration of the structure 
to a value that is significantly higher than the frequency of the source of 
vibration. The minimum frequency of the fundamental mode of vibration 
of a beam or slab depends on the function of the building and the source of 
the vibration. For example, when the only source of vibration is pedestrian 
traffic, 5 Hz is often taken as the minimum frequency of the fundamental 
mode of vibration of a beam or slab [17,18]. For detailed design guidance 
on dealing with floor vibrations, reference should be made to specialist 
literature such as [19–22].

2.5.4  Crack width limits

In the design of a prestressed concrete structure, the calculation of crack 
widths is rarely required. Crack control is deemed to be provided by 
appropriate detailing of the reinforcement and by limiting the stress in 
the reinforcement crossing the crack to some appropriately low value (see 
Section 5.12). The limiting steel stress depends on the maximum acceptable 
crack width for the structure and that in turn depends on the structural 
requirements and the local environment. The maximum crack widths rec-
ommended in EN 1992-1-1 [5] are given in Table 2.5 for the various expo-
sure classes defined in the code and outlined in Table 2.6.
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2.5.5  Partial factors for materials

EN 1992-1-1 [5] recommends that the values of the partial factors to be 
applied to the material properties used in calculations to verify the service-
ability limit states should be taken as 1.0 for both concrete and steel, except 
if specified differently elsewhere in the code [5] or in the National Annex 
of the relevant country.

2.6  DESIGN FOR DURABILITY

A durable structure is defined in EN 1992-1-1 [5] as one that meets ‘the 
requirements of serviceability, strength and stability throughout its design 
working life, without significant loss of utility or excessive unforeseen 
maintenance’. Design for durability is an important part of the design pro-
cess. The design life for most concrete structures is typically 50–100 years, 
but prestressed concrete structures are often required to have a design 
life in excess of 100 years, particularly for large bridges and monumental 
structures. It is important to ensure that the concrete and the steel do not 
deteriorate significantly during the design life of the structure so that main-
tenance and repair costs are kept to a minimum. Of course, for a structure 
in service for 100 years, some maintenance costs are inevitable, but exces-
sive repair and maintenance can result in uneconomical life-cycle costs.

Accurate and reliable models for the deterioration of concrete with time 
and for the initiation and propagation of corrosion in the steel reinforce-
ment and tendons are difficult to codify. According to EN 1992-1-1 [5], the 
design for durability begins with the selection of an exposure class for the 
various regions and surfaces of the structure (see Table 2.6). This is then 

Table 2.5  �Recommended values for maximum final design crack width, wmax (mm) [5]

Exposure class 

Reinforced members and 
prestressed members with 

unbonded tendons 
Prestressed members with 

bonded tendons 

Quasi-permanent load 
combination

Frequent load combination

X0, XC1 0.4a 0.2
XC2, XC3, XC4 0.3 0.2b

XD1, XD2, XS1, XS2, XS3 0.3 Decompressionc

a	 In exposure classes X0 and XC1, the crack width does not influence durability. This limit is set 
to ensure acceptable appearance. In the absence of appearance requirements, this limit may be 
relaxed.

b	 For exposure classes XC2, XC3 and XC4, in addition to this limit, decompression should be 
checked under the quasi-permanent load combination.

c	 The decompression limit requires that all parts of the bonded tendons or duct lie at least 25 mm 
within the compressive concrete.
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Table 2.6  �Exposure classes for reinforced and prestressed concrete [5]

Class Environment 

No risk of corrosion
X0 Very dry, e.g. inside buildings with very low air humidity

Corrosion induced by carbonation

XC1 Dry or permanently wet, e.g. inside buildings with low air humidity; 
permanently submerged in water

XC2 Wet, rarely dry, e.g. surfaces subjected to long-term water contact; many 
foundations

XC3 Moderate humidity, e.g. inside buildings with moderate to high air 
humidity; external (sheltered from rain)

XC4 Cyclic wet and dry, e.g. surfaces subjected to water contact (not within 
exposure class XC2)

Corrosion induced by chlorides (not from sea water)

XD1 Moderate humidity, e.g. surfaces exposed to airborne chlorides
XD2 Wet, rarely dry, e.g. swimming pools; surfaces exposed to industrial 

waters containing chlorides
XD3 Cyclic wet and dry, e.g. parts of bridges exposed to spray containing 

chlorides; pavements; car park slabs

Corrosion induced by chlorides from sea water

XS1 Exposed to airborne salt but not in direct contact with sea water, 
e.g. structures near to or on the coast

XS2 Permanently submerged, e.g. parts of marine structures
XS3 Tidal, splash and spray zones, e.g. parts of marine structures

Freeze/thaw attack

XF1 Moderate water saturation, without de-icing agents, e.g. vertical surfaces 
exposed to rain and freezing

XF2 Moderate water saturation, with de-icing agents, e.g. vertical surfaces of 
road structures exposed to freezing and airborne de-icing agents

XF3 High water saturation, without de-icing agents, e.g. horizontal surfaces 
exposed to rain and freezing

XF4 High water saturation, with de-icing agents or sea-water, e.g. road and 
bridge decks exposed to de-icing agents; surfaces exposed to direct 
spray containing de-icing agents and freezing; splash zones of marine 
structures and freezing

Chemical attack

XA1 Slightly aggressive environment, e.g. natural soils and ground water
XA2 Moderately aggressive environment, e.g. natural soils and ground water
XA3 Highly aggressive environment, e.g. natural soils and ground water
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followed by the satisfaction of a range of deemed-to-comply design require-
ments, including requirements relating to concrete quality (both in terms of 
minimum compressive strength and restrictions on the chemical content), 
concrete cover to the steel reinforcement (and tendons) and curing of the 
concrete.

Good quality, well-compacted concrete, with low permeability and ade-
quate cover to the reinforcement and tendons are the essential prerequi-
sites for durable structures. In Table 2.7, the minimum strength class for 
concrete (see Section 4.3.2) specified in EN 1992-1-1 [5] is provided for 
each of the exposure classes in Table 2.6 for a design life of 50 years and a 
design life of 100 years. Also provided in Table 2.7 is the minimum cover 
cmin,dur necessary to protect the steel reinforcement and tendons against 
corrosion.

These durability requirements may result in higher concrete strength and 
higher cover to the reinforcement and tendons than are required for other 
aspects of the structural design. In addition, design requirements are also 
specified in the code to ensure structures resist unacceptable deterioration 
due to abrasion from traffic, cycles of freezing and thawing and contact 
with aggressive soils.

2.7  DESIGN FOR FIRE RESISTANCE

In addition to satisfying the other design requirements, prestressed concrete 
structures must be able to fulfil their required functions when exposed to 
fire for at least a specified period. This means that a structure should main-
tain its structural adequacy (load carrying capacity) for a specified period 
(called the Standard fire resistance period). In the case of walls and slabs, 
the structure must also maintain its integrity for a specified period so as to 
prevent the passage of flames or hot gases through the structure. In addi-
tion, a wall or slab must maintain its ability to prevent ignition of combus-
tible material in the compartment beyond the surface exposed to the fire 
(structural insulation).

Fire resistance depends on the cover to the steel reinforcement and ten-
dons and the member thickness. The requirements for the fire resistance of 
concrete structures are specified in EN 1992-1-2 [10], where the minimum 
fire resistance periods for concrete structures and structural components 
are specified, together with a range of deemed-to-comply provisions that 
ensure their satisfaction. For example, Table 2.8 provides possible combi-
nations of minimum values of the beam width b at the level of the bottom 
tensile reinforcement and the average axis distance a for the bottom tensile 
reinforcing bars in beams exposed to fire for various fire resistance peri-
ods, together with the minimum web width bw (for webs of varying width). 
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Similarly, Table 2.9 provides possible combinations of minimum values 
for the smallest dimension b of a column cross-section and average axis 
distance a for the reinforcing bars in columns exposed to fire. The axis 
distance is the minimum distance from the axis of a reinforcing bar to the 
nearest concrete surface. In preparing Table 2.8, it has been assumed that 
the flexural resistance in a fire is not less than 70% of the flexural resis-
tance under normal conditions of service. Table 2.10 shows the minimum 
dimension hs of a slab exposed to fire, where hs is the sum of the thickness 
of the slab and the thickness of any non-combustible flooring on top of the 
slab. Also shown in Table 2.10 is the minimum axis distance to the bottom 
tensile reinforcement in the slab. In the absence of more detailed calcula-
tions, the minimum axis distances specified in Tables 2.8 and 2.10 should 
be increased by 10 mm for prestressing bars and 15 mm for prestressing 
wires and strand.

Table 2.7  �Minimum concrete strength and concrete cover for durability for normal 
weight concrete [5]

Exposure 
class 

Minimum 
concrete 
strength 

class

Minimum concrete cover for durability, cmin,dur (mm) 

50-year design life 100-year design life

Reinforcing steel Tendons Reinforcing steel Tendons

X0 C12/15 10 10 20 20
XC1 C20/25 15 25 25 35
XC2 C25/30 25 35 35 45
XC3 C30/37 25 35 35 45
XC4 C30/37 30 40 40 50
XD1 C30/37 35 45 45 55
XD2 C30/37 40 50 50 60
XD3 C35/45 45 55 55 65
XS1 C30/37 35 45 45 55
XS2 C35/45 40 50 50 60
XS3 C35/45 45 55 55 65
XF1 C30/37

Special attention should be given to the concrete 
composition and to the selection of concrete cover.

In most situations, concrete covers specified for class XD1 
will be satisfactory for classes XF1, XF2 and XA1, concrete 
covers specified for class XD2 will be satisfactory for 
classes XF3, XF4, XA2 and concrete covers specified for 
class XD3 will be satisfactory for classes XA3.

XF2 C30/37
XF3 C30/37
XF4 C30/37
XA1 C30/37
XA2 C30/37
XA3 C35/45
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Table 2.8  �Minimum dimensions b, bw and a (in mm) for beams exposed to fire [5]

Standard fire 
resistance (min) 

Simply-supported beams Continuous beams

b a bw b a bw

30 80 25 80 80 15 80
160 15 160 12

60 120 40 100 120 25 100
200 30 200 12

90 150 55 110 150 35 110
300 40 250 25

120 200 65 130 200 45 130
300 55 300 35
500 50 500 30

180 240 80 150 240 60 150
300 70 400 50
600 60 600 40

240 280 90 170 280 75 170
350 80 500 60
700 70 700 50

Table 2.9  �Minimum dimensions b and a (in mm) for columns in a fire [5]

Standard fire 
resistance (min) 

Columns exposed on more than one side 
Columns exposed 

on one side 

μfi
a = 0.2 μfi

a = 0.51 μfi
a = 0.71 μfi

a = 0.7

b a b a b a b a

30 200 25 200 25 200 32 155 25
300 27

60 200 25 200 36 250 46 155 25
300 31 350 40

90 200 31 300 45 350 53 155 25
300 25 400 38 450 40

120 250 40 350b 45b 350b 57b 175 35
350 35 450b 40b 450b 51b

180 350b 45b 350b 63b 450b 70b 230 55

240 350b 61b 450b 75b – – 295 70

a μfi is the ratio of axial load in a fire to design resistance of the column at normal temperatures.
b Column must contain a minimum of eight bars.
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In design, the cover to the reinforcing bars and tendons must satisfy both 
the requirements for fire and the requirements for durability.

2.8  DESIGN FOR ROBUSTNESS

Robustness is the requirement that a structure should be able to withstand 
damage to an element without total collapse of the structure or a signifi-
cant part of the structure in the vicinity of the damaged element. A struc-
ture should be designed so that should a local accident occur, then the 
damage should be contained within an area local to the accident. Should 
one member be removed, for example, the remainder of the structure 
should hang together and not precipitate a progressive collapse. For this 
requirement to be satisfied, the members and materials of construction 
must have adequate ductility. In particular, the reinforcement and tendons 
assumed in design to constitute the ties in the structure, must obviously be 
highly ductile. Robustness reduces the consequences of gross errors or of 
local structural failures.

EN 1992-1-1 [5] requires that structures that are not specifically designed 
to withstand accidental actions should have a suitable tying system to pre-
vent progressive collapse and to provide an alternative load path after 
accidental damage. Structures should be designed and detailed such that 
adjacent parts of the structure are tied together in both the horizontal and 
vertical planes so that the structure can withstand an event without being 
damaged to an extent disproportionate to that event.

Table 2.10  �Minimum dimensions hs and a (in mm) for a slab exposed to fire [5]

Standard fire 
resistance (min) 

Floor thickness, 
hs 

Axis distance, a 

One-way slab

Two-way slab (ly ≥ lx)

ly/lx ≤ 1.5 1.5 < ly/lx ≤ 2.0

30 60 10 10 10
60 80 20 10 15
90 100 30 15 20

120 120 40 20 25
180 150 55 30 40
240 175 65 40 50
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Chapter 3

Prestressing systems

3.1  INTRODUCTION

Prestressing systems used in the manufacture of prestressed concrete have 
developed over the years, mainly through research and development by spe-
cialist companies associated with the design and execution of prestressed 
concrete structures. These companies are often involved in other associated 
works, including soil and rock anchors, lifting of heavy structures, cable-
stayed bridges and suspension bridges that require specialist expertise and 
patented materials, equipment and design. Information on the products of 
each company is generally available directly from the respective company 
or from its website.

This chapter describes and illustrates the basic forms of prestressing and 
the components used for prestressing. These include the steel tendons used 
to prestress the concrete, namely the wire, strand and bar, together with 
the required anchorages, ducts and couplers. The specialised equipment 
required for stressing and grouting of the ducts in post-tensioning appli-
cations is illustrated, and the basic principles and concepts of the various 
systems are provided, including illustrations of the various prestressing 
operations. The material properties of both the concrete and steel used in 
the design of prestressed concrete are detailed and discussed in Chapter 4.

3.2  TYPES OF PRESTRESSING STEEL

There are three basic types of high-strength steel commonly used as ten-
dons in prestressed concrete construction.

	 1.	Cold-drawn stress-relieved round wire;
	 2.	Stress-relieved strand; and
	 3.	High-strength alloy steel bars.
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The term tendon is generally defined as a wire, strand or bar (or any dis-
crete group of wires, strands or bars) that is intended to be either pretensioned 
or post-tensioned.

Wires are cold-drawn solid steel elements, circular in cross-section, with 
diameter usually in the range of 2.5–12.5 mm. Cold-drawn wires are pro-
duced by drawing hot-rolled medium to high carbon steel rods through 
dies to produce wires of the required diameter. The drawing process cold 
works the steel, thereby altering its mechanical properties and increasing its 
strength. The wires are then stress-relieved by a process of continuous heat 
treatment and straightening to improve ductility and produce the required 
material properties (such as low-relaxation). The typical characteristic ten-
sile strength fpk for wires is in the range of 1570–1860 MPa. Wires are 
sometimes indented or crimped to improve their bond characteristics. 
Wires’ diameters vary from country to country, but most commonly, wire 
diameters are in the range of 4–8 mm. In recent years, the use of wires in 
prestressed concrete construction has declined, with 7-wire strand being 
preferred in most applications.

Stress-relieved strand is the most commonly used prestressing steel. Both 
7-wire and 19-wire strands are available. Seven-wire strand consists of six 
wires tightly wound around a seventh, slightly larger diameter, central core 
wire, as shown in Figure 3.1a. The pitch of the six spirally wound wires 
is between 12 and 18 times the nominal strand diameter. The nominal 

(a) (b)

(c)

Figure 3.1 � Types of strand. (a) 7-wire strand. (b) 19-wire strand – alternative cross-
sections. (c) Cable consisting of seven 19-wire strands.



Prestressing systems  49

diameters of the 7-wire strands in general use are in the range of 7–15.2 mm, 
with typical characteristic tensile strength in the range of 1760–2060 MPa. 
Seven-wire strand is widely used in both pretensioned and post-tensioned 
applications. Nineteen-wire strand consists of two layers of 9 wires or alter-
natively two layers of 6 and 12 wires spirally wound around a central wire. 
The pitch of the spirally wound wires is 12–22 times the nominal strand 
diameter. The nominal diameters of 19-wire strands in general use are in 
the range of 17–22 mm, and typical cross-sections are shown in Figure 3.1b. 
Nineteen-wire strand is used in post-tensioned applications, but because of 
its relatively low surface area to volume ratio, it is not recommended for 
pretensioned applications, where the transfer of prestress relies on the sur-
face area of the strand available for bond to the concrete.

Strand may be compacted by drawing the strand through a compact-
ing die, thereby reducing the diameter, while maintaining the same cross-
sectional area of steel. Compacting strand also facilitates the gripping of 
the strand at its anchorage.

The mechanical properties of the strand are slightly different from those 
of the wire from which it is made. This is because the stranded wires tend 
to straighten slightly when subjected to tension, thus reducing the appar-
ent elastic modulus. For design purposes, the yield stress of stress-relieved 
strand is about 0.86fpk and the elastic modulus is Ep = 195 × 103 MPa.

Cables consist of a group of tendons often formed by multiwire strands 
woven together as shown in Figure 3.1c. Stay cables used extensively in 
cable-stayed and suspension bridges are generally made directly from 
strands.

High-strength alloy steel bars are hot rolled with alloying elements intro-
duced into the steel making process. Some bars are ribbed to improve bond. 
Bars are single straight lengths of solid steel of greater diameter than wire, 
with diameters typically in the range of 20–50 mm and with typical char-
acteristic minimum breaking stresses in the range of 1030–1230 MPa.

3.3  PRETENSIONING

As the name implies, pretensioning involves the tensioning of steel strands 
prior to casting of the concrete and was introduced in Section 1.2.1. The 
prestressing operation requires an appropriate tensioning bed for the pre-
cast elements, bulk heads at both ends to anchor the individual strands 
and formwork for the precast concrete elements. A typical pretensioning 
bed is shown in Figure 3.2a. Pretensioning is often carried out in a factory 
environment where the advantages of quality control and mass production 
can be achieved. Pretensioning the strands can be achieved by stressing 
multiple strands or wires simultaneously or by stressing each strand or wire 
individually. Set-ups for multi-strand stressing and single-strand stressing 
are shown in Figure 3.2a and b, respectively.
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The application of prestress to the structure or structural element, for 
most practical cases, involves the use of a hydraulic jack to stress either 
single-strand tendons or groups of strands in a tendon (multi-strand ten-
dons). Prestressing jacks are hydraulically operated by pumping oil under 
pressure into a piston device, thereby elongating the tendon and increasing 
the tension in the tendon. When the required tendon elongation is achieved, 
each end of the tendon is anchored to the bulkhead using wedges that grip 

(a)

(b)

Figure 3.2 � Pretensioning beds. (Courtesy of VSL International Limited, Hong Kong, 
China.) (a) Multi-strand pretensioning. (b) Single-strand pretensioning.
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the strand at the anchorage. The following sequence of operations is typical 
for multi-strand pretensioning:

	 1.	The strands are laid out in a pretensioning bed, as illustrated in Figure 
3.2, where ram jacks are positioned next to the bulkhead and are 
extended to ensure that sufficient distance is available for the defor-
mations to take place at transfer. The stroke of the ram jacks must be 
longer than the desired elongation of the strands.

	 2.	The formwork moulds are closed and the strands are then stressed.
	 3.	Concrete is poured.
	 4.	When the concrete reaches its transfer strength, the load from the 

strands is transferred to the concrete by allowing the ram jacks to 
gradually retract, and the load is transferred to the concrete members. 
The strands are cut after the ram jacks are fully retracted. The pre-
stressing force is transferred by a combination of friction and bond 
between the concrete and the steel.

Whilst not now in common use, deflection or harping of the strands, if 
required in design, can be achieved by either anchoring the strand or wire 
in the bed of the unit, or by the use of a hydraulic ram or harping device to 
hold the pretensioned strand in the desired position whilst the concrete is 
cast and cured, prior to the transfer of the prestressing force to the precast 
elements. The harping device deflects the strands and provides a varying 
eccentricity of the prestressing force within the concrete member.

3.4  POST-TENSIONING

Post-tensioning of concrete was introduced in Section 1.2.2 and is used in a 
wide range of structures to apply prestress, usually on-site. Post-tensioning 
offers significant flexibility in the way the prestress is applied to a structure, 
with the tendon profiles readily adjusted to suit the applied loading and the 
support conditions. Post-tensioning lends itself to stage stressing, whereby 
increments of prestress are applied as required at different stages of con-
struction as the external loads progressively increase.

Post-tensioned systems consist of corrugated galvanised steel or plastic 
ducts (with grout vents for bonded tendons), prestressing strands, anchor-
ages and grout for bonded tendons. The post-tensioned tendon profile is 
achieved by fixing the ducts to temporary supports (often attached to the 
non-prestressed reinforcement in a beam) at appropriate intervals within the 
formwork. For slabs on ground, the strands are generally supported on bar 
chairs, as can be seen in Figure 3.3. The ducts that house the prestressing 
tendons may be fabricated from corrugated steel sheathing or, in more recent 
developments, plastic ducting, as shown in Figure 3.4a and b, respectively.
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Figure 3.5 illustrates a schematic of the layout of a post-tensioning strand in 
a typical continuous floor slab. The details would also apply for a continuous 
beam. The prestressing tendon follows a profile determined from the design 
loading, and the location and type of supports. After casting, the concrete 
is allowed to cure until it reaches the required transfer strength. Depending 
on the system being used, or the requirement of the structural design, an 
initial prestressing force is sometimes applied when the concrete compressive 
strength reaches about 10 MPa (to facilitate the removal of forms), with the 

Figure 3.3 � Examples of post-tensioned slabs before concrete casting. (Courtesy of 
VSL Australia Limited, Sydney, New South Wales, Australia.)

(a) (b)

Figure 3.4 � Post-tensioning ducts. (Courtesy of VSL International Limited, Hong Kong, 
China.) (a) Corrugated metal duct. (b) Plastic ducting.
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strands re-stressed up to the initial jacking force at a later stage when the 
concrete has gained its required strength at transfer.

In many parts of the world, it is a usual practice for the ducts to be 
grouted after the post-tensioning operation has been completed. Grout is 
pumped into the duct at one end under pressure. Grout vents are located at 
various locations along the duct (as shown in Figure 3.5) to ensure that the 
wet grout completely fills the duct during the grouting operation.

After the grout has set, the post-tensioned tendon is effectively bonded 
to the surrounding concrete. The grout serves several purposes including 
higher utilisation of the prestressing steel in bending under ultimate limit 
state conditions, better corrosion protection of the tendon and, importantly, 
the prevention of failure of the entire tendon due to localised damage at the 
anchorage or an accidental cutting of the strand. Further discussion of the 
advantages and disadvantages of both bonded and unbonded prestressed 
concrete is presented in Section 3.5.

The prestress is applied by a hydraulic jack (Figures 3.6a and b) reacting 
against the concrete at the stressing anchorage located at one end of the 
member, usually referred to as the live end. A small handheld jack stressing 
the individual strands in a slab duct is shown in Figure 3.6c. The live end 
of a post-tensioning anchorage system has several basic components com-
prising an anchor head, associated wedges required to anchor the strands 
and an anchorage casting or bearing plate. While these anchorages come 
in many shapes and sizes, the load transfer mechanism of these anchorages 
remains essentially the same. The stressing operation involves the hydraulic 
jack pulling the strands protruding behind the anchorage until the required 
jacking force is reached. Typical live-end anchorages for a flat ducted ten-
don are shown in Figures 3.6d and e.

Prestressing strands at the live end of a slab tendon before post-tension-
ing are shown in Figure 3.7a, and the wedges used to clamp the strand are 
shown in Figure 3.7b. It is common practice to paint the strands before 
post-tensioning (as shown in Figure 3.7c) to enable the elongation of each 
strand to be readily measured after the stressing operation (Figure 3.7d). 
After jacking, the post-tensioned strands are anchored by the wedges in the 
anchor head, and the load is transferred from the jack to the structure via 
the anchor casting or bearing plate.

Grouting tube
Duct

Grout vent
Grout vent

Dead-end anchorage
Live-end (or stressing)

anchorage

Figure 3.5 � Tendon layout and details in a continuous post-tensioned slab.
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Although the live anchorage can also be used at an external non-stressing 
end, when stressing is only required from one end of the member, the non-
stressing end often takes the form of an internal dead-end anchorage where 
the ends of the strands are cast in the concrete. Whilst many forms of 
this anchorage exist, the principle is to create a passive anchorage block 
by either spreading out the exposed strand bundle to form local anchor 

(a) (b)

(c) (d)

(e)

Figure 3.6 � Typical hydraulic jacks and live-end anchorage details. (Courtesy of VSL 
International Limited, Hong Kong, China; VSL Australia Limited, Sydney, 
New South Wales, Australia.) (a) Hydraulic jacks for multi-strand stressing. 
(b) Hydraulic jacks for individual strand stressing. (c) Post-tensioning indi-
vidual strands in a slab duct. (d) Live-end anchorage components. (e) Live-end 
anchorage with confining steel and grout vent.
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nodules/bulbs at the extremities beyond the duct (Figure 3.8a) or by means 
of swaged barrels clamped on the strands and bearing against a steel plate 
(Figure 3.8b). The duct is sealed to prevent the ingress of concrete during 
construction. The tendon is stressed only after the surrounding concrete 
has reached its required transfer strength.

Typical anchorage systems for use with multi-strand arrangements are 
shown in Figure 3.9, and a typical post-tensioning installation is shown in 
Figure 3.10a, with the end anchorage after completion of the prestressing 
operation shown in Figure 3.10b. Figure 3.10c shows the grinding of the 
strands after the stressing is completed.

Tendon couplers and intermediate anchorages can be used to connect 
tendons within a member. Typical examples of coupling and intermediate 
anchorages are shown in Figure 3.11.

A well-designed grout mix and properly grouted tendons are important to 
the durability of the structure. The success of a grouting operation depends 
on many factors, including the correct placement of the grout vents for the 

(a) (b)

(c) (d)

Figure 3.7 � Post-tensioning of strands. (Courtesy of VSL International Limited, Hong 
Kong, China; VSL Australia Limited, Sydney, New South Wales, Australia.) 
(a) Strands before post-tensioning. (b) Anchorage wedge components. 
(c) Painting of strands before post-tensioning. (d) Stressing the first of the 
painted strands.
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injection of grout and for expelling the air in the duct at the grout outlets. 
Vents are required at the high points of the tendon profile to expel the air in 
the ducts as the grout is injected into the duct at the tendon end or anchor-
age point of the tendon. Vents at or near the high points allow air and water 
to be removed from the crest of the duct profile. Grout emitted from the 
vent at the far end of the duct signals that the duct is completely filled with 
grout. The use of temporary or permanent grout caps ensures complete 
filling of the anchorages and permits the verification of the grouting at a 

(a) (b)

Figure 3.8 � Dead-end anchorage arrangements. (Courtesy of VSL Australia Limited, 
Sydney, New South Wales, Australia.) (a) Strands with crimped wires (onion 
end). (b) Swaged barrel end plate.

Figure 3.9 � Typical multi-strand tendon anchorages. (Courtesy of VSL Australia Limited, 
Sydney, New South Wales, Australia.)
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(a) (b)

(c)

Figure 3.10 � Multi-strand jack and anchorage operations. (Courtesy of VSL Australia 
Limited, Sydney, New South Wales, Australia.) (a) Jacking the strands. 
(b) Anchorage before prestressing. (c) Cutting the strands after completion 
of post-tensioning.

(a) (b)

Figure 3.11 � Coupling and intermediate anchorages for multi-strand systems. (Courtesy 
of VSL Australia Limited, Sydney, New South Wales, Australia.) (a) Coupling 
anchorage. (b) Intermediate anchorage.
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later stage. Grout vents are typically located at the high points of the duct 
over the interior supports as well as at the end anchorages (as illustrated in 
Figure 3.5). Figure 3.12 shows typical grout vents and details at a live-end 
anchorage and at a point along the duct. The ducts into which the grout is 
injected must be sufficiently large to allow easy installation of the strands 
and unimpeded flow of grout during the grouting operation.

An air pressure test is usually undertaken before grouting the duct to 
ensure the possibility of grout leakage is minimised. Grouting follows a 
standard procedure and, to be effective, requires experienced personnel. 
The grout is pumped into duct inlet in a continuous uninterrupted fash-
ion. As the grout emerges from the vent, the vent is not closed until the 
emerging grout has the same consistency and viscosity as the grout being 
pumped into the inlet. Intermediate vents along the tendon are then closed 
in sequence after ensuring that the grout has the required consistency and 
viscosity.

3.5 � BONDED AND UNBONDED POST-TENSIONED 
CONSTRUCTION

In unbonded post-tensioned construction, the strands are not grouted 
inside the ducts and remain unbonded from the surrounding concrete 
throughout the life of the structure. This permits the strands freedom to 
move locally relative to the structural concrete member. There is no strain 
compatibility between the prestressing steel and the surrounding concrete. 
To ensure that the strands are able to move relatively freely within the 
duct, each strand is usually coated with lithium grease, or equivalent, and 
is located within an external plastic sheathing to provide corrosion protec-
tion. The force from the tensioned strands is transferred to the structural 
member at the end anchorages.

There are advantages and disadvantages of bonded or unbonded con-
struction, and the use of either is dependent on the design and construction 

Figure 3.12 � Grout vents and caps. (Courtesy of VSL International Limited, Hong Kong, 
China.)
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requirements. In some countries, the disadvantages of unbonded construc-
tion are considered to outweigh the advantages, and the use of unbonded 
post-tensioning is not permitted, except for slabs on ground.

Durability is an important consideration for all forms of construction. 
Therefore, the provision of active corrosion protection is of significant 
importance. By grouting the tendons, an alkaline environment is provided 
around the steel, thus providing active corrosion protection (passivation).

Bonded prestressing steel ensures that any change in strain at the tendon 
level is the same in both the tendon and the surrounding concrete. At over-
loads, as the concrete member deforms and the strain at the tendon level 
increases, the full capacity of the bonded tendon can be realised, and the 
ultimate capacity of the cross-section is increased substantially by grout-
ing. The steel is capable of developing additional force, due to bond, in a 
relatively short distance. The effect of tendon or anchorage failure is local-
ised after grouting, and the remainder of the tendon is largely unaffected 
and remains functional. Bonded tendons are also better than unbonded 
tendons for controlling cracking and for resisting progressive collapse if 
local failure occurs.

With appropriate design consideration, the prestressing forces in the 
unbonded tendons can theoretically be adjusted throughout the life of the 
structure. Tendons may be able to be inspected, re-stressed or even replaced. 
For example, some tendons for nuclear works are unbonded, as they need 
to be monitored and as necessary, re-stressed. In unbonded construction, 
since the prestressing force in the tendon is transmitted to the beam only 
at the end anchorages, there is an almost uniform distribution of strain in 
the tendon under load. Changes in the force in the tendon are only possible 
due to friction and due to deformation of the member, thereby increasing 
the overall length of the tendon between anchorages. At overloads, the full 
strength of an unbonded tendon may not be achieved and the ultimate 
strength of unbonded construction is therefore generally less than that of 
bonded construction. The anchorage of the unbonded tendons is therefore 
a critical component, since the entire prestressing force is transmitted at 
this point throughout the life of the structure.

3.6  CIRCULAR PRESTRESSING

The term circular prestressing is applied to structures with a circular form 
such as cylindrical water tanks, liquid and natural gas tanks, storage silos, 
tunnels, digesters and nuclear containment vessels. In general, the term is 
applied when the direction of the prestress at any point is circumferential, 
i.e. in the direction of the tangent to the circumference of the circular pre-
stressed concrete surface structure. The circular prestressing compresses 
the structure to counteract the tensile bursting forces or loads from within the 
structure. Circular prestressing is also appropriate in cylindrical shells. The ring 
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beams around the edges of long-span shell structures develop significant 
tension forces and these can be balanced by prestressing.

Circular prestressing can take several forms, depending on the process of 
prestressing and the type of structure. Circumferential prestressing may be 
applied using individual tendons and multiple anchorages, or by using con-
tinuous wrapping, whereby a single tendon is wrapped around the circular 
structure. For tanks and silos, it is common practice to have buttresses in 
the walls, permitting easier detailing, installation and stressing. Figure 3.13 
shows the prestressing buttress of a circularly prestressed tank.

3.7  EXTERNAL PRESTRESSING

Whilst the standard internal prestressing discussed in previous sections 
remains the basic procedure for the majority of structures, external pre-
stressing of concrete structures has become much more popular with certain 
forms of structural members. As the name suggests, external prestressing 
is the application of prestress from a prestressing tendon or cable placed 

Figure 3.13 � Prestressing anchorages at a buttress of a prestressed tank. (Courtesy of 
VSL International Limited, Hong Kong, China.)
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externally to the concrete elements. The cable or tendon may be placed 
on the outer side of the structure or, in the case of box-type girders, inside 
the structure. Since the prestressing steel is located external to the con-
crete, there is no bond between the structural concrete and the prestressing 
components (unlike pretensioned concrete and bonded post-tensioned con-
crete). Early prestressed bridges were often steel structures with external 
steel bars used to impart the prestress (to stiffen and strengthen the struc-
ture), but these structures are not considered here.

Since the tendons are external and unbonded to the concrete structure, 
they can be removed and, if required, replaced at any time during the life 
of the structure.

A significant use of external prestressing is in the construction of con-
crete box girder bridge decks. The external tendons are typically anchored 
in the concrete diaphragms within the box and are deviated at carefully 
designed saddles located at the bottom of the structure at the mid-spans 
and at the top of the structure at the supports. These deviators can be made 
of steel pipes or void formers that are integrated with the concrete box 
section. Figure 3.14 shows the external tendons inside a box girder bridge, 
including a saddle to locate the tendons near the bottom of the section at 
mid-span.

As the tendons are placed outside the concrete section, pouring of con-
crete in the web is made easier and, as the web compression area is not 
reduced by the voids created by internal tendon ducts, the web thickness 
can be kept to a minimum.

Figure 3.14 � External tendons in bridge box girder section. (Courtesy of VSL International 
Limited, Hong Kong, China.)
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Figure 3.15 illustrates a typical reduction in web thickness of a concrete 
box girder due to external prestressing. External prestressing cables also 
generally have lower prestress losses. Another major advantage of external 
prestressing is that it can be used in new structures as well as strengthening 
or retrofitting of existing structures.

The disadvantages of external prestressing include the reduction in ten-
don eccentricity when the tendons are to be kept inside the concrete box 
structure, i.e. above the bottom flange slab of the box section, and the slight 
additional costs of providing replaceable anchorages, ducts and deviation 
saddles for external tendons.

400 270

120 300

Dimensions (mm)

180180

Figure 3.15 � Illustration of web thickness reduction possible with external prestressing 
compared to internal prestressing.
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Chapter 4

Material properties

4.1  INTRODUCTION

The deformation of a prestressed concrete member throughout the full 
range of loading depends on the properties and behaviour of the constitu-
ent materials. In order to satisfy the design objective of adequate structural 
strength, the ultimate strengths of both concrete and steel need to be known. 
In addition, factors affecting material strength and the non-linear behav-
iour of each material in the overload range must be considered. In order to 
check for serviceability, the instantaneous and time-dependent properties 
of concrete and steel at typical in-service stress levels are required.

As was mentioned in Chapter 1, the prestressing force in a prestressed 
concrete member gradually decreases with time. This loss of prestress, 
which is usually 10%–25% of the initial value, is mainly caused by creep 
and shrinkage strains that develop with time in the concrete at the level 
of the bonded steel, as well as relaxation of the tendons. Reasonable esti-
mates of the creep and shrinkage characteristics of concrete and procedures 
for the time analysis of prestressed structures are essential for an accurate 
prediction and a clear understanding of in-service behaviour. The loss of 
prestress caused by relaxation of the prestressing steel is caused by creep 
in the tendon. With the relatively low relaxation of modern prestressing 
steels, however, this component of prestress loss is usually relatively small 
(less than 5%).

The intention in this chapter is to present a broad outline of material 
behaviour and to provide sufficient quantitative information on mate-
rial properties to complete most design tasks, with specific reference to 
European guidelines [1–13].

4.2  CONCRETE

More comprehensive treatments of the properties of concrete and the fac-
tors affecting them are given by others, including Neville [14] and Metha 
and Monteiro [15].
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4.2.1  Composition of concrete

Concrete is a mixture of cement, water and aggregates. It may also contain 
one or more chemical admixtures. Within hours of mixing and placing, con-
crete sets and begins to develop strength and stiffness as a result of chemical 
reactions between the cement and the water. These reactions are known as 
hydration. Calcium silicates in the cement react with water to produce cal-
cium silicate hydrate and calcium hydroxide. The resultant alkalinity of the 
concrete helps to provide corrosion protection for the reinforcement.

The relative proportions of cement, water and aggregates may vary con-
siderably depending on the chemical properties of each component and 
the desired properties of the concrete. A typical mix used for prestressed 
concrete by weight might be coarse aggregate 45%, fine aggregate 30%, 
cement 18% and water 7%.

Cement is made from silica, alumina, lime and iron oxide, crushed and 
blended, and then burnt in a rotary kiln. The resulting clinker is cooled, 
mixed with gypsum and some other cementitious materials and ground 
to a fine powder. In most countries, several different types of cement are 
available, including general-purpose cements, high early strength cements, 
low heat of hydration cements and cements that provide enhanced sulphate 
resistance. Various cement replacement materials are often used, including 
silica fume, siliceous fly ash, calcareous fly ash, blast furnace slag, lime-
stone, burnt shale and natural pozzolans. EN 197-1 [3] specifies five groups 
of cements depending on their composition.

	 1.	CEM I Portland cement (contains mainly ground clinker and up to 
5% of minor additional materials);

	 2.	CEM II Portland composite cement (seven types are specified contain-
ing ground clinker and up to 35% of another single material);

	 3.	CEM III blast furnace cement (contains ground clinker and 36%–
95% of blast furnace slag);

	 4.	CEM IV pozzolanic cement (comprising ground clinker and a mix-
ture of silica fume, pozzolans and fly ash); and

	 5.	CEM V composite cement (containing clinker and a high percentage 
of blast furnace slab and pozzolans or fly ash).

The standard strength of a cement is taken as the compressive strength 
of mortar specimens cast, cured and tested in accordance with EN 196-1 [2]. 
Six different strength classes of cement are specified in EN 197-1 [3] con-
forming to the requirements in Table 4.1. Two classes are specified for each 
of the three strength grades (32.5, 42.5 and 52.5 MPa), one associated 
with ordinary early strength (denoted by N) and one for high early strength 
(denoted by R) as indicated in Table 4.1.

The ratio of water to cement by weight required to hydrate the cement 
completely is about 0.25, although larger quantities of water are often 
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required in practice in order to produce a workable mix. For the con-
crete typically used in prestressed structures, the water-to-cement ratio 
is about 0.4. It is desirable to use as little water as possible, since water 
not used in the hydration reaction causes voids in the cement paste that 
reduce the strength and increase the permeability of the concrete.

Chemical admixtures are widely used to improve one or more properties 
of concrete and code requirements are specified in EN 943-2 [4]. High-
strength concretes with low water-to-cement ratios are made more workable 
by the inclusion of superplasticisers in the mix. These polymers improve the 
flow of the wet concrete and allow very high-strength and low-permeability 
concrete to be used with conventional construction techniques.

The rock and sand aggregates used in concrete should be inert and prop-
erly graded. Expansive and porous aggregates should not be used, and 
aggregates containing organic matter or other deleterious substances, such 
as salts or sulphates, should also be avoided.

4.2.2  Strength of concrete

In structural design, the quality of concrete is usually controlled by the 
specification of a minimum characteristic compressive strength at 28 days. 
The characteristic strength is the strength that is exceeded by 95% of the 
uniaxial compressive strength measurements taken from standard compres-
sion tests on concrete cylinders and is denoted fck. Cylinders are generally 
either 150 mm diameter by 300 mm long or 100 mm diameter by 200 mm 
long. In Europe, 150 mm concrete cubes are also used in standard compres-
sion tests, and the characteristic compressive strength arising from cube 
tests is denoted fck,cube. Because the restraining effect at the loading surfaces 
is greater for the cube than for the longer cylinder, strength measurements 
taken from cubes are higher than those taken from cylinders. The ratio 
between cylinder and cube strengths is about 0.8 for low-strength concrete 
(i.e. cylinder strengths of 20–30 MPa) and increases slightly as the strength 
increases, as indicated subsequently in Table 4.2.

Table 4.1  �Requirements for the different strength classes of cement [3]

Strength class 
(CEM) 

Compressive strength (MPa) 
Initial 

setting time 
(minutes) 

Soundness 
(expansion) (mm) 

Early strength

28-day strength2 days 7 days

32.5N – ≥16.0
≥32.5 ≤52.5 ≥75

≤10

32.5R ≥10.0 –
42.5N ≥10.0 –

≥42.5 ≤62.5 ≥60
42.5R ≥20.0 –
52.5N ≥20.0 –

≥52.5 – ≥4552.5R ≥30.0 –
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In practice, the concrete used in prestressed construction is usually of 
better quality and higher strength than that required for ordinary reinforced 
concrete structures. Values of fck in the range 40–65 MPa are most often 
used, but higher strengths are not uncommon. Indeed, prestressed mem-
bers fabricated from reactive powder concretes with compressive strengths 
in excess of 150 MPa have been used in a wide variety of structures.

The forces imposed on a prestressed concrete section are relatively large, 
and the use of high-strength concrete keeps section dimensions to a mini-
mum. High-strength concrete also has obvious advantages in the anchorage 
zone of post-tensioned members where bearing stresses are large and in 
pretensioned members, where a higher bond strength better facilitates the 
transfer of prestress.

As the compressive strength of concrete increases, so too does its tensile 
strength. The use of higher-strength concrete may therefore delay (or even 
prevent) the onset of cracking in a member. High-strength concrete is con-
siderably stiffer than low-strength concrete. The elastic modulus is higher, 
and elastic deformations due to both the prestress and the external loads 
are smaller. In addition, high-strength concrete generally creeps less than 
low-strength concrete. This results in smaller losses of prestress and smaller 
long-term deformations.

The effect of concrete strength on the shape of the stress–strain curve 
for concrete in uniaxial compression is shown in Figure 4.1. The modulus 
of elasticity (the initial slope of the tangent to the ascending portion of 
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Figure 4.1 � Effect of strength on the shape of the uniaxial compressive stress–strain 
curve for concrete.
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each curve) increases with increasing strength, and each curve reaches its 
maximum stress at a strain in the range 0.0015–0.00285.

The shape of the unloading portion of each curve (after the peak stress 
has been reached) depends, among other things, on the characteristics of 
the testing machine. By applying deformation to a specimen, rather than 
load, in a testing machine that is stiff enough to absorb all the energy of a 
failing specimen, an extensive unloading branch of the stress–strain curve 
can be obtained. Concrete can undergo very large compressive strains 
and still carry load. This deformability of concrete tends to decrease with 
increasing strength.

The strength of properly placed and well-compacted concrete depends 
primarily on the water-to-cement ratio, the size of the specimen, the size, 
strength and stiffness of the aggregate, the cement type, the curing condi-
tions and the age of the concrete. The strength of concrete increases as 
the water-to-cement ratio decreases. The compressive strength of concrete 
increases with time. A rapid initial strength gain (in the first day or so after 
casting) is followed by a rapidly decreasing rate of strength gain thereaf-
ter. The rate of development of strength with time depends on the type of 
curing, the type of cement and the temperature. In prestressed concrete 
construction, a rapid initial gain in strength is usually desirable so that 
the prestress may be applied to the structure as early as possible. This is 
particularly so for precast pretensioned production. Steam curing and high 
early strength cement are often used for this purpose.

The strength of concrete in tension is an order of magnitude less than the 
compressive strength and is far less reliably known. A reasonable estimate 
is required, however, in order to anticipate the onset of cracking and pre-
dict service-load behaviour in the post-cracking range. The tensile strength 
of concrete fct usually refers to the highest tensile stress reached in a con-
crete specimen subjected to concentric tensile loading, i.e. where the tensile 
stress is uniform over the cross-section. The flexural tensile strength of 
concrete fct,fl (or modulus of rupture) is determined from the maximum 
extreme fibre tensile stresses calculated from the results of standard flex-
ural strength tests on plain concrete prisms. The flexural tensile strength 
may be significantly higher than the direct tensile strength, particularly for 
members with shallow cross-sections.

In practice, concrete is often subjected to multiaxial states of stress. For 
example, a state of biaxial stress exists in the web of a beam, or in a shear 
wall, or a deep beam. Triaxial stress states exist within connections, in con-
fined columns, in two-way slabs and other parts of a structure. A number 
of pioneering studies of the behaviour of concrete under multiaxial states 
of stress, including [16,17,18], led to the formulation of material modelling 
laws now used routinely in finite element software for the non-linear stress 
analysis of complex concrete structures. A typical biaxial strength envelope 
is shown in Figure 4.2, where σ1 and σ2 are the orthogonal stresses and σcu 
is the uniaxial compressive strength of concrete.
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The strength of concrete under biaxial compression is greater than that 
under uniaxial compression. Transverse compression improves the longitu-
dinal compressive strength by confining the concrete, thereby delaying (or 
preventing) the propagation of internal microcracks. Figure 4.2 also shows 
that transverse compression reduces the tensile strength of concrete, due 
mainly to Poisson’s ratio effect. Similarly, transverse tension reduces the 
compressive strength. In triaxial compression, both the strength of concrete 
and the strain at which the peak stress is reached are greatly increased and 
even small confining pressures can increase strength significantly. Correctly 
detailed transverse reinforcement provides confinement to produce a tri-
axial stress state in the compressive zone of columns and beams, thereby 
improving both strength and ductility.

4.2.3  Strength specifications in Eurocode 2

4.2.3.1  Compressive strength

The strength of concrete is specified in EN 1992-1-1 [1] in terms of concrete 
strength classes which relate to the lower characteristic compressive strength 
at 28 days measured on cylinders fck or on cubes fck,cube. These are the values 
of compressive strength exceeded by 95% of all standard cylinders or cubes 
tested at age 28 days after curing under standard laboratory conditions in 
accordance with EN 12390:2 [7] and 12390:3 [8]. The standard strength 
classes are usually expressed as C fck/fck,cube, with the minimum strength 
class Cmin = C12/15 and the maximum strength class Cmax recommended as 
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C90/105. In EN1992-1-1 [1], the concrete strength is based on the charac-
teristic cylinder strength fck and the strength classes specified in EN1992-1-1 
[1] are shown in Table 4.2, together with the corresponding mechanical 
properties of concrete required for design.

The mean compressive strength of concrete fcm at 28 days specified in 
EN 1992-1-1 [1] is also shown in Table 4.2. When curing is in accordance 
with EN 12390:2 [7] and when the mean temperature is 20°C, the mean 
compressive strength of concrete fcm(t) at age t (in days) may be obtained 
from the mean strength fcm at age 28 days as follows [1]:

	 f t t fcm cc cm( ) ( )= β 	 (4.1)

where:
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and s = 0.2 for cement strength classes 42.5R, 52.5N and 52.5R (Class R), 
s = 0.25 for cement strength classes 32.5R and 42.5N (Class N) and s = 0.38 
for cement strength classes 32.5N (Class S).

In some situations, the concrete compressive strength fck(t) at some time t 
other than 28 days may need to be specified, such as at the time of transfer 
or at the time of stripping the forms. EN 1992-1-1 [1] suggests that:

	 f t f t tck cm MPa for  days( ) ( ) ( )= − < <8 3 28 	 (4.3)

	 f t f tck ck for  days( ) = ≥ 28 	 (4.4)

More precise values of fck(t) should be based on tests, particularly when 
t ≤ 3 days.

4.2.3.2  Tensile strength

The uniaxial tensile strength fct is defined in EN 1992-1-1 [1] as the maxi-
mum stress that concrete can withstand when subjected to concentric uni-
axial tension. Direct uniaxial tensile tests are difficult to perform, and the 
indirect tensile strength fct.sp is usually measured in the so-called splitting 
tests on cylinders as specified in EN 12390:6 [10]. An approximate value of 
fct is specified in EN 1992-1-1 [1] as:

	 f fct ct.sp= 0 9. 	 (4.5)



70  Design of Prestressed Concrete to Eurocode 2

The mean tensile strength fctm specified in EN 1992-1-1 [1] for each 
strength class is given in Table 4.2 and is related to the mean strength by:

	 f f fctm ck ckin MPa for  MPa= × ≤0 3 502 3. ( ) ( )/ 	 (4.6)

	 f f fctm cm ckin MPa for  MPa= × + >2 12 1 0 1 50. ln[ . ] ( ) 	 (4.7)

The mean tensile strength at any time t may be taken as:

	 f t t fctm cc ctm( ) [ ( )]= β α 	 (4.8)

where βcc(t) is given in Equation 4.2; α = 1 for t < 28 days and α = 0.667 for 
t ≥ 28 days.

The upper and lower characteristic tensile strength shown in Table 4.2 
are, respectively:

	 f f f fctk,0.95 ctm ctk,0.05 ctmand= =1 3 0 7. . 	 (4.9)

The mean flexural tensile strength fctm,fl specified in EN 1992-1-1 [1] 
depends on the mean axial tensile strength fctm (given in Table 4.2) and the 
depth h of the member cross-section in millimetres and may be taken as:

	 f h f fctm,fl ctm ctm/= −max{( . ) ; }1 6 1000 	 (4.10)

4.2.3.3  Design compressive and tensile strengths

The design compressive and tensile strengths of concrete at the strength 
limit states are defined in EN 1992-1-1 [1] by the following equations, 
respectively:
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where γC is the partial safety factor for concrete, with γC = 1.5 for persistent 
and transient design situations and γC = 1.2 for design situations involving 
accidental actions, as indicated in Table 2.4. The terms αcc and αct are coef-
ficients that account for unfavourable effects that may arise due to long-
term effects or the manner of load application and may range between 0.8 
and 1.0. In most cases, αcc and αct are both equal to 1.0.
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Table 4.2  �Strength and deformation characteristics for concrete [1]

Strength class C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 C55/67 C60/75 C70/85 C80/95 C90/105 

fck (MPa) 12 16 20 25 30 35 40 45 50 55 60 70 80 90
fck,cube (MPa) 15 20 25 30 37 45 50 55 60 67 75 85 95 105
fcm (MPa) 20 24 28 33 38 43 48 53 58 63 68 78 88 98
fctm  (MPa) 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 4.2 4.4 4.6 4.8 5.0
fctk,0.05 (MPa) 1.1 1.3 1.5 1.8 2.0 2.2 2.5 2.7 2.9 3.0 3.1 3.2 3.4 3.5
fctk,0.95 (MPa) 2 2.5 2.9 3.3 3.8 4.2 4.6 2.9 5.3 5.5 5.7 6.0 6.3 6.6
Ecm (GPa) 27 29 30 31 33 34 35 36 37 38 39 41 42 44
εc1  (×10–3) 1.8 1.9 2.0 2.1 2.2 2.25 2.3 2.4 2.45 2.5 2.6 2.7 2.8 2.8
εcu1  (×10–3) 3.5 3.2 3.0 2.8 2.8 2.8
εc2  (×10–3) 2.0 2.2 2.3 2.4 2.5 2.6
εcu2  (×10–3) 3.5 3.1 2.9 2.7 2.6 2.6
n 2.0 1.75 1.6 1.45 1.4 1.4
εc3  (×10–3) 1.75 1.8 1.9 2.0 2.2 2.3
εcu3  (×10–3) 3.5 3.1 2.9 2.7 2.6 2.6
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4.2.3.4 � Compressive stress–strain curves for concrete 
for non-linear structural analysis

Figure 4.3 shows the idealised relation between concrete compressive stress 
σc and strain εc specified in EN 1992-1-1 [1] for short-term uniaxial loading 
and, with σc and εc expressed as absolute values, the stress–strain relation-
ship is:

	

σ η η
η

c

cmf
k

k
= −

+ −

2

1 2( )
	 (4.13)

where η = εc/εc1; εc is the strain corresponding to the stress σc; εc1 is the strain 
corresponding to the peak stress fcm (given in Table 4.2); k = 1.05Ecm/Ecp; Ecm 
is the secant modulus of elasticity of the concrete (given in Table 4.2 and 
defined in Figure 4.3) and Ecp is the secant modulus corresponding to peak 
stress (i.e. Ecp = fcm/εc1).

Equation 4.13 is valid throughout the range 0 < εc < εcu1, where εcu1 is the 
nominal ultimate strain given in Table 4.2 and defined in Figure 4.3.

Numerous equations describing the curvilinear stress–strain relationship 
for concrete in compression are available in the literature, and EN 1992-1-1 
[1] suggests any of them may be used in design ‘if they adequately represent 
the behaviour of the concrete’.

σc

fcm

0.4 fcm

α

tan α = Ecm

εc1
εc

εcu1

Figure 4.3 � Idealised stress–strain relationship for concrete in uniaxial compression [1].
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4.2.4  Deformation of concrete

4.2.4.1  Discussion

The deformation of a loaded concrete specimen is both instantaneous and 
time-dependent. If the load is sustained, the deformation of the specimen 
increases with time and may eventually be several times larger than the 
instantaneous value.

The gradual development of strain with time is caused by creep and 
shrinkage. Creep strain is produced by sustained stress. Shrinkage is 
independent of stress and results primarily from the loss of water as the 
concrete dries and from chemical reactions in the hardened concrete. 
Creep and shrinkage cause increases in axial deformation and curvature 
on reinforced and prestressed concrete cross-sections, losses of prestress, 
local redistribution of stress between the concrete and the steel reinforce-
ment and redistribution of internal actions in statically indeterminate 
members. Creep and shrinkage are often the cause of excessive deflection 
(or camber) and excessive shortening of prestressed members. In addition, 
shrinkage may cause unsightly cracking that could lead to serviceability 
or durability problems. On a more positive note, creep relieves concrete of 
stress concentrations and imparts a measure of deformability to concrete.

Researchers have been investigating the time-dependent deformation of 
concrete ever since it was first observed and reported over a century ago, 
and a great deal of literature has been written on the topic. Detailed summa-
ries of the time-dependent properties of concrete and the factors that affect 
them are contained in texts by Neville [14,19], Neville et al. [20], Gilbert 
[21], Gilbert and Ranzi [22], Ghali et al. [23,24] and Rüsch et al. [25] and 
in technical documents such as those from ACI Committee 209 [26–28].

The time-varying deformation of concrete may be illustrated by consider-
ing a concrete specimen subjected to a constant sustained stress. At any 
time t, the total concrete strain εc(t) in an uncracked uniaxially loaded spec-
imen consists of a number of components that include the instantaneous 
strain εce(t), the creep strain εcc(t), the shrinkage strain εcs(t) and the tem-
perature strain εT(t). Although not strictly correct, it is usually acceptable 
to assume that all four components are independent and may be calculated 
separately and combined to obtain the total strain.

When calculating the in-service behaviour of a concrete structure at con-
stant temperature, it is usual to express the concrete strain at a point as the 
sum of the instantaneous, creep and shrinkage components:

	 εc(t) = εce(t) + εcc(t) + εcs(t)	 (4.14)

The strain components in a drying specimen held at constant temperature 
and subjected to a constant sustained compressive stress σc0 first applied at 
time t0 are illustrated in Figure 4.4. Immediately after the concrete sets or 
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at the end of moist curing (t = td in Figure 4.4), shrinkage strain begins to 
develop and continues to increase at a decreasing rate. On application of 
the stress, a sudden jump in the strain diagram (instantaneous strain) is 
followed by an additional gradual increase in strain due to creep.

The prediction of the time-dependent behaviour of a concrete member 
requires an accurate estimate of each of these strain components at critical 
locations. This requires knowledge of the stress history, in addition to accu-
rate data for the material properties. The stress history depends both on the 
applied load and on the boundary conditions of the member. Calculations 
are complicated by the restraint to creep and shrinkage provided by both 
the bonded reinforcement and the external supports and the continuously 
varying concrete stress history that inevitably results.

The material properties that influence each of the strain components 
depicted in Figure 4.4 are described in the following sections. Methods 
for predicting the time-dependent behaviour of prestressed concrete cross-
sections and members are discussed in Section 5.7.

4.2.4.2  Instantaneous strain

The magnitude of the instantaneous strain εce(t) caused by either compres-
sive or tensile stress depends on the magnitude of the applied stress, the rate 

Total strain

εcc(t) – Creep

εce(t) – Instantaneous

εcs(t) – Shrinkage

0 t0

t0

td t Time, t

Time, t

Stress
σc0

0

Figure 4.4 � Concrete strain versus time for a specimen subjected to constant sustained 
stress [22].
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at which the stress is applied, the age of the concrete when the stress was 
applied and the stress–instantaneous strain relationship for the concrete. 
Consider the uniaxial instantaneous strain versus compressive stress curve 
shown in Figure 4.3. When the applied stress is less than about half the 
compressive strength, the curve is essentially linear and the instantaneous 
strain is usually considered to be elastic (fully recoverable). In this low-
stress range, the secant modulus Ecm does not vary significantly with stress 
and is only slightly smaller than the initial tangent modulus. At higher 
stress levels, the stress–strain curve becomes significantly non-linear and 
a significant proportion of the instantaneous strain is irrecoverable upon 
unloading.

In concrete structures, compressive concrete stresses caused by the 
day-to-day service loads rarely exceed half of the compressive strength. 
It is therefore reasonable to assume that the instantaneous behaviour of 
concrete at service loads is linear-elastic and that instantaneous strain is 
given by:

	
ε σ

ce
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cm

( )
( )

t
t

E
= 	 (4.15)

The secant modulus between σc = 0 and σc = 0.4fcm for concrete loaded at 
28 days is the modulus of elasticity of concrete (see Figure 4.3), with the 
symbol Ecm in EN 1992-1-1 [1]. Values of Ecm are given in Table 4.2.

The value of the modulus of elasticity Ecm increases with time as the con-
crete gains strength and stiffness. It also depends on the rate of application 
of the stress and increases as the loading rate increases. For most practical 
purposes, these variations are often ignored, and it is common practice to 
assume that Ecm is constant with time and equal to its initial value calcu-
lated at the time of first loading t0.

The in-service performance of a concrete structure is very much affected 
by the concrete’s inability to carry significant tension. It is therefore neces-
sary to consider the instantaneous behaviour of concrete in tension, as well 
as in compression. Prior to cracking, the instantaneous strain of concrete in 
tension consists of both elastic and inelastic components. In design, how-
ever, concrete is usually taken to be elastic-brittle in tension, and at stress 
levels less than the tensile strength of concrete the instantaneous strain ver-
sus stress relationship is assumed to be linear. Although the magnitude of 
the elastic modulus in tension is likely to differ from that in compression, it 
is usual to assume that both values are equal. Prior to cracking, the instan-
taneous strain in tension may be calculated using Equation 4.15. When the 
tensile strength is reached, cracking occurs and the concrete stress perpen-
dicular to the crack is usually assumed to be zero. In reality, if the rate of 
tensile deformation is controlled and crack widths are small, concrete can 
carry some tension across a crack due to friction that exists on the rough 
mating surfaces of the crack.
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Poisson’s ratio for uncracked concrete ν generally lies within the range 
0.15–0.22 and for most practical purposes may be taken as 0.2.

4.2.4.3  Creep strain

For concrete subjected to a constant sustained stress, the gradual develop-
ment of creep strain is illustrated in Figure 4.4. In the period immediately 
after first loading, creep develops rapidly, but the rate of increase slows 
appreciably with time. Creep has traditionally been thought to approach a 
limiting value as the time after first loading approaches infinity, but more 
recent research suggests that creep continues to increase indefinitely, albeit 
at a slower rate [38]. After several years under load, the rate of change of 
creep with time is small. Creep of concrete has its origins in the hardened 
cement paste and is caused by a number of different mechanisms. A com-
prehensive treatment of creep in plain concrete is given by Neville et al. [20].

Many factors influence the magnitude and rate of development of creep. 
Some are properties of the concrete mix, while others depend on the envi-
ronmental and loading conditions. In general, the capacity of concrete to 
creep decreases as the concrete quality increases. At a particular stress 
level, creep in higher-strength concrete is less than that in lower-strength 
concrete. Creep decreases as the water-to-cement ratio is reduced. An 
increase in either the aggregate content or the maximum aggregate size 
reduces creep, as does the use of a stiffer aggregate type.

Creep also depends on the environment. Creep increases as the relative 
humidity decreases. Creep is therefore greater when accompanied by dry-
ing. Creep is also greater in thin members with large surface area-to-volume 
ratios, such as slabs and walls. However, the dependence of creep on both 
the relative humidity and the size and shape of the specimen decreases as 
the concrete strength increases. Near the surface of a member, creep takes 
place in a drying environment and is therefore greater than in regions 
remote from a drying surface. In addition to the relative humidity, creep 
is dependent on the ambient temperature. A temperature rise increases the 
deformability of the cement paste and accelerates drying and thus increases 
creep. The dependence of creep on temperature is more pronounced at ele-
vated temperatures and is far less significant for temperature variations 
between 0°C and 20°C. However, creep in concrete at a mean temperature 
of 40°C is perhaps 25% higher than that at 20°C [25].

In addition to the environment and the characteristics of the concrete 
mix, creep depends on the loading history, in particular the magnitude 
and duration of the stress and the age of the concrete when the stress is 
first applied. The age at first loading t0 has a marked influence on the final 
magnitude of creep. Concrete loaded at an early age creeps more than con-
crete loaded at a later age. Concrete is therefore a time-hardening material, 
although even in very old concrete the tendency to creep never entirely 
disappears [29].
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When the sustained concrete stress is less than about 0.5fcm, creep is 
approximately proportional to stress and is known as linear creep. At 
higher stress levels creep increases at a faster rate and becomes non-linear 
with respect to stress. This non-linear behaviour of creep at high stress lev-
els is thought to be related to an increase in micro-cracking. Compressive 
stresses rarely exceed 0.5fcm in concrete structures at service loads, and 
creep may be taken as proportional to stress in most situations in the design 
for serviceability.

Creep strain is made up of a recoverable component, called the delayed 
elastic strain εcc.d(t) and an irrecoverable component called flow εcc.f (t). 
These components are illustrated by the creep strain versus time curve in 
Figure 4.5a caused by the stress history shown in Figure 4.5b. The recover-
able creep is thought to be caused by the elastic aggregate acting on the vis-
cous cement paste after the applied stress is removed. If a concrete specimen 
is unloaded after a long period under load, the magnitude of the recover-
able creep is of the order of 40%–50% of the elastic strain (between 10% 
and 20% of the total creep strain). Although the delayed elastic strain is 
observed only as recovery when the load is removed, it is generally believed 
to be of the same magnitude under load and to develop rapidly in the period 
immediately after loading. Rüsch et al. [25] suggested that the shape of the 
delayed elastic strain curve is independent of the age or dimensions of 
the specimen and is unaffected by the composition of the concrete.

The capacity of concrete to creep is usually measured in terms of the 
creep coefficient φ(t, t0). In a concrete specimen subjected to a constant 
sustained compressive stress σc0 first applied at age t0, the creep coefficient 
at time t is the ratio of creep strain to instantaneous strain and is given by:
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Figure 4.5 � Recoverable and irrecoverable creep components. (a) Creep strain history. 
(b) Stress history.
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and the creep strain at time t caused by a constant sustained stress σc0 first 
applied at age t0 is:
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where Ec(t0) is the tangent modulus at time t0 and, according to EN 1992-1-1 
[1], may be taken as 1.05Ecm(t0). For practical purposes and considering the 
variable nature of creep, it is usual to assume Ec(t0) = Ecm(t0) in Equation 4.17. 
For concrete subjected to a constant sustained stress, knowledge of the creep 
coefficient allows the rapid determination of the creep strain at any time 
using Equation 4.17.

Since both the creep and the instantaneous strain components are pro-
portional to stress for compressive stress levels less than about 0.5fcm, the 
creep coefficient φ(t, t0) is a pure time function and is independent of the 
applied stress. The creep coefficient increases with time at a decreasing rate. 
Although there is some evidence that the creep coefficient increases indefi-
nitely, the final creep coefficient ϕ ε ε( , ) ( , ) ( )∞ = ∞t t t0 0 0cc ce/  at t = ∞ is often 
taken as the 30-year value and its magnitude usually falls within the range 
of 1.5−4.0. A number of the well-known methods for predicting the creep 
coefficient were described and compared in Gilbert [21,37] and Gilbert and 
Ranzi [22]. The approach specified in EN 1992-1-1 [1] for making numeri-
cal estimates of φ(t, t0) is presented in Section 4.2.5.3.

The final creep coefficient is a useful measure of the capacity of concrete 
to creep. Since creep strain depends on the age of the concrete at the time of 
first loading, so too does the creep coefficient. The effect of ageing is illus-
trated in Figure 4.6. The magnitude of the final creep coefficient φ(∞,t0) 
decreases as the age at first loading t0 increases:
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Figure 4.6 � Effect of age at first loading on the creep coefficient.
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This time hardening or ageing of concrete complicates the calculation of 
creep strain caused by a time-varying stress history.

Another frequently used time function is known as specific creep C(t, t0), 
defined as the proportionality factor relating stress to linear creep:

	 ε σcc c0( , ) ( , )t t C t t0 0= 	 (4.18)

or
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C(t, t0) is the creep strain at time t produced by a sustained unit stress first 
applied at age t0.

From Equations 4.16 through 4.18 and taking Ec(t0) = Ecm(t0), the rela-
tionship between the creep coefficient and the specific creep is:

	 ϕ( , ) ( , ) ( )t t C t t E t0 0 0= cm 	 (4.20)

The sum of the instantaneous and creep strains at time t produced by a 
sustained unit stress applied at t0 is defined as the creep function J(t,t0) and 
is given by:
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The stress-produced strains (i.e. the instantaneous plus creep strains) 
caused by a constant sustained stress σc0 first applied at age t0 (also called 
the stress-dependent strains) can therefore be determined from:
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where Ec,eff(t, t0) is known as the effective modulus of concrete and is given by:
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If the stress is gradually applied to the concrete, rather than abruptly 
applied, the subsequent creep strain is reduced, because the concrete ages 
during the period of application of the stress. This can be accommodated 
analytically by the use of a reduced or adjusted creep coefficient. For an 
increment of stress Δσc(t) applied to the concrete gradually, beginning at 
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time t0, the load-dependent strain may be obtained by modifying Equation 
4.22 as follows:
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where:
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E t tc,eff ( , )0  is called the age-adjusted effective modulus of concrete and χ(t, t0) 
is an ageing coefficient first introduced by Trost [30] and later developed by 
Dilger and Neville [31] and Bazant [32].

Like the creep coefficient, the ageing coefficient depends on the rate of 
application of the gradually applied stress and the age at first loading and 
varies between about 0.4 and 1.0. Methods for the determination of the 
ageing coefficient are available, for example, in fib Model Code 2010 [33]. 
Gilbert and Ranzi [22] showed that for concrete first loaded at early ages 
(t0 < 20 days) and where the applied load is sustained, the final long-term 
ageing coefficient may be taken as χ(∞, t0) = 0.65. In situations where the 
deformation is held constant and the concrete stress relaxes, the final long-
term ageing coefficient may be taken as χ(∞, t0) = 0.8.

The previous discussions have been concerned with the creep of concrete 
in compression. However, the creep of concrete in tension is also of inter-
est in a number of practical situations, e.g. when studying the effects of 
restrained or differential shrinkage. Tensile creep also plays a significant 
role in the analysis of suspended reinforced concrete slabs at service loads 
where stress levels are generally low and, typically, much of the slab is ini-
tially uncracked.

Comparatively, little attention has been devoted to the study of tensile 
creep [28], and only limited experimental results are available in the litera-
ture [34]. Some researchers have multiplied the creep coefficients measured 
for compressive stresses by factors in the range of 1–3 to produce equivalent 
coefficients describing tensile creep, e.g. Chu and Carreira [35] and Bazant 
and Oh [36].

It appears that the mechanisms of creep in tension are different to those 
in compression. The magnitudes of both tensile and compressive creep 
increase when loaded at earlier ages. However, the rate of change of ten-
sile creep with time does not decrease in the same manner as for compres-
sive creep, with the development of tensile creep being more linear [34]. 
Drying tends to increase tensile creep in a similar manner to compressive 
creep, and tensile creep is in part recoverable upon removal of the load. 
Further research is needed to provide clear design guidance. In this book, 
it is assumed that the magnitude and rate of development of tensile creep 
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are similar to that of compressive creep at the same low stress levels. 
Although not strictly correct, this assumption simplifies calculations and 
does not usually introduce serious inaccuracies.

4.2.4.4  Shrinkage strain

Shrinkage of concrete is the time-dependent strain in an unloaded and unre-
strained specimen at constant temperature. Shrinkage is often divided into 
several components, including plastic shrinkage, chemical shrinkage, ther-
mal shrinkage and drying shrinkage. Plastic shrinkage occurs in the wet 
concrete before setting, whereas chemical, thermal and drying shrinkage 
all occur in the hardened concrete after setting. Some high-strength con-
cretes are prone to plastic shrinkage that may result in significant cracking 
before and during the setting process. This cracking occurs due to capillary 
tension in the pore water and is best prevented by taking measures dur-
ing construction to avoid the rapid evaporation of bleed water. Before the 
concrete has set, the bond between the plastic concrete and the reinforce-
ment has not yet developed, and the steel is ineffective in controlling plastic 
shrinkage cracking.

Drying shrinkage is the reduction in volume caused principally by the 
loss of water during the drying process. It increases with time at a gradually 
decreasing rate and takes place in the months and years after setting. The 
magnitude and rate of development of drying shrinkage depend on all the 
factors that affect the drying of concrete, including the relative humidity, 
the size and shape of the member and the mix characteristics, in particular, 
the type and quantity of the binder, the water content and water-to-cement 
ratio, the ratio of fine-to-coarse aggregate and the type of aggregate.

Chemical shrinkage results from various chemical reactions within the 
cement paste and includes hydration shrinkage, which is related to the 
degree of hydration of the binder in a sealed specimen with no moisture 
exchange. Chemical shrinkage (often called autogenous shrinkage) occurs 
rapidly in the days and weeks after casting and is less dependent on the 
environment and the size of the specimen than drying shrinkage. Thermal 
shrinkage is the contraction that results in the first few hours (or days) after 
setting as the heat of hydration gradually dissipates. The term endogenous 
shrinkage is sometimes used to refer to that part of the shrinkage of the 
hardened concrete that is not associated with drying (i.e. the sum of autog-
enous and thermal shrinkage).

The shrinkage strain εcs is usually considered to be the sum of the drying 
shrinkage component (which is the reduction in volume caused principally by 
the loss of water during the drying process) and the endogenous shrinkage 
component. Drying shrinkage in high-strength concrete is smaller than in nor-
mal strength concrete due to the smaller quantities of free water after hydra-
tion. However, thermal and chemical shrinkage may be significantly higher. 
Although drying and endogenous shrinkage are quite different in nature, there 
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is often no need to distinguish between them from a structural engineering 
point of view.

Shrinkage increases with time at a decreasing rate, as illustrated in 
Figure 4.4. Shrinkage is assumed to approach a final value εcs(∞) as time 
approaches infinity.

Drying shrinkage is affected by all the factors that affect the drying of 
concrete, in particular the water content and the water–cement ratio of the 
mix, the size and shape of the member and the ambient relative humidity. 
All else being equal, drying shrinkage increases when the water–cement 
ratio increases, the relative humidity decreases and the ratio of the exposed 
surface area to volume increases. Temperature rises accelerate drying and 
therefore increase shrinkage. By contrast, autogenous shrinkage increases 
as the cement content increases and the water–cement ratio decreases. In 
addition, autogenous shrinkage is not significantly affected by the ambient 
relative humidity.

The effect of a member’s size on drying shrinkage should be emphasised. 
For a thin member, such as a slab, the drying process may be essentially 
complete after several years, but for the interior of a larger member, the 
drying process may continue throughout its lifetime. For uncracked mass 
concrete structures, there is no significant drying (shrinkage) except for 
about 300  mm from each exposed surface. By contrast, the autogenous 
shrinkage is less affected by the size and shape of the specimen.

Shrinkage is also affected by the volume and type of aggregate. Aggregate 
provides restraint to shrinkage of the cement paste so that an increase in 
the aggregate content reduces shrinkage. Shrinkage is also smaller when 
stiffer aggregates are used, i.e. aggregates with higher elastic moduli. Thus, 
shrinkage is considerably higher in lightweight concrete than in normal 
weight concrete (by up to 50%).

The approach specified in EN 1992-1-1 [1] for making numerical esti-
mates of shrinkage strain is presented in Section 4.2.5.4.

4.2.5 � Deformational characteristics 
specified in Eurocode 2

4.2.5.1  Introduction

Great accuracy in the prediction of the creep coefficient and the shrinkage 
strain is not possible. The variability of these material characteristics is 
high. Design predictions are most often made using one of many numerical 
models that are available for predicting the creep coefficient and shrink-
age strain. These models vary in complexity, ranging from relatively com-
plicated methods, involving the determination of numerous coefficients 
that account for the many factors affecting creep and shrinkage, to much 
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simpler procedures. A description of and comparison between some of the 
more well-known methods is provided in ACI 209.2R-08 [28]. Although 
the properties of concrete vary from country to country as the mix char-
acteristics and environmental conditions vary, the agreement between the 
procedures for estimating both creep and shrinkage is still remarkably 
poor, particularly for shrinkage. In addition, the comparisons between pre-
dictive models show that the accuracy of a particular model is not directly 
proportional to its complexity, and predictions made using several of the 
best-known methods differ widely.

In the following sections, the models contained in EN 1992-1-1 [1] are 
presented for predicting the elastic modulus, the creep coefficient and the 
shrinkage strain for concrete.

4.2.5.2  Modulus of elasticity

The secant modulus between σc = 0 and σc = 0.4fcm for concrete loaded at 
28 days is shown in Figure 4.3 as Ecm. The numerical values specified in 
EN 1992-1-1 [1] for concrete containing quartzite aggregate are shown in 
Table 4.2 for each strength class. For concrete with limestone and sand-
stone aggregates, these values should be reduced by 10% and 30%, respec-
tively, and for concrete with basalt aggregate, the value should be increased 
by 20%. For structures likely to be sensitive to variations in the design 
value of Ecm, the effect of variations in the specified values by up to ±20% 
should be assessed. These variations are due to factors other than aggregate 
type and include the aggregate quantity, the aggregate to binder ratio, the 
curing regime and the rate of application of the load.

When the stress is applied slowly, say over a period of several hours, 
significant additional deformation occurs owing to the rapid early devel-
opment of creep. For the estimation of short-term deformation in such a 
case, it is recommended that the specified value of Ecm should be reduced 
by about 20% [21].

According to EN 1992-1-1 [1], variations in the elastic modulus with 
time can be determined from:

	 E t f t f Ecm cm cm cm/( ) ( )
.

= [ ]0 3
	 (4.26)

where Ecm(t) is the elastic modulus at an age of t days, fcm(t) is the com-
pressive strength at an age of t days (and obtained from Equation 4.1) and 
Ecm and fcm are the values at age 28 days.

EN 1992-1-1 [1] specifies that Poisson’s ratio should be taken as 0.2 for 
uncracked concrete and zero for cracked concrete.
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4.2.5.3  Creep coefficient

In Section 4.2.4.3, the creep coefficient φ(t, t0) at time t associated with 
a constant stress first applied at age t0 was defined as the ratio of the 
creep strain at time t to the (initial) elastic strain. The most accurate way 
of determining the final creep coefficient is by testing or by using results 
obtained from measurements on similar local concretes. However, testing 
is often not a practical option for the structural designer, and a relatively 
simple approach is provided in EN 1992-1-1 [1] for routine use in struc-
tural design.

The creep coefficient specified in EN 1992-1-1 [1] is related to the tangent 
modulus Ec which may be taken as 1.05Ecm. For situations where great 
accuracy is not required and provided the concrete is not subjected to a 
compressive stress exceeding 0.45fck(t0) at the age at first loading t0, the 
final creep coefficient φ(∞, t0) can be obtained from Figure 4.7. These 
values are valid for temperatures between −40°C and +40°C, and for a 
mean relative humidity between RH = 40% and RH = 100%. The term h0 
is the notional size or the hypothetical thickness equal to 2Ac/u, where Ac is 
the concrete cross-sectional area and u is that part of the cross-sectional 
perimeter exposed to drying. The terms S, N and R are the cement strength 
classes defined under Equation 4.2.

The final creep deformation at t = ∞ caused by a constant stress σc0 first 
applied at age t0 is obtained from Equation 4.17 as:

	 ε ϕ σcc c0 cm/( , ) ( , )( )∞ = ∞t t E0 0 	 (4.27)

If the compressive stress exceeds 0.45fck(t0), such as that may occur in a pre-
cast, pretensioned member stressed at early age, EN 1992-1-1 [1] specifies 
that non-linear creep should be considered using the non-linear notional 
creep coefficient φk(∞, t0) given by:

	 φk(∞,t0) = φ(∞,t0) exp[1.5(kσ − 0.45)]	 (4.28)

where φ(∞, t0) is the final linear creep coefficient; kσ is the stress-strength 
ratio σc0/fcm(t0); and fcm(t0) is the mean concrete compressive strength at the 
time of loading.

It must be emphasised that creep of concrete is highly variable with sig-
nificant differences in the measured creep strains in seemingly identical 
specimens tested under identical conditions (both in terms of load and 
environment). The creep coefficient obtained from Figure 4.7 should be 
regarded as a ball park approximation with a range of ±20%.



Material properties  85

t0 1

2
3

5

10

20
30

50

100
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 100 300 500 700 900 1100 1300 1500

h0 (mm)

S

N R

C20/25
C25/30
C30/37
C35/45
C40/50
C45/55
C55/67
C70/85
C90/105

C50/60
C60/75
C80/95

(∞, t0) 

Inside conditions – RH = 50%
t0

1

2
3

5

10

20
30

50

100

C20/25
C25/30
C30/37
C35/45
C40/50
C50/60
C60/75
C80/95

C45/55
C55/67
C70/85
C90/105

6.0 5.0 4.0  3.0 2.0 1.0 0 100 300 500  700 900 1100 1300 1500
h0 (mm)  

Outside conditions – RH = 80%

RNS

1

2
3

4

5

Notes:
1. Enter left-hand chart with the age at loading t0 and 

move horizontally to the appropriate cement class 
curve (S, N or R).

2. Establish diagonal line 2. 
3. Enter right-hand chart with the notional size h0 and 

move vertically to the line representing the 
appropriate concrete strength class.

4. Move horizontally back to line 2.

For t0 > 100 days, assume t0 = 100 and assume line 2
is the tangent to the appropriate curve.

5. Move vertically downward to �nd    (∞, t0).

(∞, t0) 

Figure 4.7 � The final creep coefficient for concrete φ (∞, t0) under normal environmental 
conditions.
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4.2.5.4  Shrinkage strain

The model for estimating the magnitude of shrinkage strain specified in 
EN 1992-1-1 [1] divides the total shrinkage strain εcs into two components, 
the autogenous shrinkage εca and the drying shrinkage εcd, as given by:

	 ε ε εcs ca cd= + 	 (4.29)

The autogenous shrinkage is assumed to develop relatively rapidly in the 
days immediately after casting, with the final value εca(∞) assumed to be 
a linear function of concrete strength. The autogenous shrinkage at any 
time t (in days) after casting is given by:

	 ε εca ca( ) ( )( . ). .
t e t= ∞ − −1 0 0 2 0 5

	 (4.30)

where:

	 εca(∞) = 2.5(fck − 10) × 10–6  (fck in MPa)	 (4.31)

Drying shrinkage develops more slowly than autogenous shrinkage and 
decreases with concrete strength. The final drying shrinkage strain εcd,∞ is 
equal to khεcd,0. The mean value of the nominal unrestrained drying shrink-
age strain εcd,0 for concrete with cement class N (with a coefficient of varia-
tion of about 30%) is given in Table 4.3.

If drying commences at age ts, the drying shrinkage strain at age t is 
given by:

	 ε εβcd h cd,0ds s( ) ,t kt t= ( ) 	 (4.32)

where βds(t, ts) is a function describing the development of drying shrinkage 
with time and is given by Equation 4.33 and kh is a coefficient that depends 
on the notional size h0 and is given in Table 4.4:

	
βds s

s

s

( , )
( )

( ) .
t t

t t

t t h
= −

− + 0 04 0
3

	 (4.33)

Table 4.3  �Nominal unrestrained drying shrinkage εcd,0 (×10–6) for concrete 
with cement class N [1]

fck/fck,cube (MPa) 

Relative humidity (%) 

20 40 60 80 90 100

20/25 620 580 490 300 170 0
40/50 480 460 380 240 130 0
60/75 380 360 300 190 100 0
80/95 300 280 240 150 80 0
90/105 270 250 210 130 70 0
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4.2.5.5  Thermal expansion

The coefficient of thermal expansion for concrete depends on the coefficient 
of thermal expansion of the coarse aggregate and on the mix proportions. 
For most types of coarse aggregate, the coefficient lies within the range of 
5 × 10–6/°C to 13 × 10–6/°C [14]. For design purposes and in the absence of 
more detailed information (test data), a coefficient of thermal expansion for 
concrete of 10 × 10−6/°C ± 20% is usually satisfactory in design.

4.3  STEEL REINFORCEMENT

The strength of a reinforced or prestressed concrete element in bending, 
shear, torsion or direct tension depends on the properties of the steel rein-
forcement and tendons, and it is necessary to adequately model the various 
types of steel reinforcement and their material properties.

Steel reinforcement is used in concrete structures to provide strength, duc-
tility and serviceability. Steel reinforcement can also be strategically placed 
to reduce both immediate and time-dependent deformations. Adequate 
quantities of bonded reinforcement will also provide crack control, wher-
ever cracks occur in the concrete.

4.3.1  General

Conventional, non-prestressed reinforcement in the form of bars, de-coiled 
rods, cold-drawn wires or welded wire mesh is used in prestressed concrete 
structures for the same reasons as it is used in conventional reinforced con-
crete construction and these include:

•	 To provide additional tensile strength and ductility in regions of the 
structure where sufficient tensile strength and ductility are not pro-
vided by the prestressing steel. Non-prestressed longitudinal bars, for 
example, are often included in the tensile zone of beams to supple-
ment the prestressing steel and increase the flexural strength. Non-
prestressed reinforcement in the form of stirrups is most frequently 
used to carry the diagonal tension caused by shear and torsion in the 
webs of prestressed concrete beams.

•	 To control flexural cracks at service loads in prestressed concrete 
beams and slabs where some degree of cracking under full service 
loads is expected.

Table 4.4  �Values for kh [1]

h0 (mm) 100 200 300 ≥500
kh 1.0 0.85 0.75 0.7
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•	 To control cracking induced by restraint to shrinkage and tempera-
ture changes in regions and directions of low (or no) prestress.

•	 To carry compressive forces in regions where the concrete alone may 
not be adequate, such as in columns or in the compressive zone of 
heavily reinforced beams.

•	 Lateral ties or helices are used to provide restraint to bars in com-
pression (i.e. to prevent lateral buckling of compressive reinforcement 
prior to the attainment of full strength) and to provide confinement 
for the compressive concrete in columns, beams and connections, 
thereby increasing both the strength and deformability of the con-
fined concrete.

•	 To reduce long-term deflection and shortening due to creep and 
shrinkage by the inclusion of longitudinal bars in the compression 
region of the member.

•	 To provide resistance to the transverse tension that develops in the 
anchorage zone of post-tensioned members and to assist the concrete 
to carry the high bearing stresses immediately behind the anchorage 
plates.

•	 To reinforce the overhanging flanges in T-, I- or L-shaped cross-sections 
in both the longitudinal and transverse directions.

Types and sizes of non-prestressed reinforcement vary from country to 
country. Most reinforcement used in prestressed structures is made up of 
deformed bars or wires, although some plain round bars and wires are 
used as fitments. Regularly spaced rib-shaped deformations on the surface 
of a deformed bar improve the bond between the concrete and the steel and 
greatly improve the anchorage potential of the bar. It is for this reason that 
deformed bars are used as longitudinal reinforcement in most reinforced 
and prestressed concrete members.

In design calculations, non-prestressed steel is usually assumed to be 
elastic–plastic, as shown in Figure 4.8. Before yielding, the reinforcement 
is elastic, with steel stress σs proportional to the steel strain εs, i.e. σs = Esεs, 
where Es is the elastic modulus of the steel. After yielding, the stress–strain 
curve is often assumed to be horizontal (perfectly plastic) and the steel 
stress σs = fyd (=fyk/γS) at all values of strain exceeding the strain at first yield 
εyd = fyd/Es. The design yield stress fyd is taken to be the design strength of 
the material and strain hardening is often ignored. The stress–strain curve 
in compression is assumed to be similar to that in tension.

4.3.2  Specification in Eurocode 2

4.3.2.1  Strength and ductility

EN 10080 [12] specifies general requirements and definitions for the per-
formance characteristics of weldable reinforcing steel used in concrete 
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structures designed to EN 1992-1-1 [1]. The following properties are speci-
fied to establish the required strength and ductility of steel reinforcement:

For strength: the characteristic yield strength, fyk or f0.2k; the character-
istic tensile strength, ftk

For ductility: the tensile strength to yield stress ratio, (ftk/fyk); the strain 
corresponding to the peak stress (i.e. the uniform elongation), εuk

The values of fyk and ftk are, respectively, the characteristic values of the 
yield load and the maximum direct axial tensile load, each divided by the 
nominal cross-sectional area of the bar.

Three ductility classes are recognised by EN 1992-1-1 [1]: Class A (low 
ductility); Class B (medium ductility) and Class C (high ductility). The 
requirements for strength and ductility of each class are shown in Table 4.5.

Class A reinforcement should not be used in situations where the rein-
forcement is required to undergo large plastic deformation under strength 
limit state conditions (i.e. strains in excess of 0.025). It should not be used 
if plastic methods of design are adopted, and it should not be used if the 
analysis has relied on some measure of moment redistribution.

4.3.2.2  Elastic modulus

The modulus of elasticity of reinforcing steel Es is the slope of the ini-
tial elastic part of the stress–strain curve, when the stress is less than fyk, 
and, in the absence of test data, the design value may be taken as equal to 
200 × 103 MPa, irrespective of the type and ductility class of the steel [1]. 
Alternatively, Es may be determined from standard tests. The elastic modu-
lus in compression is taken to be identical to that in tension.

Es

fyd

εyd

Strain

St
re

ss

Figure 4.8 � Idealised stress–strain relationship for non-prestressed steel.
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4.3.2.3  Stress–strain curves: Design assumptions

The shape of the stress–strain curve for a typical hot rolled bar is shown in 
Figure 4.9a. For non-linear and other refined methods of analysis, actual 
stress–strain curves determined from testing may be used using mean 
rather than characteristic values.

In design, EN 1992-1-1 [1] allows the idealised bilinear relationship 
shown in Figure 4.9b to be used with a recommended strain limit of εud = 
0.9 εuk and a maximum stress of kfyk/γs. Alternatively, an elastic–plastic 
relationship with a horizontal top branch at fyd = fyk/γs may be used without 
the need to check the strain limit.

The partial safety factor for steel reinforcement is γS = 1.15 for persistent 
and transient design situations and γS = 1.0 for design situations involv-
ing accidental actions, as indicated in Table 2.4. The properties of two 

Table 4.5  �Yield strength and ductility class of reinforcement compliant 
with EN 1992-1-1 [1]

Product Bars and coiled rods Wire fabrics 
Non-compliant 

(%)a Ductility class A B C A B C 

Characteristic 
yield stress, fyk 
or f0.2k (MPa)

400–600 ≤5.0

Minimum value 
of k = (ft/fy)k

≥1.05 ≥1.08 ≥1.15 ≥1.05 ≥1.08 ≥1.15 ≤10.0
<1.35 <1.35

Characteristic 
strain at peak 
stress, εuk (%)

≥2.5 ≥5.0 ≥7.5 ≥2.5 ≥5.0 ≥7.5 ≤10.0

a	 The maximum percentage of test results falling below the specified minimum characteristic values 
of fyk, (ft/fy)k and εuk.

εuk εukεudεykεyk

StrainStrain

(a) (b)
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f1 = kfyk kfyk

fykfyk St
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fyd = fyk/γs

kfyk/γs

Figure 4.9 � Actual and idealised stress–strain curves for reinforcing steel. (a) Actual 
stress–strain curve of a hot-rolled bar. (b) Idealised stress–strain curve of a 
hot-rolled bar.
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commonly used steel types are given in Table 4.6, with design values deter-
mined for persistent and transient design situations. Preferred bar sizes in 
Europe complying with EN 10080 [12] are given in Table 4.7.

4.3.2.4  Coefficient of thermal expansion and density

In the absence of test data, the coefficient of thermal expansion of rein-
forcement may be taken as 10 × 10−6/°C, and the density of the steel is 
7850 kg/m3.

4.4  STEEL USED FOR PRESTRESSING

4.4.1  General

The shortening of the concrete caused by creep and shrinkage in a pre-
stressed member causes a corresponding shortening of the prestressing steel 
that is physically attached to the concrete either by bond or by anchor-
ages at the ends of the tendon. This shortening can be significant and usu-
ally results in a loss of stress in the steel of between 150 and 300 MPa. 

Table 4.6  �Material properties for reinforcing steels

Steel type 
Ductility 

class ftk (MPa) ftd (MPa) fyk (MPa) fyd (MPa) εuk (%) Es (GPa) 

B500A A 525 457 500 435 2.5a 200
B500B B 540 470 500 435 5.0 200

a	εuk = 2.0% for 5.0 and 5.5 mm diameter bar.

Table 4.7  �Preferred bar sizes in Europe [12]

Metric bar size 
Linear mass density 

(kg/m) 
Nominal diameter 

(mm) 
Cross-sectional area 

(mm²) 

6.0 0.222 6 28.3
8.0 0.395 8 50.3

10.0 0.617 10 78.5
12.0 0.888 12 113
14.0 1.21 14 154
16.0 1.58 16 201
20.0 2.47 20 314
25.0 3.85 25 491
28.0 4.83 28 616
32.0 6.31 32 804
40.0 9.86 40 1257
50.0 15.4 50 1963
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In addition, creep in the highly stressed prestressing steel also causes a loss 
of stress through relaxation. Significant additional losses of prestress can 
result from other sources, such as friction along a post-tensioned tendon or 
draw-in at an anchorage at the time of prestressing.

For an efficient and practical design, the total loss of prestress should be 
a relatively small portion of the initial prestressing force. The steel used to 
prestress concrete must therefore be capable of carrying a very high initial 
stress. A tensile strength of between 1000 and 1900 MPa is typical for 
modern prestressing steels. The early attempts to prestress concrete with 
low-strength steels failed because almost the entire prestressing force was 
rapidly lost due to the time-dependent deformations of the poor-quality 
concrete in use at that time.

There are three basic forms of high-strength prestressing steels (as 
detailed in Chapter 3): cold-drawn stress-relieved round wire; stress-
relieved strand and high-strength alloy steel bars. The stress–strain 
curves for the various types of prestressing steel exhibit similar char-
acteristics, as illustrated in Figure 4.10. There is no well-defined yield 
point (as exists for some lower-strength steels). Each curve is initially 
linear-elastic (with an elastic modulus Ep similar to that for lower-
strength steels) and with a relatively high proportional limit. When the 
curves become non-linear as deformation increases, the stress gradually 
increases monotonically until the steel fractures. The elongation at frac-
ture is usually between 3.5% and 7%. High-strength steel is therefore 
considerably less ductile than conventional, hot-rolled non-prestressed 
reinforcing steel. For design purposes, the yield stress fp0.1k is usually 
taken as the stress corresponding to the 0.1% offset strain and is gener-
ally taken to be between 80% and 88% of the minimum tensile strength 
(i.e. 0.80fpk – 0.88fpk). Some available sizes and properties of prestressing 
steel are given in Table 4.8.

The initial stress level in the prestressing steel after the prestress is 
transferred to the concrete is usually high, often in the range 70%–80% 
of the tensile strength of the material. At such high stress levels, high-
strength steel creeps. At lower stress levels, such as is typical for non-
prestressed steel, the creep of steel is negligible. If a tendon is stretched 
and held at a constant length (constant strain), the development of creep 
strain in the steel is exhibited as a loss of elastic strain and hence a 
loss of stress. This loss of stress in a specimen subjected to constant 
strain is known as relaxation. Creep, and hence relaxation, in steel is 
highly dependent on the stress level and increases at an increasing rate 
as the stress level increases. Relaxation in steel also increases rapidly as 
temperature increases. In recent years, low-relaxation steel has normally 
been used in order to minimise the losses of prestress resulting from 
relaxation.
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Table 4.8  �Types, sizes and properties of prestressing steels [13]

Type Steel name 
fpk 

(MPa) 
fp0.1k 

(MPa) 
fpd = fp0.1k/γS 

(MPa) Ep (GPa) εuk (%) 

Wires Y1860C 1860 1600 1391 205 3.5
Y1770C 1770 1520 1322 205 3.5
Y1670C 1670 1440 1252 205 3.5
Y1570C 1570 1300 1130 205 3.5

Strands Y2060S 2060 1770 1540 195 3.5
Y1960S 1960 1680 1461 195 3.5
Y1860S 1860 1600 1391 195 3.5
Y1760S 1760 1520 1322 195 3.5

Bars Y1030 1030 830 722 205 4.0
Y1100 1100 900 783 205 4.0
Y1230 1230 1080 939 205 4.0

Nominal 
diameter 
(mm) Steel type 

Mass 
(g/m) 

Cross-
sectional 

area 
(mm2) 

Characteristic 
breaking 

strength (kN) 

Maximum 
breaking 
strength 

(kN) 

Yield 
strength at 
0.1% proof 
strain (kN) 

Wires
4 Y1860C 98.4 12.6 23.4 26.9 20.8
5 Y1860C 153.1 19.6 36.5 42.0 32.5
6 Y1770C 221.0 28.3 50.1 57.6 44.5
7 Y1770C 300.7 38.5 68.1 78.3 59.9
8 Y1670C 392.8 50.3 83.9 96.5 73.9

Seven-wire strands
7 Y2060S 234.3 30.0 61.8 71.1 54.4
8 Y1860S 296.8 38.0 70.7 81.3 60.8
9.6 Y1960S 429.6 55.0 107.8 124.0 94.0
12.5 Y1860S 726.3 93.0 173.0 199.0 149.0
12.9 Y1860S 781.0 100.0 186.0 213.9 160.0
15.2 Y1860S 1086.0 139.0 258.5 297.3 223.0
15.2 Y1760S 1086.0 139.0 244.6 281.3 212

Bars
20 Y1030 2.57 314 323 371 261
25 Y1030 4.17 491 506 582 408
26.5 Y1030 4.49 552 569 654 458
32 Y1030 6.65 804 828 952 667
36 Y1030 8.44 1018 1049 1206 845
40 Y1030 10.36 1257 1295 1489 1043
50 Y1030 15.66 1963 2022 2325 1929
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4.4.2  Specification in Eurocode 2

4.4.2.1  Strength and ductility

Prestressing steels must comply with the requirements of EN 10138 Parts 
1-4 [13]. The terms used to define the strength and ductility of prestressing 
steel in EN 1992-1-1 [1] are illustrated on the typical stress–strain curve 
shown in Figure 4.11. In design calculations, the characteristic breaking 
strength fpk is taken as the strength of the tendon. In practice, the breaking 
stress of 95% of all test samples will exceed fpk. The strain corresponding to 
fpk is the uniform elongation εuk. The tensile strength and ductility of some 
commonly used types of prestressing steel are given in Table 4.8.

The yield stress fp0.1k is taken as the 0.1% proof stress and may be deter-
mined by testing. In the absence of test data, the prescribed values given in 
Table 4.8 may be used. The design values of the steel strength fpd are taken 
as fp0.1k/γS, as shown in Figure 4.12 and given in Table 4.8.

According to EN 1992-1-1 [1], a prestressing tendon may be assumed to 
have adequate ductility if fpk/fp0.1k ≥ 1.1.

4.4.2.2  Elastic modulus

The elastic modulus can be obtained by measuring the elongation of 
sample pieces of tendon in direct tension tests. The prescribed values of 
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elastic modulus given in Table 4.8 may vary by up to ±10 GPa and pos-
sibly more when a multi-strand or multiwire tendon is stressed as a single 
cable. Variations in elastic modulus of the tendon will affect the calculated 
extension of the tendon during the stressing operation, and this should be 
considered appropriately both in design and during construction.

4.4.2.3  Stress–strain curve

For cross-sectional design, EN 1992-1-1 [1] allows the stress–strain curve 
for prestressing steel to be approximated by either of the two bilinear curves 
shown in Figure 4.12 as solid lines. The inclined branch (Line 1) has a strain 
limit εud = 0.9 εuk. Alternatively, the horizontal top branch (Line 2) can be 
used without any limit on strain. If the actual stress–strain curve for the 
steel is known, the steel stresses above the elastic limit should be reduced in 
a similar way to that shown for the idealised curve in Figure 4.12.

The actual shape of the stress–strain curve for tendons may be deter-
mined from tests. Typical curves for various types of tendons are shown in 
Figure 4.10. For non-linear and other refined methods of analysis, actual 
stress–strain curves for the steel, using mean rather than characteristic 
values, should be used. Alternatively, a simplified equation, such as that 
described by Loov [39], suitably calibrated to approximate the shape of the 
actual curve may be used in design.

For design and construction purposes, the maximum jacking force for 
a particular size of tendon is generally obtained from the manufacturer’s 
literature, and the actual stress–strain curve of the material supplied should 
be used to calculate the elongation during jacking.

4.4.2.4  Steel relaxation

Three classes of relaxation are recognised in EN 1992-1-1 [1]: Class 1: wire 
or strand – ordinary relaxation; Class 2: wire or strand – low relaxation 
and Class 3: hot-rolled and processed bars. Although both ordinary relax-
ation and low-relaxation wire and strand are defined, EN 10138 [13] does 
not cover Class 1 (ordinary relaxation) and only provides information on 
low-relaxation wire and strand. Design calculations associated with steel 
relaxation are based on the value of ρ1000, which is the relaxation loss in 
percentage at 1000 hours after tensioning with an initial stress of 0.7fp at 
a mean temperature of 20°C, where fp is the actual tensile strength of steel 
samples. ρ1000 is expressed as a percentage ratio of the initial stress.

The values of ρ1000 may be taken from the manufacturer’s certificate or 
assumed to equal 8% for Class 1, 2.5% for Class 2 and 4% for Class 3.

The loss of stress in the tendon due to relaxation Δσpr for use in design 
may be obtained from one of the following expressions:
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where σpi is the stress in a pretensioned or post-tensioned tendon imme-
diately after anchoring the tendon (i.e. before transfer for pretensioned 
tendons and after transfer for post-tensioned tendons); t is the time after 
tensioning (in hours) and μ = σpi/fpk.

The final (long-term) values of the relaxation losses are taken at t = 500,000 
hours, and values for Classes 1, 2 and 3 tendons are given in Table 4.9.

When elevated temperatures exist during curing (i.e. steam curing), relax-
ation is increased and occurs rapidly during the curing cycle. In this case, 
the equivalent time teq (in hours) given in Equation 4.37 should be added 
to the time after tensioning t in the relaxation time functions in Equations 
4.34 through 4.36:
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where T ti(∅ ) is the temperature in °C during the time interval Δti and Tmax is 
the maximum temperature in °C during the heat treatment.

Creep in the prestressing steel may also be defined in terms of a creep 
coefficient rather than as a relaxation loss. If the creep coefficient for the 
prestressing steel φp(t, σpi) is the ratio of creep strain in the steel to the 
initial elastic strain immediately after tensioning, then the final creep coef-
ficients for wire, strand and bar are also given in Table 4.9 and have been 

Table 4.9  �Long-term relaxation losses (at t = 500,000 hours) and corresponding 
final creep coefficients for wire, strand and bar (T = 20°C)

Type of tendon 

Tendon stress σpi as a proportion of fpk

μ = 0.6 μ = 0.7 μ = 0.8

Class 1 Relaxation loss (%) 15.5 19.0 23.3
Creep coefficient, φp(t, σpi) 0.155 0.190 0.233

Class 2 Relaxation loss (%) 2.5 3.9 6.1
Creep coefficient, φp(t, σpi) 0.025 0.039 0.061

Class 3 Relaxation loss (%) 6.2 8.7 12.1
Creep coefficient, φp(t, σpi) 0.062 0.087 0.121
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approximated using Equation 4.38 (remembering that Δσpr is the loss of 
stress and is therefore negative):

	
ϕ σ

σ
σp pi

pr

pi

( , )t =
−∆

	 (4.38)

As has already been emphasised, creep (relaxation) of the prestressing 
steel depends on the stress level. In a prestressed concrete member, the stress 
in a tendon is gradually reduced with time due to creep and shrinkage in 
the concrete. This gradual decrease in stress results in a reduction of creep 
in the steel and hence smaller relaxation losses. To determine relaxation 
losses in a concrete structure therefore, the final relaxation loss obtained 
from Equations 4.34 through 4.36 (or Table 4.9) should be multiplied by a 
reduction factor λr that accounts for the time-dependent shortening of the 
concrete due to creep and shrinkage. The factor λr depends on the creep 
and shrinkage characteristics of the concrete, the initial prestressing force 
and the stress in the concrete at the level of the steel and can be determined 
by iteration [24]. However, because relaxation losses in modern prestressed 
concrete structures (employing low-relaxation steels) are relatively small, it 
is usually sufficient to take λr ≈ 0.8.

REFERENCES

	 1.	 EN 1992-1-1. 2004. Eurocode 2: Design of concrete structures – Part 1-1: 
General rules and rules for buildings. British Standards Institution, 
London, UK.

	 2.	 EN 196-1. 1995. Method of testing cement – Part 1: Determination of 
strength. British Standards Institution, London, UK.

	 3.	 EN 197-1. 2011. Cement – Part 1: Composition, specifications and conformity 
criteria for common cements. British Standards Institution, London, UK.

	 4.	 EN 943-2. 2009. Admixtures for concrete, mortar and grout. British 
Standards Institution, London, UK.

	 5.	 EN 206-1. 2000. Concrete. Specification, performance, production and con-
formity. British Standards Institution, London, UK.

	 6.	 BS 8500-1. 2006. Part 1: Method of specifying and guidance for the specifier. 
British Standards Institution, London, UK.

	 7.	 EN 12390:2. 2009. Testing hardened concrete: Making and curing speci-
mens for strength tests. British Standards Institution, London, UK.

	 8.	 EN 12390:3. 2009. Testing hardened concrete: Compressive strength of test 
specimens. British Standards Institution, London, UK.

	 9.	 EN 12390:5. 2009. Testing hardened concrete: Flexural strength of test spec-
imens. British Standards Institution, London, UK.

	 10.	 EN 12390:6. 2009. Testing hardened concrete: Tensile splitting strength of 
test specimens. British Standards Institution, London, UK.



Material properties  99

	 11.	BS 1881-121. 1983. Testing concrete: Methods for determination of 
static modulus of elasticity in compression. British Standards Institution, 
London, UK.

	 12.	 EN 10080. 2005. Steel for the reinforcement of concrete, weldable, ribbed 
reinforcing steel. British Standards Institution, London, UK.

	 13.	 EN 10138-1. 2005. Prestressing steel. Part 1: General requirements 1, 
EN 10138-2: Prestressing steels – Wire, EN 10138-3: Prestressing steels – 
Strand, EN 10138-4: Prestressing steels – Bars. British Standards Institution, 
London, UK.

	 14.	 Neville, A.M. 1996. Properties of Concrete, 4th edn. London, UK: Wiley.
	 15.	 Metha, P.K. and Monteiro, P.J. 2014. Concrete: Microstructure, Properties 

and Materials, 4th edn. New York: McGraw-Hill Education.
	 16.	 Kupfer, H.B., Hilsdorf, H.K. and Rüsch, H. 1975. Behaviour of concrete 

under biaxial stresses. ACI Journal, 66, 656–666.
	 17.	 Tasuji, M.E., Slate, F.O. and Nilson, A.H. 1978. Stress-strain response and 

fracture of concrete in biaxial loading. ACI Journal, 75, 306–312.
	 18.	 Darwin, D. and Pecknold, D.A. 1977. Nonlinear biaxial stress-strain law for 

concrete. Journal of the Engineering Mechanics Division, 103, 229–241.
	 19.	 Neville, A.M. 1970. Creep of Concrete: Plain, Reinforced and Prestressed. 

Amsterdam, the Netherlands: North-Holland.
	 20.	 Neville, A.M., Dilger, W.H. and Brooks, J.J. 1983. Creep of Plain and 

Structural Concrete. London, UK: Construction Press.
	 21.	 Gilbert, R.I. 1988. Time Effects in Concrete Structures. Amsterdam, the 

Netherlands: Elsevier.
	 22.	 Gilbert, R.I. and Ranzi, G. 2011. Time-Dependent Behaviour of Concrete 

Structures. London, UK: Spon Press, 426pp.
	 23.	 Ghali, A. and Favre, R. 1986. Concrete Structures: Stresses and Deformations. 

London, UK: Chapman and Hall.
	 24.	 Ghali, A., Favre, R. and Eldbadry, M. 2002. Concrete Structures: Stresses 

and Deformations, 3rd edn. London, UK: Spon Press, 584pp.
	 25.	 Rüsch, H., Jungwirth, D. and Hilsdorf, H.K. 1983. Creep and Shrinkage – 

Their Effect on the Behaviour of Concrete Structures. New York: Springer-
Verlag, 284pp.

	 26.	 ACI 209R-92. 1992. Prediction of creep, shrinkage and temperature effects 
in concrete structures. ACI Committee 209, American Concrete Institute, 
Farmington Hills, MI, reapproved 2008.

	 27.	 ACI 209.1R-05. 2005. Report on factors affecting shrinkage and creep of 
hardened concrete. ACI Committee 209, American Concrete Institute, 
Farmington Hills, MI.

	 28.	 ACI Committee 209. 2008. Guide for modeling and calculating shrink-
age and creep in hardened concrete (ACI 209.2R-08). American Concrete 
Institute, Farmington Hills, MI, 44pp.

	 29.	 Trost, H. 1978. Creep and creep recovery of very old concrete. RILEM 
Colloquium on Creep of Concrete, Leeds, UK.

	 30.	 Trost, H. 1967. Auswirkungen des Superpositionsprinzips auf Kriech- und 
Relaxations Probleme bei Beton und Spannbeton. Beton- und Stahlbetonbau, 
62, 230–238, 261–269.



100  Design of Prestressed Concrete to Eurocode 2

	 31.	 Dilger, W. and Neville, A.M. 1971. Method of creep analysis of structural 
members. Australasian Conference on Information Security and Privacy, 
27–17, 349–379.

	 32.	 Bazant, Z.P. April 1972. Prediction of concrete creep effects using age-
adjusted effective modulus method. ACI Journal, 69, 212–217.

	 33.	 fib. 2013. Fib Model Code for Concrete Structures 2010. Fib – International 
Federation for Structural Concrete, Ernst & Sohn, Lausanne, Switzerland, 
434pp.

	 34.	 Ostergaard, L., Lange, D.A., Altouabat, S.A. and Stang, H. 2001. Tensile 
basic creep of early-age concrete under constant load. Cement and Concrete 
Research, 31, 1895–1899.

	 35.	 Chu, K.H. and Carreira, D.J. 1986. Time-dependent cyclic deflections in R/C 
beams. Journal of Structural Engineering, ASCE, 112(5), 943–959.

	 36.	 Bazant, Z.P. and Oh, B.H. 1984. Deformation of progressively cracking rein-
forced concrete beams. ACI Journal, 81(3), 268–278.

	 37.	 Gilbert, R.I. 2002. Creep and Shrinkage Models for High Strength Concrete – 
Proposals for inclusion in AS3600. Australian Journal of Structural Engineering, 
4(2), 95–106.

	 38.	 Brooks, J.J. 2005. 30-year creep and shrinkage of concrete. Magazine of 
Concrete Research, 57(9), 545–556.

	 39.	 Loov, R.E. 1988. A general equation for the steel stress for bonded prestressed 
concrete members. Journal of the Prestressed Concrete Institute, 33, 108–137.



101

Chapter 5

Design for serviceability

5.1  INTRODUCTION

The level of prestress and the layout of tendons in a member are usually 
determined from the serviceability requirements for that member. For 
example, if a water-tight and crack-free slab is required, tension in the slab 
must be eliminated or limited to some appropriately low value. If, on the 
other hand, the deflection under a particular service load is to be mini-
mised, a load-balancing approach may be used to determine the prestress-
ing force and cable drape (see Section 1.4.3).

For the serviceability requirements to be satisfied in each region of a 
member at all times after first loading, a reasonably accurate estimate of 
the magnitude of prestress is needed in design. This requires reliable pro-
cedures for the determination of both the immediate and time-dependent 
losses of prestress. Immediate losses of prestress occur during the stressing 
(and anchoring) operation and include elastic shortening of concrete, the 
short-term relaxation of the tendon, friction along a post-tensioned cable 
and slip at the anchorages. As mentioned in previous chapters, the time-
dependent losses of prestress are caused by creep and shrinkage of the con-
crete and relaxation of steel. Procedures for calculating both the immediate 
and time-dependent losses of prestress are presented in Section 5.10.

There are two critical stages in the design of prestressed concrete for ser-
viceability. The first stage is immediately after the prestress is transferred to 
the concrete, i.e. when the member is subjected to the maximum prestress 
and the external load is usually at a minimum. Immediate losses have taken 
place, but no time-dependent losses have yet occurred. The prestressing 
force immediately after transfer is designated in EN 1992-1-1 [1] as Pm0. 
At this stage, the concrete is usually young and the concrete strength may 
be relatively low. The second critical stage is after time-dependent losses 
have taken place and the full service load is applied, i.e. at time t when 
the prestressing force is at a minimum and the external service load is at a 
maximum. The prestressing force at this stage is designated in EN 1992-1-1 [1] 
as Pm,t and is often referred to as the effective prestress.
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At each of these stages (and at all intermediate stages), it is necessary 
to ensure that both the strength and the serviceability requirements of the 
member are satisfied. Strength depends on the cross-sectional area and 
position of both the steel tendons and the non-prestressed reinforcement. 
However, it is not strength that determines the level of prestress, but ser-
viceability. When the prestressing force and the amount and distribution of 
the prestressing steel have been determined, the flexural strength may be 
readily increased, if necessary, by the addition of non-prestressed conven-
tional reinforcement. This is discussed in more detail in Chapter 6. Shear 
strength may be improved by the addition of transverse stirrups (as dis-
cussed in Chapter 7). As will be seen throughout this chapter, the pres-
ence of bonded conventional reinforcement also greatly influences both 
the short- and long-term behaviour at service loads, both for cracked and 
uncracked prestressed members. The design for strength and serviceability 
therefore cannot be performed independently, as the implications of one 
affect the other.

General design requirements for the serviceability limit states, including 
combinations of actions, were discussed in Chapter 2. It is necessary to 
ensure that the instantaneous and time-dependent deflection and the axial 
shortening under service loads are acceptably small and that cracking is 
well controlled by suitably detailed bonded reinforcement. To determine 
the in-service behaviour of a member, it is therefore necessary to establish 
the extent of cracking, if any, by checking the magnitude of elastic tensile 
stresses. If a member remains uncracked (i.e. the maximum tensile stress at 
all stages is less than the tensile strength of concrete), the properties of the 
uncracked section may be used in all deflection and camber calculations (see 
Sections 5.6 and 5.7). If cracking occurs, a cracked section analysis may be 
performed to determine the properties of the cracked section and the post-
cracking behaviour of the member (see Sections 5.8 and 5.9).

5.2 � CONCRETE STRESSES AT TRANSFER 
AND UNDER FULL SERVICE LOADS

In the past, codes of practice have set mandatory maximum limits on the 
magnitude of the concrete stresses, both tensile and compressive. In real-
ity, concrete stresses calculated by a linear-elastic analysis are often not 
even close to those that exist after a short period of creep and shrinkage, 
particularly in members containing significant quantities of bonded rein-
forcement. It makes little sense to limit concrete stresses in compression 
and tension, unless they are determined based on non-linear analysis, in 
which the time-varying constitutive relationship for concrete is accurately 
modelled. Even if non-linear analysis is undertaken, limiting the concrete 
stresses in compression to a maximum prescribed value, or making sure the 
concrete tensile stresses are less than the tensile strength of concrete, does 
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not ensure either adequate strength of a structural member or satisfactory 
behaviour at service loads.

Notwithstanding the above, some codes still classify prestressed mem-
bers in terms of the calculated maximum tensile stress in the concrete 
σct in the precompressed tensile zone of a member. For example, using 
the notation adopted in this book, ACI318M-14 [2] classifies prestressed 
members as:

	 a.	Uncracked (Class U) if σct ck≤ 0 62. f ;

	 b.	Transitional (Class T) if 0 62 1 0. .f fck ct ck< ≤σ ; and

	 c.	Cracked (Class C) if σct ck> 1 0. f .

where σct and fck are expressed in MPa. As we shall see subsequently in 
Section 5.7.4, limiting the maximum concrete tensile stress calculated in an 
elastic analysis to 0 62. fck  certainly does not mean that the member will 
remain uncracked.

ACI318M-14 [2] imposes a limit of 0.6fck(t0) on the calculated extreme 
fibre-compressive stress at transfer, except that this limit can be increased 
to 0.7fck(t0) at the ends of simply-supported members (where fck(t0) is 
the specified characteristic strength of concrete at the time of transfer). 
ACI318M-14 [2] also requires that where the concrete tensile stress exceeds 
0 5 0. ( )f tck  at the ends of a simply-supported member, or 0 25 0. ( )f tck  else-
where, additional bonded reinforcement should be provided in the tensile 
zone to resist the total tensile force computed with the assumption of an 
uncracked cross-section.

In addition, for Class U and Class T flexural members, ACI318M-14 [2] 
specifies that the extreme fibre-compressive stress, calculated assuming 
uncracked cross-sectional properties and after all losses of prestress, should 
not exceed the following:

Due to prestress plus sustained load: 0.45fck

Due to prestress plus total load: 0.6fck

These limits are imposed to decrease the probability of fatigue failure in 
beams subjected to repeated loads and to avoid the development of non-
linear creep that develops under high compressive stresses.

EN 1992-1-1 [1] limits the compressive stress in the concrete immediately 
after transfer to 0.6fck(t0), but if the compressive stress in the concrete that 
is sustained permanently exceeds 0.45fck(t0), EN 1992-1-1 [1] suggests that 
the effects of non-linear creep should be considered. Immediately after the 
transfer of prestress, the prestressing force is at its maximum value and 
time-dependent losses have not yet occurred. Satisfaction of the compres-
sive stress limit will usually, although not necessarily, lead to an adequate 
factor of safety against compressive failure at transfer.
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It is also important to ensure that cracking does not occur immediately 
after transfer in locations where there is no (or insufficient) bonded rein-
forcement. The regions of a member that are subjected to tension at transfer 
are often those that are later subjected to compression when the full service 
load is applied. If these regions are unreinforced and uncontrolled cracking 
is permitted at transfer, an immediate serviceability problem exists. When 
the region is later compressed, cracks may not close completely, local spall-
ing may occur and even a loss of shear strength could result. If cracking is 
permitted at transfer, bonded reinforcement should be provided to carry all 
the tension and to ensure that the cracks are fine and well controlled. For 
the calculation of concrete stresses immediately after transfer, an elastic 
analysis using gross cross-sectional properties is usually satisfactory.

In some cases, concrete stresses may need to be checked under full service 
loads when all prestress losses have taken place. If cracking is to be avoided, 
concrete tensile stresses must not exceed the tensile strength of concrete. Care 
should be taken when calculating the maximum tensile stress to accurately 
account for the load-independent tension induced by restraint to shrinkage 
or temperature effects and the relaxation of stress caused by creep of the 
concrete. However, even if the tensile stress does reach the tensile strength of 
concrete and some minor cracking occurs, the cracks will be well controlled 
and the resulting loss of stiffness will not be significant, provided sufficient 
bonded reinforcement or tendons are provided near the tensile face.

For many prestressed concrete situations, there are no valid reasons why 
cracking should be avoided at service loads and, therefore, no reason why 
a limit should be placed on the maximum tensile stress in the concrete. 
Indeed, in modern prestressed concrete building structures, many members 
crack under normal service loads. If cracking does occur, the resulting loss 
of stiffness must be accounted for in deflection calculations and a nonlinear 
cracked section analysis is required to determine behaviour in the post-
cracking range. Crack widths must also be controlled. Crack control may 
be achieved by limiting both the spacing of the bonded reinforcement and 
the change of stress in the reinforcement after cracking (see Section 5.12).

Under full service loads, which occur infrequently, there is often no practi-
cal reason why compressive stress limits should be imposed. Separate checks 
for flexural strength, ductility and shear strength are obviously necessary. 
Some members, such as trough girders or inverted T-beams, are prone to 
high concrete compressive stresses under full service loads and, in the design 
of these members, care should be taken to limit the extreme fibre-compressive 
stress at service loads. If a large portion of the total service load is permanent, 
compressive stress levels in excess of about 0.45fck should be avoided. With 
this upper limit on compressive stresses, the probability of fatigue failure in 
uncracked or lightly cracked members subjected to repeated loads will be 
reduced and excessive non-linear creep deformations will not occur.

The primary objective in calculating and perhaps setting limits on 
the concrete stresses, both at transfer and under full loads, is to obtain 
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a serviceable structure. As was discussed in Section 1.4, elastic stress 
calculations are not strictly applicable to prestressed concrete. Creep and 
shrinkage cause a gradual transfer of compression from the concrete to the 
bonded steel. Nevertheless, elastic stress calculations may indicate poten-
tial serviceability problems and the satisfaction of concrete tensile stress 
limits is a useful procedure to control the extent of cracking. It should be 
understood, however, that the satisfaction of a set of elastic concrete stress 
limits does not, in itself, ensure serviceability and certainly does not ensure 
adequate strength. The designer must check both strength and serviceability 
separately, irrespective of the stress limits selected.

5.3  MAXIMUM JACKING FORCE

The mean prestressing force at any time t at a distance x from the active end 
of a tendon is designated in EN 1992-1-1 [1] as Pm,t(x) and is equal to the 
maximum force Pmax applied at the active end of the tendon during tension-
ing minus the immediate and time-dependent losses. The maximum force 
Pmax (also referred to as the jacking force Pj) must satisfy:

	 Pmax ≤ Ap σp.max	 (5.1)

where Ap is the cross-sectional area of the tendon and σp.max is the smaller of 
80% of the characteristic tensile strength (i.e. 0.8 fpk) and 90% of the char-
acteristic 0.1% proof stress (i.e. 0.9 fp0.1k). Overstressing up to σp.max = 0.95 
fp0.1k is permitted if the force in the jack can be measured to an accuracy of 
±5% of the final value of the prestressing force. Any such overstressing is 
intended to deal only with unforeseen problems during construction and 
should not be assumed during the design stage.

The value of the initial prestressing force at x immediately after transfer 
in a pretensioned member or immediately after tensioning and anchoring in 
a post-tensioned member (i.e. at t = t0) is designated Pm0(x) (or simply Pm0) 
and is equal to Pmax minus the immediate losses of prestress. According to 
EN 1992-1-1 [1], Pm0(x) should satisfy:

	 Pm0(x) ≤ Ap σpm0.max	 (5.2)

where σpm0.max is the smaller of 0.75fpk or 0.85fp0.1k.
When tensioning a tendon, the stressing procedure should ensure that the 

force in the tendon increases at a uniform rate. The prestressing force should 
be measured at the jack, and the tendon extension should be measured 
during tensioning. A check should also be made to ensure that the mea-
sured extension of each tendon agrees with the calculated extension based on 
the measured prestressing force and knowledge of the cable profile and the 
load–extension curve for the tendon. Any difference between the two figures 



106  Design of Prestressed Concrete to Eurocode 2

greater than 10% should be investigated. Differences could be due to prob-
lems arising for a variety of reasons, including blockage of the duct due to the 
ingress of cement paste, the wrong size tendon being used, slip at the dead-
end anchorage, variations of tendon profile and hence different friction losses 
in the duct or anchorage from the assumed values and variations in strand 
properties, including differences in strands due to worn dies used in drawing 
the strand wires during manufacture.

5.4 � DETERMINATION OF PRESTRESS AND 
ECCENTRICITY IN FLEXURAL MEMBERS

There are a number of possible starting points for the determination of the 
prestressing force P and eccentricity e required at a particular cross-section. 
The starting point depends on the particular serviceability requirements for 
the member. The prestressing force and the cable layout for a member may be 
selected to minimise deflection under some portion of the applied load, i.e. a 
load-balancing approach to design. With such an approach, cracking may occur 
when the applied load is substantially different from the selected balanced load, 
such as at transfer or under the full service loads after all losses, and this pos-
sibility needs to be checked and accounted for in serviceability calculations.

The quantities P and e are often determined to satisfy preselected stress 
limits. Cracking may or may not be permitted under service loads. As was 
mentioned in the previous section, satisfaction of concrete stress limits 
does not necessarily ensure that deflection, camber or axial shortening are 
within acceptable limits. Separate checks are required for each of these 
serviceability limit states.

5.4.1  Satisfaction of stress limits

Numerous design approaches have been proposed for the satisfaction of 
concrete stress limits, including analytical and graphical techniques, e.g. 
Magnel [3], Lin [4] and Warner and Faulkes [5]. A simple and convenient 
approach is described here.

If the member is required to remain uncracked throughout, suitable 
stress limits should be selected for the tensile stress at transfer fct,0 and the 
tensile stress under full load fct,t. In addition, limits should also be placed 
on the concrete compressive stress at transfer fcc,0 and under full loads fcc,t. 
If cracking under the full loads is permitted, the stress limit fct,t is relaxed 
and the remaining three limits are enforced.

In Figure 5.1, the uncracked cross-section of a beam at the critical moment 
location is shown, together with the concrete stresses at transfer caused by 
the initial prestress of magnitude Pm0 (located at an eccentricity e below 
the centroidal axis of the concrete section) and by the external moment M0 
resulting from the loads acting at transfer. Often self-weight is the only load 
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(other than prestress) acting at transfer. In Figure 5.1, we have assumed 
that the cross-section is uncracked and that concrete stresses are calculated 
assuming linear-elastic material behaviour.

At transfer, the concrete stress in the top fibre must not exceed the ten-
sile stress limit fct,0. If tensile (compressive) stress is assumed to be positive 
(negative), we have:

	
σtop,0
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Rearranging and introducing the term αtop = Aytop/I = A/Ztop, we get:
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where A is the area of the transformed cross-section, I is the second moment of 
area of the transformed section about the centroidal axis and Ztop is the elastic 
modulus of the cross-section with respect to the top fibre (equal to I/ytop).

Similarly, the concrete stress in the bottom fibre must be greater than the 
negative compressive stress limit at transfer:
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Rearranging and introducing the term αbtm = Aybtm/I = A/Zbtm, we get:
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where Zbtm is the elastic modulus of the cross-section with respect to the 
bottom fibre (=I/ybtm) and the compressive stress limit fcc,0 is a negative 
quantity.

e
ybtm

Due to Pm0

–Pm0/A + Pm0ey/I

–M0y/I

Due to M0

M0ytop

Section Concrete stresses 

y

Resultant
σbtm,0

σtop,0

+ =

− + −

+ −

Centroidal axis

Figure 5.1 � Concrete stresses at transfer.
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Figure 5.2 shows the concrete stresses on an uncracked cross-section 
caused by both the effective prestressing force Pm,t acting on the concrete 
after all losses have taken place and the applied moment MT resulting 
from the full service load. The effective prestressing force acting on the 
concrete part of the cross-section is taken as ΩPm0, where Ω depends on 
the time-dependent loss of prestress in the tendon and the amount of 
force transferred from the concrete into the bonded non-prestressed rein-
forcement as it restrains the development of creep and shrinkage in the 
concrete with time. For cross-sections containing no conventional rein-
forcement, Ω is typically about 0.80 but may be significantly smaller for 
sections containing conventional reinforcement (see Section 5.7.4, where 
in Tables 5.1 and 5.2, Ω varies between 0.438 and 0.851 depending on the 
amount and position of bonded reinforcement on the cross-section under 
consideration).

For an uncracked member, the concrete stress in the bottom fibre must be 
less than the selected tensile stress limit fct,t:
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and rearranging gives:
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The compressive stress in the top fibre must also satisfy the appropriate 
stress limit fcc,t:
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Figure 5.2 � Concrete stresses under full loads (after all prestress losses).
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and rearranging gives:
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If the eccentricity e at the cross-section is known, satisfaction of Equations 
5.3 and 5.4 will ensure that the desired stress limits at transfer are not 
exceeded. Equations 5.3 and 5.4 provide an upper limit on the magnitude 
of Pm0. Equations 5.5 and 5.6 provide a lower limit on the magnitude of Pm0. 
Satisfaction of all four equations will ensure that the selected stress limits 
at transfer and under full loads are all satisfied.

If a particular cross-section is too small, it may not be possible to 
satisfy all four stress limits and either a larger cross-section can be 
selected or the offending stress limit(s) can be relaxed and the effect of 
this variation assessed in the subsequent design. Even though separate 
checks are required to ensure satisfaction of the strength and service-
ability requirements, Equations 5.3 through 5.6 provide a useful starting 
point in design for sizing both the cross-sectional dimensions and the 
prestressing details.

If the maximum value of Pm0 that satisfies Equation 5.4 is the same as the 
minimum value required to satisfy Equation 5.5, information is obtained 
about the properties of the smallest cross-section that can be selected to 
ensure satisfaction of both the stress limits fcc,0 at transfer and fct,t under 
full loads (i.e. the smallest sized cross-section that will ensure that crack-
ing does not occur under full service loads). Equating the right-hand sides 
of Equations 5.4 and 5.5, we get the following expression for the section 
modulus (Zbtm) of the minimum sized cross-section:
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Similarly, if we equate the right-hand sides of Equations 5.3 and 5.6, we get 
the following expression for the section modulus (Ztop) of the smallest sized 
cross-section required to satisfy both the stress limits fct,0 at transfer and fcc,t 
under full loads (i.e. the smallest sized cross-section to ensure that cracking 
does not occur at transfer):
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It must be remembered that fcc,0 and fcc,t represent compressive stress limits 
and are negative quantities. Equations 5.7 and 5.8 are useful starting points 
in the selection of an initial cross-section.
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In order to make use of Equations 5.7 and 5.8 in preliminary design, 
an estimate of the time-dependent loss of prestress in the concrete must 
be made. Usually, a first estimate of Ω of about 0.8 is reasonable if low-
relaxation presetressing steel is used and the cross-section does not con-
tain significant quantities of non-prestressed steel. As already mentioned, if 
the cross-section contains significant quantities of bonded reinforcement, 
Ω may be significantly smaller. However, if this is the case, it may not be 
necessary to enforce a no cracking requirement and Equations 5.7 and 5.8 
would no longer be relevant. Any initial estimate of Ω must be checked 
after the prestress, the eccentricity and the quantity of bonded reinforce-
ment have been determined. A suitable procedure for determining the time-
dependent loss of stress in the concrete is described in Section 5.7.3, and 
simplified methods are described in Section 5.10.3.

EN 1992-1-1 [1] assumes that flexural cracking is controlled if the max-
imum tensile concrete stress in a member caused by the short-term service 
loads and prestress does not exceed the effective tensile strength fct,eff(t) 
taken as either the mean value of the tensile strength of the concrete fctm(t) 
or the mean value of the flexural tensile strength of the concrete fctm,fl(t) at 
the time when the cracks may first be expected to occur. The calculation 
for the minimum tension reinforcement (see Equation 5.192 discussed 
subsequently) must be based on the same value of fct,eff(t). If cracking is 
permitted under full service loads, a tensile stress limit fct,t is not speci-
fied and Equations 5.5 and 5.7 do not apply. Tensile and compressive 
stress limits at transfer are usually enforced and, therefore, Equations 
5.3 and 5.4 are still applicable and continue to provide an upper limit on 
the level of prestress. The only minimum limit on the level of prestress is 
that imposed by Equation 5.6 and, for most practical cases, this does not 
influence the design.

When there is no need to satisfy a tensile stress limit under full loads, 
any level of prestress that satisfies Equations 5.3, 5.4 and 5.6 may be used, 
including Pm0 = 0 (which corresponds to a reinforced concrete member). 
Often members that are designed to crack under the full service loads are 
proportioned so that no tension exists in the concrete under the sustained 
load. Cracks open and close as the variable live load is applied and removed. 
The selection of prestress in such a case can still be made conveniently 
using Equation 5.5, if the maximum total service moment MT is replaced in 
Equation 5.5 by the sustained or permanent moment Msus.

If cracking occurs, the cross-section required for the cracked prestressed 
member may need to be larger than that required for a fully-prestressed, 
uncracked member for the same deflection limit. In addition, the quan-
tity of non-prestressed reinforcement is usually significantly greater. Often, 
however, the reduction in prestressing costs more than compensates for the 
additional concrete and non-prestressed reinforcement costs and cracked 
partially-prestressed members are the most economical structural solution 
in a wide range of applications.
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EXAMPLE 5.1

A one-way slab is simply-supported over a span of l = 12 m and is to be 
designed to carry a maximum superimposed design service load of ws = 5 kPa 
(kN/m2) in addition to its own self-weight. The slab is post-tensioned by regu-
larly spaced tendons with parabolic profiles (with zero eccentricity at each 
support and a maximum eccentricity at mid-span). Each tendon contains four 
12.9 mm diameter strands in a flat duct. The material properties are:
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Assume that the loss of prestress at mid-span immediately after transfer is 
8% and the total time-dependent losses due to creep, shrinkage and relax-
ation are 15%. Determine the prestressing force and eccentricity required to 
satisfy the following concrete stress limits:

	 At transfer: fct,0 = 0.5fctm(t0) = 1.3 MPa  and  fcc,0 = −0.5fck(t0) = −12.5 MPa

	 After all losses: fct,t = 0.5fctm = 1.75 MPa  and  fcc,t = −0.5fck = −20.0 MPa

Also determine the required number and spacing of tendons, and the initial 
deflection of the slab at mid-span immediately after transfer.

In order to obtain an estimate of the slab self-weight (which is the only load 
other than the prestress at transfer), a trial slab thickness of 300 mm (span/40) 
is assumed initially. Assuming the concrete weighs 24 kN/m3, the self-weight is:

	 wsw = 24 × 0.3 = 7.2 kN/m2

and the moments at mid-span of the slab both at transfer and under the full 
service load (evaluated for a 1 m wide strip of slab) are:
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From Equation 5.7:
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and from Equation 5.8:

	
( )

( . . . )
( .

minZ
M M

f f
top

T 0

ct,0 cc,t

= −
−

= − × ×
×

Ω
Ω

219 6 0 85 129 6 10
0 85 1

6

.. ) ( . )
.

3 20 0
5 19 106 3

− −
= × mm /m

For the rectangular slab cross-section, the minimum section modulus must 
exceed (Zbtm)min = 9.39 × 106 mm3/m and the corresponding minimum slab 
depth is therefore:

	 h Zmin min( ) .= =6 1000 230 3b / mm

If we select a slab thickness h = 230 mm, the revised self-weight is wsw = 
5.52 kN/m2, the revised moments are M0 = 99.4 kNm/m and MT = 189.4 
kNm/m, and the revised section properties are (Zbtm)min = 8.48 mm3/m and 
hmin = 225.5 mm.

Taking h = 230 mm, the relevant section properties are:

	� A = 230 × 103 mm2/m,  I = 1014 × 106 mm4/m, 

	 Zbtm = Ztop = 8.817 × 106 mm3/m,  and  αbtm = αtop = 26.1 × 10−3 mm−1.

If we take the minimum concrete cover to the strand as 30 mm, the eccen-
tricity at mid-span of the 12.9 mm diameter strands is:

	 e = emax = h/2 − 30 − 0.5 × 12.9 = 78.6 mm

From Equation 5.3:
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From Equation 5.4:
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The prestressing force immediately after transfer Pm0 must not exceed 
1792 kN/m.
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From Equation 5.5:
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From Equation 5.6:
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The minimum prestressing force Pm0 is therefore 1751 kN/m, and this value is 
used in the following calculations. With 8% immediate losses between mid-
span and the jacking point at one end of the span, the required jacking force is:
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From Table 4.8, a 12.9 mm diameter 7-wire low-relaxation strand has a cross-
sectional area of Ap = 100.0 mm2, a characteristic breaking load of fpk Ap = 186.0 
kN and a 0.1% proof load of fp0.1kAp = 160.0 kN. According to EN 1992-1-1 [1], 
the maximum jacking force in a strand is the smaller of 80% of the charac-
teristic tensile strength (i.e. 0.8 fpkAp = 148.8 kN) and 90% of the 0.1% proof 
stress (i.e. 0.90 fp0.1kAp = 144 kN) (see Section 5.3). A flat duct containing four 
12.9 mm strands can therefore be stressed with a maximum jacking force of 
4 × 144 = 576 kN.

The minimum number of ducts required in each metre width of slab is 
therefore:

	

Pj
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= =1903
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3 30.

and the maximum spacing between cables is therefore 1000/3.30 = 303 mm.
A 4-strand tendon every 300 mm is specified with a jacking force per ten-

don of 1903 × 0.30 = 571 kN.
For this slab, provided the initial estimates of losses are correct, the 

properties of the uncracked cross-section can be used in all deflection cal-
culations, since stress limits have been selected to ensure that cracking 
does not occur either at transfer or under the full service loads. At transfer, 
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5.4.2  Load balancing

Using the load-balancing approach, the effective prestress after losses Pm,t 
and the eccentricity e are selected such that the transverse load imposed by 
the prestress wp balances a selected portion of the external load. The effective 
prestress Pm,t in a parabolic cable of drape e required to balance a uniformly 
distributed external load wb is obtained using Equation 1.7 as follows:
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Concrete stresses are checked under the remaining unbalanced service 
loads to identify regions of possible cracking and regions of high compres-
sion. Deflection under the unbalanced loads may need to be calculated and 
controlled. Losses are calculated and stresses immediately after transfer are 
also checked. Having determined the amount and layout of the prestressing 
steel (and the prestressing force) to satisfy serviceability requirements, the 
design for adequate strength can then proceed.

Ecm(t0) = 31,000 MPa, I = 1014 × 106 mm4/m and the uniformly distributed 
upward load caused by the parabolic tendons with drape equal to 0.0786 m 
is obtained from Equation 1.7 as follows:
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The resultant upward load is wp − wsw = 7.65 − 5.52 = 2.13 kN/m, and the ini-
tial deflection (camber) at mid-span at transfer (before any creep and shrink-
age deformations have taken place) is:
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This may or may not be acceptable depending on the serviceability (deflection) 
requirements for the slab.

To complete this design, the effects of creep and shrinkage will need to be 
considered under permanent loads. The final long-term deflections will need 
to be calculated and checked against the deflection criteria, and the actual 
long-term losses must be checked. A reliable procedure for undertaking 
the long-term deflection calculations is outlined in Section 5.11.4. Of course, the 
ultimate strength in bending and in shear will also need to be checked and 
the anchorage zones must be designed.
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Load balancing is widely used for the design of indeterminate members 
and also for simple determinate beams and slabs. It is only strictly appli-
cable, however, prior to cracking when the member behaves linearly and 
the principle of superposition, on which load balancing relies, is valid.

EXAMPLE 5.2

Reconsider the 12 m span, 230 mm thick one-way slab of Example 5.1 and 
determine the prestress required to balance the slab self-weight (5.52 kN/m2). 
The parabolic tendons have zero eccentricity at each support and e = 78.6 mm 
at mid-span. As in Example 5.1, time-dependent losses at mid-span are 
assumed to be 15% and the instantaneous losses between mid-span and the 
jacking end are taken to be 8%.

With wb = 5.52 kN/m2 and e = 0.0786 m, Equation 5.9 gives:
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The prestressing force at mid-span immediately after transfer and the jacking 
force are:
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As in Example 5.1, the maximum jacking force in a duct containing four 
12.9 mm diameter strands is 4 × 0.9 fp0.1kAp = 576 kN and so the required 
maximum duct spacing is 356 mm.

Using a four-strand tendon every 350 mm, the jacking force per tendon is:

	 1616 × 0.35 = 566 kN

In Example 5.1, the tensile stress limit under full loads was fct,t = 1.75 MPa. 
In this example, the prestress is significantly lower and, therefore, fct,t will 
be exceeded. Assuming gross cross-sectional properties, the bottom fibre 
stress at mid-span after all losses and under the full service loads, i.e. when 
MT = 189.4 kNm/m (see Example 5.1), is:
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5.5  CABLE PROFILES

When the prestressing force and eccentricity are determined at the critical 
sections, the location of the cable at every section along the member must 
be specified. For a member that has been designed using concrete stress 
limits, the tendons may be located so that the stress limits are satisfied on 
every cross-section. Equations 5.3 through 5.6 may be used to establish a 
range of values for eccentricity at any particular cross-section that satisfies 
the selected stress limits.

At any cross-section, if Mo and MT are the moments caused by the exter-
nal loads at transfer and under full service loads, respectively, and Pm0 and 
Pm,t are the prestressing forces before and after time-dependent losses at the 
same section, the extreme fibre stresses must satisfy the following:
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Equations 5.10 through 5.13 are equivalent to Equations 5.3 through 5.6 
and can be rearranged to provide limits on the tendon eccentricity, as 
follows:

	
e

M
P

Z f
P

≤ + +0

m0

top ct,0

m0 top

1
α

	 (5.14)

and this will almost certainly cause cracking. The resulting loss of stiffness 
must be included in subsequent deflection calculations using the procedures 
outlined in Sections 5.11.3 and 5.11.4. In addition, the smaller quantity of 
prestressing steel required in this example, in comparison with the slab 
in Example 5.1, will result in reduced flexural strength. A layer of non-
prestressed bottom reinforcement may be required to satisfy strength 
requirements.



Design for serviceability  117

	
e

M
P

Z f
P

≤ − −0

m0

btm cc,0

m0 btm

1
α

	 (5.15)
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It should be remembered that fcc,0 and fcc,t are negative numbers and that 
αtop = A/Ztop and αbtm = A/Zbtm.

After Pm0 and Pm,t have been determined at the critical sections, the fric-
tion, draw-in and time-dependent losses along the member are estimated 
(see Sections 5.10.2 and 5.10.3), and the corresponding prestressing forces 
at intermediate sections are calculated. At each intermediate section, the 
maximum eccentricity that will satisfy both stress limits at transfer is 
obtained from either Equation 5.14 or 5.15. The minimum eccentricity 
required to satisfy the tensile and compressive stress limits under full loads 
is obtained from either Equation 5.16 or 5.17. A region of the member is 
thus established in which the line of action of the resulting prestressing 
force should be located. Such a permissible region is shown in Figure 5.3. 
Relatively few intermediate sections need to be considered to determine an 
acceptable cable profile.

When the prestress and eccentricity at the critical sections are selected 
using the load-balancing approach, the cable profile should match, as 
closely as practicable, the bending moment diagram caused by the balanced 
load. For cracked, partially prestressed members, Equations 5.14 and 5.15 
are usually applicable and allow the maximum eccentricity to be defined. 
The cable profile should then be selected according to the loading type and 
the bending moment diagram.

Permissible region

Equations 5.16 and 5.17

Equations 5.14 and 5.15

Figure 5.3 � Typical permissible region for determination of cable profile.
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5.6 � SHORT-TERM ANALYSIS OF UNCRACKED 
CROSS-SECTIONS

5.6.1  General

The short-term behaviour of an uncracked prestressed concrete cross-
section can be determined by transforming the bonded reinforcement into 
equivalent areas of concrete and performing an elastic analysis on the equiv-
alent concrete section. The concrete is assumed to be linear-elastic in both 
tension and compression, and so too is the non-prestressed reinforcement 
and the prestressing tendons. The following mathematical formulation of 
the short-term analysis of an uncracked cross-section forms the basis of 
the time-dependent analysis described in Section 5.7 and was described by 
Gilbert and Ranzi [6]. The procedure can be applied to cross-sections with 
a vertical axis of symmetry, such as those shown in Figure 5.4.

The contribution of each reinforcing bar or bonded prestressing tendon is 
included in the calculations according to its location within the cross-section, 
as shown in Figure 5.5. The numbers of layers of non-prestressed and pre-
stressed reinforcement are ms and mp, respectively. In Figure 5.5b, ms = 3 
and mp = 2. The properties of each layer of non-prestressed reinforcement 
are defined by its area, elastic modulus and location with respect to the 
arbitrarily chosen x-axis and are labelled as As(i), Es(i) and ys(i), respectively, 
where i = 1, …, ms. Similarly, Ap(i), Ep(i) and yp(i) represent, respectively, the 
area, elastic modulus and location of the prestressing steel with respect to 
the x-axis and i = 1, …, mp.

The geometric properties of the concrete part of the cross-section are Ac, 
Bc and Ic, where Ac is the concrete area, Bc is the first moment of area of the 
concrete about the x-axis and Ic is the second moment of area of the con-
crete about the x-axis. In this analysis, the orientation of the x- and y-axes 
is as shown in Figure 5.5.

If the cross-section is subjected to an axial force Next applied at the origin 
of the x- and y-axes and a bending moment Mext applied about the x-axis, 

Typical non-prestressed 
steel reinforcement

Typical prestressed 
steel reinforcement

Figure 5.4 � Typical reinforced and prestressed concrete sections.
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the strain diagram is as shown in Figure 5.5c and the strain at any depth y 
above the reference axis is given by:

	 ε ε κ= −r y 	 (5.18)

The two unknowns in the problem, i.e. εr and κ, are then determined by 
enforcing horizontal and rotational equilibrium at the cross-section:

	 N Nint = ext	 (5.19)

and

	 M Mint = ext	 (5.20)

where Nint and Mint are the internal axial force and moment, respectively, 
given by:

	
N A

A

int d= ∫σ 	 (5.21)

and

	
M y A

A

int d= −∫ σ 	 (5.22)

When the two unknowns (εr and κ) are calculated from the two equilibrium 
equations (Equations 5.19 and 5.20) and the strain is determined using 

(a) (b)

Concrete

Non-prestressed steel
reinforcement

ds(2)

dp(1)
dp(2)

yp(1)
yp(2)

ys(3)
ds(3)

ds(1)

ys(1) As(1)
As(2)

Ap(1)
Ap(2)

As(3)

ys(2)

Ac, Bc, Ic

Prestressed steel 
reinforcement

Non-prestressed 
steel reinforcement

x

y εr

κ

(c)

Figure 5.5 � Generic cross-section, arrangement of reinforcement and strain. (a) Cross-
section. (b) Reinforcement bar and tendon areas (As(i) and Ap(i)) located ys(i) 
and yp(i) from the reference axis (x-axis). (c) Strain.
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Equation 5.18, the stresses in the concrete and steel may be obtained from 
the appropriate constitutive relationships. The internal actions are then 
readily determined from the stresses using Equations 5.21 and 5.22.

This procedure forms the basis of both the short-term analysis presented 
in the remainder of this section and the long-term analysis presented in 
Section 5.7.

5.6.2  Short-term cross-sectional analysis

In order to determine the stresses and deformations immediately after first 
loading or immediately after transfer at t0, linear-elastic stress–strain rela-
tionships for the concrete and the steel are usually adopted and these can 
be expressed by:

	 σ εc,0 cm,0= E 0	 (5.23)

	 σ εs( ) s( ) s( )i i iE, ,0 0= 	 (5.24)

	 σ ε εp( ) p( ) cp( p init pif is bondedi i i i iE A, ), ( ), ( )( )0 0= + 	 (5.25)

	 σ εp( ) p( ) p init ( )pif is unbondedi i i iE A, ( ),0 = 	 (5.26)

in which σc,0, σs(i),0 and σp(i),0 represent the stresses in the concrete, in the 
i-th layer of non-prestressed reinforcement (with i = 1, …, ms) and in the i-th 
layer of prestressing steel (with i = 1, …, mp), respectively, immediately after 
first loading at time t0, while εcp(i),0 is the strain in the concrete at the level of 
the i-th layer of prestressing steel at time t0 and εp(i),init is the initial strain 
in the i-th layer of prestressing steel produced by the initial tensile prestress-
ing force Pinit(i) and is given by:

	
εp init

init

p( ) p( )
( ),

( )
i

i

i i

P
A E

= 	 (5.27)

For a post-tensioned cross-section, Pinit(i) is the prestressing force immedi-
ately after stressing the tendon in the i-th layer of prestressing steel and, 
for a pretensioned member, Pinit(i) is the prestressing force immediately 
before transfer. With this method, the prestressing force is included in 
the analysis by means of an induced strain εp(i),init, rather than an external 
action [7,8].

For unbonded tendons, Equation 5.26 is strictly only applicable imme-
diately before transfer. After transfer, as the beam deforms under load, the 
strain in the tendon will increase. However, at service loads, the change 
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in geometry of the member is relatively small and the resulting change in 
the tendon strain is usually less than 0.5% of εp(i),init and can be ignored.

At time t0, the internal axial force resisted by the cross-section and the 
internal moment about the reference axis are denoted Nint,0 and Mint,0, 
respectively. The internal axial force Nint,0 is the sum of the axial forces 
resisted by the component materials forming the cross-section and is 
given by:

	 N N N Nint, , , ,0 0 0 0= + +c s p 	 (5.28)

where Nc,0, Ns,0 and Np,0 represent the axial forces resisted by the concrete, 
the non-prestressed reinforcement and the prestressing steel, respectively. 
The axial force resisted by the concrete is calculated from:
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The axial force resisted by the non-prestressed steel is:
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(5.30)

and the axial force resisted by the prestressing steel, if bonded, is given in 
Equation 5.31 and, if unbonded, may be approximated by Equation 5.32:
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The additional subscripts ‘0’ used for the strain at the level of the reference 
axis (εr,0) and the curvature (κ0) highlight that these are calculated at time t0 
immediately after the application of Next,0 and Mext,0 and after the transfer 
of prestress.
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By substituting Equations 5.29 through 5.32 into Equation 5.28, the 
equation for Nint,0 is expressed in terms of the actual geometry and elastic 
moduli of the materials forming the cross-section.

When the prestressing steel is bonded to the concrete:
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(5.33)

When the prestressing steel is unbonded:

	

N A E A E B E y Ai i

i

m

iint, , ( ) ( ) , , ( )0 0

1

0 0= +












− +
=
∑c cm s s r c cm s

s

ε ss s

p p p init

A

s

p

( ) ( )

( ) ( ) ( ),

i i

i

m

i i i

i

m

E

A E

R

=

=

∑

∑













+ ( )

=

1

0

1

κ

ε

,, , , ( ) ( ) ( ),( )0 0 0 0

1

ε κ εr B p p p init

p

− +
=
∑R A Ei i i

i

m

	 (5.34)

In Equations 5.33 and 5.34, RA,0 and RB,0 represent, respectively, the axial 
rigidity and the stiffness related to the first moment of area about the refer-
ence axis calculated at time t0 and, for a cross-section containing bonded 
tendons, are given by:
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For unbonded construction, the contribution of the prestressing steel Ap(i) 
to the rigidities RA,0 and RB,0 is ignored.
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Similarly, the equation for Mint,0 may be expressed by Equations 5.37 and 
5.38. When the prestressing steel is bonded to the concrete:

M B E y A E y A Ei i i

i

m

i i i

i

m

int, , ( ) ( ) ( ) ( ) ( ) ( )0 0

1 1

= − + +
= =
∑c cm s s s p p p

s p

∑∑

∑













+ + +
=

εr

c cm s s s p p

s

,

, ( ) ( ) ( ) ( ) ( )

0

0
2

1

2I E y A E y A Ei i i

i

m

i i pp p p p p init

p p

( ) ( ) ( ) ( ) ( ),( )i

i

m

i i i i

i

m

y A E

R

= =
∑ ∑













−

= −

1

0

1

κ ε

BB,0 r I p p p p init

p

ε κ ε, , ( ) ( ) ( ) ( ),( )0 0 0

1

+ −
=
∑R y A Ei i i i

i

m
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When the prestressing steel is not bonded to the concrete:
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in which RI,0 is the flexural rigidity at time t0 and, for a cross-section con-
taining bonded tendons, is given by:
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For unbonded construction, the contribution of the prestressing steel Ap(i) 
to the flexural rigidity RI,0 is ignored.

Substituting the expressions for Nint,0 and Mint,0 (Equation 5.33 or 5.34 
and Equation 5.37 or 5.38) into Equations 5.19 and 5.20 produces a system 
of equilibrium equations that may be written in compact form as follows:

	 r D fext p,init,0 0 0= +εε 	 (5.40)

where:
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The vector rext,0 is the vector of the external actions at first loading (at 
time t0), i.e. axial force Next,0 and moment Mext,0; the matrix D0 contains 
the cross-sectional material and geometric properties calculated at t0; the 
strain vector ε0 contains the unknown independent variables describing the 
strain diagram at time t0 (εr,0 and κ0); the vector fp,init contains the actions 
caused by the initial prestressing.

The vector ε0 is readily obtained by solving the equilibrium equations 
(Equation 5.40):

	 εε0 0
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The stress distribution related to the concrete and reinforcement can then 
be calculated from the constitutive equations (Equations 5.23 through 
5.26) re-expressed here as:

	 σ εc cm cm, , , [ ]0 0 0 0 01= = −E E y εε 	 (5.47)

	 σ εs( ) s( ) s( ) s( ) si i i i iE E y, , ( )[ ]0 0 01= = − εε 	 (5.48)

If Ap(i) is bonded:
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If Ap(i) is unbonded:

	 σ εp( ) p( ) p( ) initi i iE, ,0 = 	 (5.50)

where ε ε κ0 0 0 01= − = −r, [ ]y y εε .
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Although this procedure is presented here assuming linear-elastic mate-
rial properties, it is quite general and also applicable to non-linear mate-
rial representations, in which case the integrals of Equations 5.21 and 
5.22 might have to be evaluated numerically. However, when calculating 
the short-term response of uncracked reinforced and prestressed concrete 
cross-sections under typical in-service loads, material behaviour is essen-
tially linear-elastic.

In reinforced and prestressed concrete design, it is common to calculate 
the cross-sectional properties by transforming the section into equivalent 
areas of one of the constituent materials. For example, for the cross-section 
of Figure 5.5a, the transformed concrete cross-section for the short-term 
analysis is shown in Figure 5.6, with the area of each layer of bonded steel 
reinforcement and tendons (As(i) and Ap(i), respectively) transformed into 
equivalent areas of concrete (αs(i),0 As(i) and αp(i),0 Ap(i), respectively), where 
αs(i),0 = Es(i)/Ecm,0 is the modular ratio of the ith layer of non-prestressed steel 
and αp(i),0 = Ep(i)/Ecm,0 is the modular ratio of the ith layer of prestressing 
steel.

For the transformed section of Figure 5.6, the cross-sectional rigidities 
defined in Equations 5.35, 5.36 and 5.39 can be recalculated as:

	 R A EA,0 cm= 0 0, 	 (5.51)

	 R B EB,0 cm= 0 0, 	 (5.52)

	 R I EI,0 cm= 0 0, 	 (5.53)

where A0 is the area of the transformed concrete section, and B0 and I0 are 
the first and second moments of the transformed area about the reference 
x-axis at first loading.

(αs(3),0 – 1)As(3)

(αp(2),0 – 1)Ap(2)

(αp(1),0 – 1)Ap(1)

(αs(1),0 – 1)As(1)

(αs(2),0 – 1)As(2)

if bonded

x

y

Figure 5.6 � Transformed section with bonded reinforcement transformed into equiva-
lent areas of concrete.
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Substituting Equations 5.51 through 5.53 into Equation 5.46 enables F0 to 
be expressed in terms of the properties of the transformed concrete section as
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The two approaches proposed for the calculation of the cross-sectional 
rigidities, i.e. the one based on Equations 5.35, 5.36 and 5.39 and the other 
using the properties of the transformed section (Equations 5.51 through 
5.53), are equivalent. The procedure based on the transformed section 
(Equations 5.51 through 5.53) is often preferred for the analysis of rein-
forced and prestressed concrete sections. The use of both approaches is 
illustrated in the following example.

EXAMPLE 5.3

The short-term behaviour of the post-tensioned beam cross-section shown 
in Figure 5.7a is to be determined immediately after transfer (at time t0). The 
section contains a single unbonded cable, containing ten 12.9 mm diameter 
strands (from Table 4.8, Ap = 1000 mm2 and fpb = 1870 MPa) located within 
a 60 mm diameter duct, and two layers of non-prestressed reinforcement. 
The force in the prestressing steel is Pm0 = Pinit = 1350 kN, and the external 
moment acting on the cross-section at transfer is Mo = 100 kNm (=Mext). The 
elastic moduli for concrete at transfer and the steel are Ecm,0 = 30,000 MPa, 
Es = 200,000 MPa and Ep = 195,000 MPa, from which αs = Es/Ecm,0 = 6.67 and 
αp = Ep/Ecm,0 = 6.5.

60

b = 300

h = 800

60

600

200
740 x

60

60
(a) (b)

400

400

y
As(1) = 900 mm2

(αs–1)As(2) = 10200 mm2

(αs–1)As(1) = 5100 mm2

Hole = 2830 mm2

Ap = 1000 mm2

As(2) = 1800 mm2

Mext
y

x

All dimensions in mm.

Figure 5.7 � Post-tensioned cross-section (Example 5.3). (a) Section. (b) Transformed 
section.
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In this example, the reference x-axis is taken at mid-depth. The trans-
formed section is shown in Figure 5.7b. Because the prestressing steel is not 
bonded to the concrete, it does not form part of the transformed section. In 
addition, the hole created in the concrete section by the hollow duct must 
also be taken into account. The properties of the transformed section with 
respect to the reference x-axis are:
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From Equation 5.54:
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From Equation 5.41, the vector of internal actions is:
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and from Equation 5.27, the initial strain in the prestressing steel due to the 
initial prestressing force is:

	
εp init

init

p p
,

,
, ,

.= = ×
×

=P
A E

1350 10
1 000 195 000

0 00692
3

The vector of internal actions caused by the initial prestress fp,init, containing 
the initial prestressing force (Pinit = Ap Ep εp,init) and its moment about the ref-
erence x-axis (−yp Pinit = −yp Ap Ep εp,init), is given by Equation 5.44:
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where the dimension yp is the distance from the x-axis to the centroid of 
the prestressing steel, i.e. yp = 200 mm in this example. The strain vector ε0 
containing the unknown strain variables is determined from Equation 5.45:
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The strain at the reference axis and the curvature are therefore:

	 εr,0 = −176.5 × 10−6  and  κ0 = −0.3778 × 10−6 mm−1

and, from Equation 5.18, the top fibre strain (at y = +400 mm) and the bottom 
fibre strain (at y = −400 mm) are:

	� ε0(top) = εr,0 − 400 × κ0 = [−176.5 − 400 × (−0.3778)] × 10−6

	 = −25.4 × 10−6

	� ε0(btm) = εr,0 − (−400) × κ0 = [−176.5 + 400 × (−0.3778)] × 10−6 

	 = −327.6 × 10−6

The top and bottom fibre stresses in the concrete and the stresses in the 
two layers of reinforcement and in the prestressing steel are obtained from 
Equations 5.47 through 5.50:

σ εc (top) cm top cm 0(top) ,, , ,[ ] ( . )0 0 0 0
61 30 000 25 4 10= − = = × − × −E y Eεε == −0 76. MPa

σ εc (btm) cm btm cm 0(btm), , ,[ ] , ( .0 0 0 0
61 30 000 327 6 10= − = = × − × −E y Eεε )) .= −9 83 MPa
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The distributions of strain and stress on the cross-section immediately after 
transfer are shown in Figure 5.8.

Alternatively, instead of analysing the transformed cross-section, the cross-
sectional rigidities could have been calculated using Equations 5.35, 5.36 and 
5.39. The properties of the concrete part of the cross-section (with respect 
to the x-axis) are:

	 Ac = bh − As(1) − As(2) − Ahole

	 = 300 × 800 − 900 − 1800 − 2830 = 234,470 mm2

	 Bc = bhyc − As(1)ys(1) − As(2)ys(2) − Aholeyhole

	� = 300 × 800 × 0 − 900 × 340 − 1800 × (−340) − 2830 × (−200)

	 = 872,000 mm3

b = 300

h = 800

(a) (b) (c)

–25.4 –0.76
σs(1) = –9.61

σc,0

σp,0 = 1350

σs(2) = –61.0

κ0 = –0.3778 × 10–6

mm–1

–327.6 –9.83

Figure 5.8 � Strains and stresses immediately after transfer (Example 5.3). 
(a) Section. (b) Strain (×10−6). (c) Stress (MPa).
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	 I bh bhy A A Ay y yc c s s= + − − −3 2
1 212/ s(1)

2
s(2)
2

hole
2

hole( ) ( )

	� = �300 × 8003/12 + 300 × 800 × 0 − 900 × 3402− 1800 × (−340)2 

− 2830 × (−200)2

	 = 12,375 × 106 mm4

For this member with unbonded tendons, the cross-sectional rigidities are 
given by:
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and from Equation 5.46:
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This is identical to the matrix F0 obtained earlier from Equation 5.54.
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EXAMPLE 5.4

Determine the instantaneous stress and strain distributions on the precast 
pretensioned concrete section shown in Figure 5.9. The area and the second 
moment of area of the gross cross-section about the centroidal axis are Agross = 
317 × 103 mm2 and Igross = 49,900 × 106 mm4. The centroid of the gross cross-
sectional area is located 602 mm below its top fibre, i.e. dc = 602 mm.

The section is subjected to a compressive axial force Next,0 = −100 kN and 
a sagging moment of Mext,0 = +1000 kNm applied with respect to the refer-
ence x-axis, that is taken in this example to be 300 mm below the top fibre 
of the cross-section.

Assume that all materials are linear-elastic with Ecm,0 = 32,000 MPa, 
Es = 200,000 MPa and Ep = 195,000 MPa. The modular ratios of the rein-
forcing steel and the prestressing steel are therefore αs(i),0 = 6.25 and αp(i),0 = 
6.09. The prestressing forces in each of the three layers of tendons (Ap(1) = 
300 mm2, Ap(2) = 500 mm2 and Ap(3) = 800 mm2, respectively) just before the 
transfer of prestress are Pinit(1) = 375 kN, Pinit(2) = 625 kN and Pinit(3) = 1000 kN.

The distances of the steel layers from the reference axis are ys(1) = +240 mm, 
ys(2) = −790 mm, yp(1) = −580 mm, yp(2) = −645 mm and yp(3) = −710 mm. From 
Equation 5.27, the initial strains in the prestressing steel prior to the transfer 
of prestress to the concrete are:

	
εp(1) init

init(1)

p(1) p ,
, .= = ×

×
=

P
A E

375 10
300 195 000

0 00641
3

y

All dimensions in mm.

x

h = 1150

ds(2) = 1090

dp(3) = 1010

ds(1) = 60

dp(2) = 945

As(1) = 900 mm2

Ap(1) = 300 mm2

Ap(2) = 500 mm2

Ap(3) = 800 mm2

As(2) = 1800 mm2

dref = 300

dc = 602

dp(1) = 880
Centroidal axis of

precast
concrete I-girder 

302

Figure 5.9 � Precast prestressed concrete section (Example 5.4).
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From Equation 5.41, the vector of internal actions at first loading is:
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and, from Equation 5.44, the vector of initial prestressing forces is:
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With the centroid of the concrete cross-section 302 mm below the refer-
ence axis (i.e. yc = −302 mm), the properties of the transformed section (with 
the steel transformed into equivalent areas of concrete) with respect to the 
reference x-axis are:
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From Equation 5.54:
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and the strain vector ε0 containing the unknown strain variables is deter-
mined from Equation 5.45:
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The strain at the reference axis and the curvature are therefore:

	 εr,0 = −254.1 × 10−6  and  κ0 = +0.1916 × 10−6 mm−1

and, from Equation 5.18, the top fibre strain (at y = +300 mm) and the bottom 
fibre strain (at y = −850 mm) are:

	 ε0(top) = εr,0 − 300 × κ0 = (−254.1 − 300 × 0.1916) × 10−6 = −311.6 × 10−6

	 ε0(btm) = εr,0 − (−850) × κ0 = (−254.1 + 850 × 0.1916) × 10−6 = −91.2 × 10−6
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The top and bottom fibre stresses in the concrete and the stresses in the 
two layers of reinforcement and in the prestressing steel are obtained from 
Equations 5.47 through 5.49:

	 σ εc (top) cm 0(top) MPa, , , ( . ) .0 0
632 000 311 6 10 9 97= = × − × = −−E  
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The distributions of strain and stress on the cross-section immediately after 
transfer are shown in Figure 5.10.

As already outlined in Example 5.3, the cross-sectional rigidities 
included in F0 can also be calculated using Equations 5.35, 5.36 and 5.39. 
The properties of the concrete part of the cross-section (with respect to 
the x-axis) are:

	 Ac = Agross − As(1) − As(2) − Ap(1) − Ap(2) − Ap(3) = 312,700 mm2

	 Bc �= Agross yc − As(1)ys(1) − As(2)ys(2) − Ap(1)yp(1) − Ap(2)yp(2) − Ap(3)yp(3)

	  = −93.46 × 106 mm3
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For this member with bonded tendons, Equations 5.35, 5.36 and 5.39 give:
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and from Equation 5.46:
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This is identical to the matrix F0 obtained earlier from Equation 5.54.

y
–311.6

–91.2 –2.92

–9.97
σs1 = –60.0

σp1 = +1222.1

κ0 = +0.1916 × 10–6 mm–1

σp2 = +1224.6
σp3 = +1227.0

σs2 = –20.5

x

(a) (b) (c)

Figure 5.10 � Strain and stress diagrams (Example 5.4). (a) Cross-section. (b) Strain 
(×10−6). (c) Stress (MPa).
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5.7 � TIME-DEPENDENT ANALYSIS OF UNCRACKED 
CROSS-SECTIONS

5.7.1  Introduction

The time-dependent deformation of a prestressed member is greatly affected 
by the quantity and location of the bonded reinforcement (both conven-
tional non-prestressed reinforcement and tendons). Bonded reinforcement 
provides restraint to the time-dependent shortening of concrete caused by 
creep and shrinkage. As the concrete creeps and shrinks, the reinforcement 
is gradually compressed. An equal and opposite tensile force is applied to 
the concrete at the level of the bonded reinforcement, thereby reducing the 
compression caused by prestress. It is the tensile forces that are applied 
gradually at each level of bonded reinforcement that results in significant 
time-dependent changes in curvature and deflection. A reliable estimate of 
these forces is essential if meaningful predictions of long-term behaviour 
are required.

Procedures specified in codes of practice for predicting losses of prestress 
due to creep and shrinkage are usually too simplified to be reliable and 
often lead to significant error, particularly for members containing non-
prestressed reinforcement. In the following section, a simple analytical 
technique is presented for estimating the time-dependent behaviour of a 
general prestressed cross-section of any shape and containing any number 
of levels of prestressed and non-prestressed reinforcement. The procedure 
has been described in more detail in Gilbert and Ranzi [6] and makes use 
of the age-adjusted effective modulus method (AEMM) to model the effects 
of creep in concrete.

5.7.2  The age-adjusted effective modulus method

The age-adjusted effective modulus for concrete is often used to account for 
the creep strain that develops in concrete due to a gradually applied stress 
and was introduced in Section 4.2.4.3 (see Equations 4.22 through 4.25). 
The stress history shown in Figure 5.11 is typical of the change in stress 

Time

Stress

σc(t0)
σc(tk) = σc(t0)+∆σc(tk)

∆σc(tk)

σc(tk)

tkt0

Figure 5.11 � A gradually reducing stress history.
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that occurs with time at many points in a reinforced or prestressed concrete 
member containing bonded reinforcement (or other forms of restraint) 
when the member is subjected to a constant sustained load.

For concrete subjected to the stress history of Figure 5.11, the total strain 
at time tk may be expressed as the sum of the instantaneous and creep 
strains produced by σc(t0) (see Equation 4.22), the instantaneous and 
creep strains produced by the gradually applied stress increment Δσc(tk) 
(see Equation 4.24) and the shrinkage strain as follows:
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where Ec,eff(tk,t0) is the effective modulus (Equation 4.23) and E t tc,eff k( , )0  is 
the age-adjusted effective modulus (Equation 4.25), both reproduced here 
for convenience:
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In the remainder of this chapter, the simplified notations Ec,eff and Ec,eff  will 
be used instead of Ec,eff(tk,t0) and E t tc,eff k( , )0 , respectively.

For members subjected to constant sustained loads, where the change in 
concrete stress is caused by the restraint to creep and shrinkage provided 
by bonded reinforcement, the ageing coefficient may be approximated by 
χ(tk,t0) = 0.65, when tk exceeds about 100 days [6].

Equation 5.55 can be written in terms of the concrete stress at first load-
ing, i.e. σc(t0) (=σc,0), and the concrete stress at time tk, i.e. σc(tk) (=σc,k), as 
follows:
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and rearranging Equation 5.58 gives:

	 σ ε ε σc,k c,eff k cs,k c,0 e= − +E F( ) ,0	 (5.59)



138  Design of Prestressed Concrete to Eurocode 2

where:
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Equation 5.59 is a stress–strain time relationship for concrete and can be 
conveniently used to determine the long-term deformations of a wide vari-
ety of concrete structures. The method of analysis is known as the age-
adjusted effective modulus method [6].

5.7.3 � Long-term analysis of an uncracked 
cross-section subjected to combined 
axial force and bending using AEMM

Cross-sectional analysis using Equation 5.59 as the constitutive relation-
ship for concrete provides an effective tool for determining how stresses 
and strains vary with time due to creep and shrinkage of the concrete and 
relaxation of the prestressing steel. For this purpose, two instants in time 
are identified, as shown in Figure 5.12. One time instant is the time at first 
loading, i.e. t = t0, and the other represents the instant in time at which 
stresses and strains need to be evaluated, i.e. t = tk. It is usually convenient 
to measure time in days starting from the time when concrete is poured.

During the time interval Δtk (= tk − t0), creep and shrinkage strains develop 
in the concrete and relaxation occurs in the tendons. The gradual change of 
concrete strain with time causes change of stress in the bonded reinforce-
ment. In general, as the concrete shortens due to compressive creep and 
shrinkage, the reinforcement is compressed and there is a gradual increase 
in the compressive stress in the non-prestressed reinforcement and a grad-
ual loss of prestress in any bonded tendons. To maintain equilibrium, the 
gradual change of force in the steel at each bonded reinforcement level is 
opposed by an equal and opposite restraining force on the concrete, as 
shown in Figure 5.13.

These gradually applied restraining forces (ΔFct.s(i) and ΔFct.p(i)) are usu-
ally tensile and, for a prestressed or partially prestressed cross-section, tend 

Concrete
pour

First
loading

Duration of load (∆tk = tk – t0)

Time instant at which
stresses and deformations are sought

tk Time (t)t0t = 0

Figure 5.12 � Relevant instants in time (AEMM).
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to relieve the concrete of its initial compression. The loss of prestress in the 
concrete is therefore often significantly more than the loss of prestress in 
the tendons.

The resultants of the creep- and shrinkage-induced internal restraining 
forces on the concrete are an increment of axial force ΔN(tk) and an incre-
ment of moment about the reference axis ΔM(tk) given by:
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and
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Equal and opposite actions, i.e. −ΔN(tk) and −ΔM(tk), are applied to the 
bonded steel parts of the cross-section.

The strain at time tk at any distance y from the reference axis (i.e. the 
x-axis in Figure 5.13) may be expressed in terms of the strain at the refer-
ence axis εr,k and the curvature κk:

	 εk = εr,k − y κk	 (5.63)

The magnitude of the change of strain Δεk (=εk − ε0) that occurs with 
time at any point on the cross-section is the sum of each of the following 
components:

	 a.	the free shrinkage strain εcs(tk) = εcs,k (which is usually considered to 
be uniform over the section);

Section

ys(2)

Elevation Restraining
forces

Strain

∆εr,kεr,0

εr,ky

x

yp(2)
yp(1)

∆Fct.s(1)

t0

κ0

κk

Time (tk)∆Fct.p(1)

∆Fct.p(2)
∆Fct.s(2)

ys(1)

Figure 5.13 � Time-dependent actions and deformations.
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	 b.	the unrestrained creep strain caused by the initial concrete stress σc,0 
existing at the beginning of the time period, i.e. εcr,k = φ(tk,t0) σc,0/Ecm,0;

	 c.	the creep and elastic strain caused by ΔN(tk) and ΔM(tk) gradually 
applied to the concrete cross-section throughout the time period.

In the time analysis to determine stresses and deformations at tk, the steel 
reinforcement and prestressing tendons are assumed to be linear-elastic (as 
for the short-term analysis) and the constitutive relationship for the con-
crete is that given by Equation 5.59. The stress–strain relationships for each 
material at t0 and at tk are therefore as follows:

At t0:

Concrete: σc,0 = Ecm,0ε0 (5.64)
Steel reinforcement: σs(i),0 = Es(i)εs(i),0 (5.65)
Tendons:

	 Bonded: σp(i),0 = Ep(i)(εcp(i),0 + εp(i),init) (5.66)
	 Unbonded: σp(i),0 = Ep(i) εp(i),init (5.67)

At tk:

Concrete: σ ε ε σc,k c,eff k cs,k e c= − +E F( ) , ,0 0 (5.68)
Steel reinforcement: σs(i),k = Es(i)εs(i),k (5.69)
Pretensioned or post-tensioned tendons bonded at t0: 
	 σp(i),k = Ep(i)(εcp(i),k + εp(i),init − εp.rel(i),k) (5.70)
Post-tensioned tendons unbonded at t0:
	 Bonded: σp(i),k = Ep(i)(εcp(i),k − εcp(i),0 + εp(i),init − εp.rel(i),k) (5.71)
	 Unbonded: σp(i),k = Ep(i)(εp(i),init − εp.rel(i),k) (5.72)

where Fe,0 is given by Equation 5.60 and Ec,eff is the age-adjusted effective mod-
ulus at t = tk (Equation 5.57). For a pretensioned tendon, the strain at time tk 
is the concrete strain at the tendon level (εcp(i),k) plus the tensile strain in the 
tendon prior to transfer (εp(i),init) minus the tensile relaxation strain (εp.rel(i),k). 

For a bonded post-tensioned tendon (initially unbonded at t0), the strain 
at time tk is the change in concrete strain at the level of the tendon during 
the time interval t0 to tk (i.e. εcp(i),k − εcp(i),0) plus the tensile strain in the 
tendon prior to transfer (εp(i),init) minus the tensile relaxation strain (εp.rel(i),k). 
For an unbonded post-tensioned tendon, slip occurs between the tendon 
and the concrete as the concrete deforms with time and the tendon strain at 
time tk is the tensile strain in the tendon prior to transfer (εp(i),init) minus the 
tensile relaxation strain (εp.rel(i),k). 

The relaxation strain εp.rel(i),k is the tensile creep strain that has developed 
in the i-th prestressing tendon at time tk and may be calculated from:
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where φp(i) is the creep coefficient for the prestressing steel at time tk due 
to an initial stress σp(i),init in the ith prestressing tendon just after anchoring 
(given as φp(t,σpi) in Table 4.9).

The governing equations describing the long-term behaviour of a cross-
section are obtained by enforcing equilibrium at the cross-section at time 
tk following the approach already presented in the previous section for the 
instantaneous analysis at time t0 (Equations 5.23 through 5.54). Restating 
the equilibrium equations (Equations 5.19 and 5.20) at time tk gives:

	 r rext,k int,k= 	 (5.74)

where:
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and
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and Nint,k and Mint,k are the internal axial force and moment resisted by 
the cross-section at time tk, while Next,k and Mext,k are the external applied 
actions at this time. As in Equation 5.28, the axial force Nint,k is the sum of 
the axial forces carried by the concrete, reinforcement and tendons:

	 N N N Nint,k c,k s,k p,k= + + 	 (5.77)

Considering the time-dependent constitutive relationship for the concrete 
(Equation 5.68), the axial force resisted by the concrete at time tk can be 
expressed as:
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where εr,k and κk are the strain at the level of the reference axis and the curva-
ture at time tk, while Nc,0 is the axial force resisted by the concrete at time t0. 
For the time analysis, Nc,0 is assumed to be known having been determined 
from the instantaneous analysis and may be calculated from Equation 5.29.

Using the constitutive equation for the reinforcing steel (Equation 5.69), 
the force carried by the reinforcing bars at time tk is:
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The force carried by the tendons at time tk is determined using Equations 
5.70, 5.71 and 5.72, as appropriate. For pretensioned tendons and post-
tensioned tendons bonded at time t0:
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(5.80)

For bonded post-tensioned tendons unbonded at time t0:
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where εcp(i),0 is the strain in the concrete at the i-th level of post-tensioned 
tendon at time t0. For unbonded post-tensioned tendons:
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By substituting Equations 5.78 through 5.80 into Equation 5.77, the inter-
nal axial force in a pretensioned member (or in a member with post-tensioned 
tendons that were bonded at time t0) is given by:
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where the axial rigidity and the stiffness related to the first moment of area 
calculated at time tk have been referred to as RA,k and RB,k, respectively, and 
are given by:
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Similarly, for post-tensioned members with bonded tendons (unbonded at t0):
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and for post-tensioned members with unbonded tendons:
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For unbonded tendons, the contribution of the prestressing steel Ap(i) to the 
rigidities RA,k and RB,k is ignored, i.e. Ap(i) is set to zero in Equations 5.84 
and 5.85.

In a similar manner, the internal moment Mint,k resisted by the cross-
section at time tk in a pretensioned member or in a post-tensioned member 
with bonded tendons at t0 can be expressed as:
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where the flexural rigidity RI,k of the cross-section calculated at time tk is 
given by:
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and Mc,0 is the moment resisted by the concrete component at time t0. From 
the instantaneous analysis:
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Similarly, for bonded post-tensioned members (unbonded at t0):
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and for unbonded post-tensioned members:
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For unbonded tendons, the contribution of the prestressing steel Ap(i) to the 
rigidity RI,k is ignored, i.e. Ap(i) is set to zero in Equation 5.89.

After substituting Equations 5.86 and 5.91 into Equation 5.74, the equi-
librium equations at time tk for a post-tensioned member with bonded ten-
dons (unbonded at t0) may be written in compact form as:

	 r D f f f f fext,k k k cr,k cs,k p,init p.rel,k cp,0= + − + − −εε 	 (5.93)

where:
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The vector fcr,k represents a portion of the effects of creep produced by 
the initial stress σc,0 resisted by the concrete at time t0 and is given by:
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and Fe,0 is given in Equation 5.60. The vector fcs,k accounts for the uniform 
(unrestrained) shrinkage strain that develops in the concrete over the time 
period and is given by:
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The vector fp,init in Equation 5.93 accounts for the initial prestress and the 
vector fp.rel,k accounts for the resultant actions caused by the loss of pre-
stress in the tendon due to relaxation. These are given by:
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where Pinit(i) is the prestressing force at the time from which φp(i) is measured.
For a member with post-tensioned tendons that were unbonded at t0, the 

vector fcp,0 is given by:
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For a pretensioned member or a post-tensioned member with bonded ten-
dons at the time of the short-term analysis (t0), Equation 5.93 applies except 
that the vector fcp,0 is set to zero. For a post-tensioned member with all 
tendons unbonded throughout the time period t0 to tk, the vector fcp,0 in 
Equation 5.93 is also set to zero.

Equation 5.93 can be solved for εk as:
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where:

	
Fk

A,k I,k B,k

I,k B,k

B,k A,k
=

−










1
2R R R

R R

R R
	 (5.102)

The stress distribution in the concrete at time tk can then be calculated as:

	 σ ε ε σ ε σc,k c,eff k cs,k e,0 c,0 c,eff k cs,k e,0= − + = − − +E F E y F( ) {[ ] }1 εε cc,0	 (5.103)

where at any point y from the reference axis εk = εr,k−yκk = [1 − y]εk.
The stress in the non-prestressed reinforcement at time tk is:

	 σ εs k s( ) s( ),k s k( ), ( ) ( )[ ]i i i i s iE E y= = −1 εε 	 (5.104)

and the stress in any pretensioned tendons, or any post-tensioned tendons 
that were bonded to the concrete at the time of the short-term analysis (t0), is:
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For bonded post-tensioned tendons (initially unbonded at t0), the stress at 
time tk is:
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while for unbonded tendons:

	 σ ε εp( ),k p( ) p( ) init p.rel( ),ki i i iE= −( ), 	 (5.107)

The cross-sectional rigidities, i.e. RA,k, RB,k and RI,k, required for the 
solution at time tk can also be calculated from the properties of the age-
adjusted transformed section, obtained by transforming the bonded steel 
areas (reinforcement and tendons) into equivalent areas of the aged concrete 
at time tk, as follows:

	 R A EA,k k c,eff= 	 (5.108)

	 R B EB,k k c,eff= 	 (5.109)

	 R I EI,k k c,eff= 	 (5.110)
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where Ec,eff is the age-adjusted effective modulus, Ak is the area of the 
age-adjusted transformed section and Bk and Ik are the first and second 
moments of the area of the age-adjusted transformed section about the 
reference axis. For the determination of Ak, Bk and Ik, the areas of the 
bonded steel are transformed into equivalent areas of concrete by multiplying 
by the age-adjusted modular ratio αes ,k s c,eff/( ) ( )i iE E=  or αep( ),k p c,eff/i iE E= ( ) , as 
appropriate.

Based on Equations 5.108 through 5.110, the expression for Fk (in 
Equation 5.102) can be rewritten as:

	
Fk

c,eff k k k

k k

k k

=
−( )











1
2E A I B

I B

B A
	 (5.111)

The calculation of the time-dependent stresses and deformations using the 
earlier-mentioned procedure is illustrated in Examples 5.5 and 5.6.

EXAMPLE 5.5

For the post-tensioned concrete cross-section shown in Figure 5.7, the 
strain and stress distributions at t0 were calculated in Example 5.3, immedi-
ately after the transfer of prestress and the application of an external bend-
ing moment of Mext,0 = 100 kNm (see Figure 5.8). Soon after transfer, the 
post-tensioned duct was filled with grout, thereby bonding the tendon to 
the concrete and ensuring compatibility of concrete and steel strains at all 
times after t0. If the applied moment remains constant during the time inter-
val t0 to tk (i.e. Mext,k = Mext,0), calculate the strain and stress distributions at 
time tk using the AEMM.

As in Example 5.3, Ecm,0 = 30,000 MPa; Es = 200,000 MPa; Ep = 195,000 
MPa; αs,0 = Es/Ecm,0 = 6.67; αp,0 = Ep/Ecm,0 = 6.5; fpk = 1,860 MPa and, with Pm0 = 
1,350 kN, the initial strain in the tendon is εp,init = Pm0/(Ap Ep) = 0.00692.

Take φ(tk,t0) = 2.5, χ(tk,t0) = 0.65, εcs(tk) = −600 × 10−6 and (from Table 4.9, 
with a Class 2 low-relaxation strand stressed to σpi = Pm0/Ap = 1350 MPa = 
0.726 fpk) φp = 0.0459.

From Example 5.3, the strain at the reference axis and the curvature at t0 are:

	 εr,0 = −176.5 × 10−6  and  κ0 = −0.3778 × 10−6 mm−1

and the strain in the concrete at the tendon level at t0 before the tendon is 
grouted is:

	 εcp,0 = εr,0 − ypκ0 = −176.5 × 10−6 − (−200) × (−0.3778 × 10−6) 

	 = −252.1 × 10−6
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The vector of external actions on the cross-section at tk (expressed in 
N and Nmm) is:

	
rext k

ext k

ext k
,

,

,

=








 = ×











N

M

0

100 106

From Equation 5.57:

	
E

E
t t t t

c,eff
cm

k k

MPa=
+

=
+ ×

=,

( , ) ( , )
,

. .
,0

0 01
30 000

1 0 65 2 5
11 430

χ ϕ

and therefore αes,k = 17.5 and αep,k = 17.1.

From Equation 5.60:

	
F

t t t t
t t t t

e,0
k k

k k

= −
+

= × −ϕ χ
χ ϕ

( , )[ ( , ) ]
( , ) ( , )

. ( . . )0 0

0 0

1
1

2 5 0 65 1 0
11 0 0 65 2 5

0 333
. . .

.
+ ×

= −

From Example 5.3, the properties of the concrete part of the section before 
the duct is grouted are:

	 Ac = bh − As(1) − As(2) − Ahole = 234,470 mm2

	 Bc = bhyc − As(1)ys(1) − As(2)ys(2) − Aholeyhole = 872,000 mm3

	 I bh A A Ay y yc s s= − − − = ×3
1 212 12 375 10/ ,s(1)

2
s(2)
2

hole
2

hole( ) ( )
66 4mm

and the properties of the age-adjusted transformed section after the duct is 
grouted are:

	 A bh A A Ak es,k s es,k s ep,k p= + − + − + −( ) ( ) ( )( ) ( )α α α1 1 11 2

	 = 300 × 800 + (17.5−1) × 900 + (17.5−1) × 1800 + (17.1−1) × 1000

	 = 300,613 mm2

	 B bhy A y A y Ak c es,k s s es,k s s ep,k= + − + − + −( ) ( ) ( ) ( )( ) ( ) ( )α α α1 1 11 1 2 2 pp py

	 = �300 × 800 × 0 + (17.5−1) × [900 × (+340) + 1800 × (−340)]

	 + (17.1−1) × 1000 × (−200)

	 = −8.262 × 106 mm3

	

I
bh

bhy A y A yk c es,k s(1) s(1) s(2) s(2) ep,k= + + − +  +
3

2 2 2

12
1( ) (α α −−

= × + × × + − × + × −

1

300 800
12
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2

3
2
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( . )[ (

A yp p

00

17 1 1 1000 200

18 592 10

2

2

6 4

)

( . ) ( )

,

]

mm

+ − × × −

= ×
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From Equation 5.96:

	

fcr,k e, cm,
c r,0 c
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− +
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and from Equation 5.97:
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c
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The relaxation strain in the prestressing tendon is:

	 εp.rel,k = εp,init φP = 0.00692 × 0.0459 = 0.0003178

and the vectors of internal actions caused by the initial prestress and by 
relaxation are given by Equations 5.98 and 5.99, respectively:
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For this post-tensioned member with a single bonded tendon, Equation 5.100 
gives:
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Equation 5.111 gives:

Fk
c,eff k k k

k k

k k

, , ,

=
−( )
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and the strain εk at time tk is determined using Equation 5.101:

εεk k ext,k cr,k cs,k p,init p.rel,k cp.0= − + − + +

=
× −

F r f f f f f( )
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15 15
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The strain at the reference axis and the curvature at time tk are, respectively:

	 εr,k = −961.7 × 10−6  and  κk = −0.5453 × 10−6 mm−1

From Equation 5.63, the top (y = +400 mm) and bottom (y = −400 mm) fibre 
strains are:

	 εk(top) = εr,k − 400 × κk = [−961.7 − 400 × (−0.5453)] × 10−6 = −743.6 ×10−6

	 εk(btm) = εr,k − (−400) × κk = [−961.7 + 400 × (−0.5453)] × 10−6 = −1180 × 10−6

The concrete stress distribution at time tk is calculated using Equation 5.103:

σ ε ε σc,k(top) c,eff k(top) cs,k e,0 c,0(top)= − +

= × −

E F( )

, [11 430 743.. ( )] ( . ) ( . ) .6 600 10 0 333 0 762 1 396− − × + − × − = −− MPa

σ ε ε σc,k(btm) c,eff k(btm) cs,k e,0 c,0(btm)= − +

= × −

E F( )

, [11 430 11800 600 10 0 333 9 828 3 356− − × + − × − = −−( )] ( . ) ( . ) . MPa

and, from Equation 5.104, the stresses in the non-prestressed reinforcement are:
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.

.
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The final stress in the prestressing steel at time tk is given by Equation 5.106:
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The stress and strain distributions at t0 (from Example 5.3) and tk are shown 
in Figure 5.14.

Note that the time-dependent loss of prestress in the tendon is 16.4%, 
but the time-dependent loss in the compressive stress in the concrete at the 
bottom fibre is 65.9%.

(a) (b) (c)

−25.4 −743.6 −0.76−1.39

−3.35

σc,0

σs(1),0 = –9.61
σs(1),k = –155

σp,0 = 1350
σp,k = 1128

σs(2),0 = –61.0

σs(2),k = –229
σc,k

−9.83−327.6 −1180

h = 800 mm

b = 300 mm

κk = –0.5453 × 10–6 mm–1

κ0 = –0.3778 × 10–6 mm–1

Time (t0)
Time (tk)

Figure 5.14 � Strains and stresses at times at t0 and tk (Example 5.5). (a) Section. 
(b) Strain (×10−6). (c) Stress (MPa).
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With time, much of the compressive force exerted by the tendon on the 
cross-section in Example 5.5 has been transferred from the concrete to 
the bonded steel reinforcement as a direct result of creep and shrinkage in 
the concrete. The very significant change in stress in the non-prestressed 
reinforcement with time is typical of the behaviour of uncracked regions of 
reinforced and prestressed concrete members in compression.

EXAMPLE 5.6

A time-dependent analysis of the pretensioned concrete cross-section of 
Example 5.4 (see Figure 5.9) is to be undertaken using the AEMM. The strain 
and stress distributions at t0 immediately after the application of an axial force 
Next,0 = −100 kN and a bending moment of Mext,0 = 1000 kNm were calcu-
lated in Example 5.4 and shown in Figure 5.10. If the applied actions remain 
constant during the time interval t0 to tk, determine the strain and stress 
distributions at time tk.

As in Example 5.4: Ecm,0 = 32,000 MPa, Es = 200,000 MPa, Ep = 195,000 MPa 
and, therefore, αs(i),0 = 6.25 and αp(i),0 = 6.09. For the time interval t0 to tk, the 
creep and shrinkage input for the concrete is φ (tk,t0) = 2.0, χ(tk,t0) = 0.65, εcs(tk) = 
−400 × 10−6 and, for the prestressing steel, the creep coefficients associated 
with the time after transfer and time tk are φp(1) = φp(2) = φp(3) = 0.03.

From Example 5.4, the strain at the reference axis and the curvature at 
t0 are:

	 εr,0 = −254.1 × 10−6  and  κ0 = +0.1916 × 10−6 mm−1.

and the vector of external actions on the cross section at tk is:
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From Equation 5.57:
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from which αes,k 14 37= .  and αep,k 14 2= .0 .

From Equation 5.60:

	
F

t t t t
t t t t

e,0
k k

k k

= −
+

= × −ϕ χ
χ ϕ

( , )[ ( , ) ]
( , ) ( , )

. ( . . )0 0

0 0

1
1

2 0 0 65 1 0
11 0 0 65 2 0

0 304
. . .

.
+ ×

= −



Design for serviceability  153

The properties of the concrete part of the cross-section are:

	 Ac = Ag − As(1) − As(2) − Ap(1) − Ap(2) − Ap(3) = 312,700 mm2

	 Bc = Ag (dref − dc) − (As(1)ys(1) + As(2)ys(2)) − (Ap(1)yp(1) + Ap(2)yp(2) + Ap(3)yp(3))

	 = −93.46 × 106 mm3

	

I I A d d A y A y
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2
3 3

2 0 0y A y+( ) = ×

and the properties of the age-adjusted transformed section in equivalent con-
crete areas are:
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From Equation 5.96:
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+ ×
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and from Equation 5.97:
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1740 10
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3
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The relaxation strains in the prestressing tendons between transfer 
and time tk are:

	 ε ε ϕp(1) rel k p(1) p(1) 188. , , .= =0 0 000 0
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	 ε ε ϕp(2 rel k p(2) p(2) 1884). , , .= =0 0 000

	 ε ε ϕp(3) rel k p(3) p(3) 1888. , , .= =0 0 000

and the vectors of internal actions caused by the initial prestress and by 
relaxation are given by Equations 5.98 and 5.99, respectively:
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Note that in this pretensioned member, Pm0(i) is used in Equation 5.99 since 
φp(1) in this example is measured from the time at transfer t0.

The terms in the vector fcp,0 are both zero for this pretensioned cross-
section since all tendons were bonded at transfer.

Equation 5.99 gives:
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The strain εk at time tk is determined using Equation 5.91:
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The strain at the reference axis and the curvature at time tk are, respectively:

	 εr,k = −1067.3 × 10−6  and  κk = +0.6699 × 10−6 mm−1
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From Equation 5.63, the top (y = +300 mm) and bottom (y = −850 mm) fibre 
strains are:

	 εk(top) = εr,k − 300 × κk = −1268 × 10−6

	 εk(btm) = εr,k + 850 × κk = −497.9 × 10−6

The concrete stress distribution at time tk is calculated using Equation 5.103:

	 σ ε ε σc,k(top) c,eff k(top) cs,k e,0 c,0(top) MPa= − + = −E F( ) .9 05

	 σ ε ε σc,k(btm) c,eff k(btm) cs,k e,0 c,0(top) MPa= − + = −E F( ) .0 47

and, from Equation 5.104, the stresses in the non-prestressed reinforcement are:

	 σs(1) k s s(1) k MPa, [ ] .= − = −E y1 245 6εε

	 σs(2) k s s(2) k MPa, [ ] .= − = −E y1 107 6εε

The final stress in the prestressing steel at time tk is given by Equation 5.105:

	 σ ε εp(1),k p p(1) k p p(1),init p(1).rel,k MPa= − + − =E y E[ ] ( ) .1 1081 0εε

	 σ ε εp(2),k p p(2) k p p(2),init p(2).rel,k MPa= − + − =E y E[ ] ( ) .1 1089 4εε

	 σ ε εp(3),k p p(3) k p p(3),init p(3).rel,k MPa= − + − =E y E[ ] ( ) .1 1097 8εε

The stress and strain distributions at t0 (obtained in Example 5.4) and tk are 
shown in Figure 5.15.
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κk = +0.6699 × 10–6 mm–1

Figure 5.15 � Strains and stresses at times at t0 and tk (Example 5.6). (a) Cross-
section. (b) Strain (×10−6). (c) Stress (MPa).
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5.7.4  Discussion

The results of several time analyses on the cross-section shown in Figure 
5.16 are presented in Tables 5.1 and 5.2. The geometry of the cross-section 
and the material properties are similar to the cross-section of Examples 
5.3 and 5.5. The effects of varying the quantities of the compressive and 
tensile non-prestressed reinforcements (As(1) and As(2), respectively) on the 
time-dependent deformation can be seen for three different values of sus-
tained bending moment. At Mext = 100 kNm, the initial concrete stress 
distribution is approximately triangular with higher compressive stresses in 
the bottom fibres (as determined in Example 5.3). At Mext = 270 kNm, the 
initial concrete stress distribution is approximately uniform over the depth 
of the section and the curvature is small. At Mext = 440 kNm, the initial 
stress distribution is again triangular with high compressive stresses in the 
top fibres. In each case, the prestressing force in the tendon immediately 
after transfer is Pinit = Pm,0 = 1350 kN and, therefore, σpi = σp,0 = 1369 MPa.

In Tables 5.1 and 5.2, ΔFs(1), ΔFs(2) and ΔFp are the compressive changes 
of force that gradually occur in the non-prestressed steel and the tendons 
with time. To maintain equilibrium, equal and opposite tensile forces are 
gradually imposed on the concrete as the bonded reinforcement restrains 
the time-dependent creep and shrinkage strains in the concrete. In Section 
5.4.1, we defined the final compressive force acting on the concrete as ΩPm0 
and here:

	
Ω

∆ ∆ ∆
= +

+ +
1

F F F
P

s(1) s(2) p

m0

	 (5.112)

remembering that ΔFs(1), ΔFs(2) and ΔFp are all negative. Values of Ω for 
each analysis are also given in Tables 5.1 and 5.2.

From the results in Table 5.1, the effect of increasing the quantity of 
the non-prestressed tensile reinforcement As(2) is to increase the change in 

All dimensions are in mm.
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60 
b = 300
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Mext600
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Ecm,0 = 30,000 MPa
Es = 200,000 MPa
Ep = 195,000 MPa
 (tk, t0) = 2.5

 p = 0.0459

χ(tk, t0) = 0.65
εcs(tk) = –600 × 10–6

y

x

Figure 5.16 � Post-tensioned cross section with tendon bonded after transfer.
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positive or sagging curvature with time. The increase is most pronounced 
when the initial concrete compressive stress at the level of the steel is high, 
i.e. when the sustained moment is relatively small and the section is initially 
subjected to a negative or hogging curvature. When As(2)= 3600 mm2 and 
Mext = 100 kNm (row 3 in Table 5.1), κk is positive despite the significant 
initial negative curvature κ0. Table 5.1 also indicates that the addition of 
non-prestressed steel in the tensile zone will reduce the time-dependent 
camber which often causes problems in precast members subjected to low 
sustained loads. For sections on which Mext is sufficient to cause an ini-
tial positive curvature, such as when Mext = 440 kNm in Table 5.1, an 
increase in As(2) causes an increase in time-dependent curvature and hence 
an increase in final deflection.

Table 5.1  �Effect of varying the bottom steel As(2) (with As(1) = 0)

Mext 
(kNm) 

As(2) 
(mm2) 

εr,0 
(×10−6) 

κ0 
(×10−6) 
mm−1 

ΔFs(1) 
(kN) 

ΔFs(2) 
(kN) 

ΔFp 
(kN) 

Ω 
(Equation 
5.112) 

εr,k 
(×10−6) 

κk 
(×10−6) 
mm−1 

100 0 −191 −0.455 0 0 −277 0.795 −1154 −1.165
1800 −178 −0.372 0 −288 −221 0.623 −1019 −0.252
3600 −167 −0.306 0 −416 −190 0.551 −941 +0.271

270 0 −190 −0.008 0 0 −239 0.823 −1167 +0.336
1800 −182 −0.038 0 −209 −200 0.697 −1075 +0.955
3600 −177 +0.075 0 −306 −179 0.641 −1022 +1.311

440 0 −189 +0.438 0 0 −201 0.851 −1179 +1.838
1800 −187 +0.448 0 −130 −179 0.771 −1132 +2.162
3600 −186 +0.455 0 −197 −167 0.730 −1104 +2.350

Table 5.2  �Effect of varying the top steel As(1) (with As(2) = 1800 mm2)

Mext 
(kNm) 

As(1) 
(mm2) 

εr,0 
(×10−6) 

κ0 
(×10−6) 
mm−1 

ΔFs(1) 
(kN) 

ΔFs(2) 
(kN) 

ΔFp 
(kN) 

Ω 
(Equation 
5.112) 

εr,k 
(×10−6) 

κk 
(×10−6) 
mm−1 

100 0 −178 −0.372 0 −288 −221 0.623 −1019 −0.252
900 −176 −0.378 −131 −303 −222 0.514 −962 −0.545

1800 −176 −0.383 −222 −314 −222 0.438 −921 −0.757
270 0 −182 +0.038 0 −209 −200 0.697 −1075 +0.955

900 −178 +0.014 −176 −231 −201 0.550 −989 +0.509
1800 −175 −0.007 −294 −247 −201 0.450 −926 +0.188

440 0 −187 +0.448 0 −130 −179 0.771 −1132 +2.162
900 −180 +0.406 −221 −159 −180 0.585 −1015 +1.564

1800 −174 +0.370 −366 −179 −180 0.463 −932 +1.133
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The inclusion of non-prestressed steel at the top of the section As(1) 
increases the change in negative curvature with time, as indicated in 
Table 5.2. For sections where the initial curvature is positive, such as when 
Mext = 440 kNm, the inclusion of As(1) reduces the time-dependent change 
in positive curvature (and hence the deflection of the member). However, 
when κ0 is negative, such as when Mext = 100 kNm, the inclusion of As(1) can 
cause an increase in negative curvature with time and hence an increase in 
the upward camber of the member with time.

The significant unloading of the concrete with time on the sections con-
taining non-prestressed reinforcement should be noted. For example, when 
Mext = 270 kNm and As(1) = As(2) = 1800 mm2 (i.e. equal quantities of top 
and bottom non-prestressed reinforcement), the concrete is subjected to a 
total gradually applied tensile force of −(ΔFs(1) + ΔFs(2) + ΔFp) = 742 kN as 
shown in Table 5.2. This means that 55% of the initial compression in the 
concrete (the initial prestressing force) is transferred into the bonded rein-
forcement with time. The bottom fibre concrete compressive stress reduces 
from −5.32 to −1.10 MPa. The loss of prestress in the tendon, however, is 
only 201 kN (14.9%).

It is evident that an accurate picture of the time-dependent behaviour of 
a prestressed concrete cross-section cannot be obtained unless the restraint 
provided to creep and shrinkage by the non-prestressed steel is adequately 
accounted for. It is also evident that the presence of non-prestressed rein-
forcement significantly reduces the cracking moment with time and may in 
fact relieve the concrete of much of its initial compression.

5.8 � SHORT-TERM ANALYSIS OF CRACKED 
CROSS-SECTIONS

5.8.1  General

In the cross-sectional analyses in Sections 5.6 and 5.7, it was assumed that con-
crete can carry the imposed stresses, both compressive and tensile. However, 
concrete is not able to carry large tensile stresses. If the tensile stress at a 
point reaches the tensile strength of concrete (Equations 4.6 and 4.7), crack-
ing occurs. On a cracked cross-section, tensile stress of any magnitude cannot 
be carried normal to the crack surface at any time after cracking and tensile 
forces can only be carried across a crack by steel reinforcement. Therefore, 
on a cracked cross-section, internal actions can be carried only by the steel 
reinforcement (and tendons) and the uncracked parts of the concrete section.

In members subjected only to axial tension, caused either by external 
loads or by restraint to shrinkage or temperature change, full-depth cracks 
occur when the tensile stress reaches the tensile strength of the concrete 
at a particular location (i.e. at each crack location, the entire cross-section 
is cracked). When the axial tension is caused by restraint to shrinkage, 
cracking causes a loss of stiffness and a consequent decrease in the internal 
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tension. The crack width and the magnitude of the restraining force, as well 
as the spacing between cracks, depend on the amount of bonded reinforce-
ment. The steel carries the entire tensile force across each crack, but between 
the cracks in a member subjected to axial tension the concrete continues to 
carry tensile stress due to the bond between the steel and the concrete, and 
hence, the tensile concrete between the cracks continues to contribute to the 
member stiffness. This is known as the tension stiffening effect.

In a flexural member, cracking occurs when the tensile stress produced 
by the external moment at a particular section overcomes the compression 
caused by prestress, and the extreme fibre stress reaches the tensile strength 
of concrete. Primary cracks develop at a reasonably regular spacing on the 
tensile side of the member. The bending moment at which cracking first 
occurs is the cracking moment Mcr. If the applied moment at any time is 
greater than the cracking moment, cracking will occur and, at each crack, 
the concrete below the neutral axis on the cracked section is ineffective. In 
the previous section, we saw that the initial compressive stress in the con-
crete due to prestress is gradually relieved by creep and shrinkage and so 
the cracking moment decreases with time.

A loss of stiffness occurs at first cracking and the short-term moment–
curvature relationship becomes non-linear. The height of primary cracks ho 
depends on the quantity of tensile reinforcement and the magnitude of any 
axial force or prestress. For reinforced concrete members in pure bending 
with no axial force, the height of the primary cracks ho immediately after 
cracking is usually relatively high (0.6–0.9 times the depth of the mem-
ber depending on the quantity and position of tensile steel) and remains 
approximately constant under increasing bending moments until either 
the steel reinforcement yields or the concrete stress–strain relationship in 
the compressive region becomes non-linear. For prestressed members and 
members subjected to bending plus axial compression, ho may be relatively 
small initially and gradually increases as the applied moment increases.

Immediately after first cracking, the intact concrete between adjacent 
primary cracks carries considerable tensile force, mainly in the direction 
of the reinforcement, due to the bond between the steel and the concrete. 
The average tensile stress in the concrete may be a significant percentage of 
the tensile strength of concrete. The steel stress is a maximum at a crack, 
where the steel carries the entire tensile force, and drops to a minimum 
between the cracks. The bending stiffness of the member is considerably 
greater than that based on a fully cracked section, where concrete in ten-
sion is assumed to carry zero stress. This tension stiffening effect is par-
ticularly significant in lightly reinforced concrete slabs under service loads.

For prestressed concrete members, or reinforced members in combined 
bending and compression, the effect of tension stiffening is less pronounced 
because the loss of stiffness caused by cracking is less significant. As the 
applied moment increases, the depth of the primary cracks increases gradu-
ally (in contrast to the sudden crack propagation in a reinforced member 
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in pure bending) and the depth of the concrete compressive zone is signifi-
cantly greater than would be the case if no axial prestress was present.

5.8.2  Assumptions

The Euler–Bernoulli assumption that plane sections remain plane is not 
strictly true for a cross-section in the cracked region of a beam. However, if 
strains are measured over a gauge length containing several primary cracks, 
the average strain diagram may be assumed to be linear over the depth of 
a cracked cross-section.

The analysis presented here is based on the following assumptions:

	 1.	Plane sections remain plane and, as a consequence, the strain distri-
bution is linear over the depth of the section.

	 2.	Perfect bond exists between the non-prestressed steel reinforcement 
and the concrete and between the bonded tendons and the concrete, 
i.e. the bonded steel and concrete strains are assumed to be compat-
ible. This is usually a reasonable assumption at service loads in mem-
bers containing deformed steel reinforcing bars and strands.

	 3.	Strain in unbonded tendons is assumed to be unaffected by deforma-
tion of the concrete cross-section.

	 4.	Tensile stress in the concrete is ignored, and therefore the tensile con-
crete does not contribute to the cross-sectional properties.

	 5.	Material behaviour is linear-elastic. This includes concrete in compres-
sion, and both the non-prestressed and prestressed reinforcements.

5.8.3  Analysis

In the short-term analysis of fully cracked prestressed concrete cross-sections 
at first loading (at time t0), it is assumed that the axial force and bending 
moment about the x-axis (Next,0 and Mext,0, respectively) produce tension 
of sufficient magnitude to cause cracking in the bottom fibres of the cross- 
section and compression at the top of the section.

Consider the cracked prestressed concrete cross-section shown in 
Figure 5.17. The section is symmetric about the y-axis, and the orthogonal 
x-axis is selected as the reference axis. Also shown in Figure 5.17 are the 
initial stress and strain distributions when the section is subjected to com-
bined external bending and axial force (Mext.0 and Next.0) sufficient to cause 
cracking in the bottom fibres.

As for the analysis of an uncracked cross-section, the properties of each 
layer of non-prestressed reinforcement are defined by its area, elastic modu-
lus and location with respect to the arbitrarily chosen x-axis, i.e. As(i), Es(i) 
and ys(i) (= dref − ds(i)), respectively. Similarly, Ap(i), Ep(i) and yp(i) (= dref − dp(i)) 
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represent the area, elastic modulus and location of the prestressing steel 
with respect to the x-axis, respectively.

The strain at any distance y from the reference x-axis at time t0 is 
given by:

	 ε ε κ0 0 0= −r, y 	 (5.113)

and the stresses in the concrete, the steel reinforcement and the bonded 
tendons are:

	 σ ε ε κc, cm cm, r n n reffor0 0 0 0 0 0 0 0= = − ≥ = − +E E y y y d d, , , ,( ) ( )	 (5.114)

	 σc, nfor0 00= <y y , 	 (5.115)

	 σ ε ε κs(i) s(i) s(i) r s, , ( )( )0 0 0 0= = −E E y i 	 (5.116)

	 σ ε ε ε κ εp( ) p( ) p init p(i) r p p initi i i i iE E y, ( ), , ( ) ( ),( ) (0 0 0 0= + = − + ))	 (5.117)

where yn,0 is the y coordinate of the neutral axis, as shown in Figure 5.17a 
and εp(i),init is the strain in the i-th layer of prestressing steel immediately 
before the transfer of prestress to the concrete as expressed in Equation 
5.27. For unbonded tendons, the stress in the steel at t0 is Ep(i)εp(i),init.

The internal axial force Nint,0 on the cracked cross-section is the sum of 
the axial forces resisted by the various materials forming the cross-section 
and is given by:

	 N N N Nint, ,0 0 0 0= + +c s, p, 	 (5.118)
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Figure 5.17 � Fully cracked prestressed concrete cross-section. (a) Cross-section. 
(b) Strain diagram. (c) Stress.
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where Nc,0, Ns,0 and Np,0 are as previously given for an uncracked section in 
Equations 5.29 through 5.31 and re-expressed here as:

	

N E y dA A E B E
A

c cm r c cm r c cm

c

, , , , , ,( )0 0 0 0 0 0 0 0= − = −∫ ε κ ε κ 	 (5.119)

	 N R Rs,0 A,s r,0 B,s= −ε κ0	 (5.120)

	
N R R A Ei i i

i

m

p, A,p r, B,p p p( p init

p

0 0 0

1

= − +
=
∑ε κ ε( )( ) ) ( ), 	 (5.121)

where Ac and Bc are the area and the first moment of area about the x-axis 
of the compressive concrete above the neutral axis (i.e. the properties of the 
intact compressive concrete). The rigidities of the bonded steel are:
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	 (5.122)
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	 (5.127)

For unbonded tendons, RA,p = RB,p = RI,p = 0.
Noting that:

	
P A Ei i i

i

m

init p p p init

p

=
=
∑( )( ) ( ) ( ),ε

1

	 (5.128)
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and defining the internal moment caused by Pinit about the reference axis as:

	
M y A Ei i i i

i

m

init p p p p init

p

= −
=
∑( )( ) ( ) ( ) ( ),ε

1

	 (5.129)

Equation 5.118 can be rewritten as:

	

N E y A R R R R
A

int, ,( ) ( ) ( )0 0 0 0 0= − + + − + +∫ cm, r,0 A,s A,p r B,s B,p

c

dε κ ε κ PPinit	 (5.130)

Remembering that for equilibrium Next,0 = Nint,0, Equation 5.130 can be 
re-expressed as:

	

N P E y A R R R R
A

ext,0 init cm, r,0 A,s A,p r B,s B

c

d− = − + + − +∫ 0 0 0( ) ( ) (,ε κ ε ,,p)κ0	 (5.131)

Similarly, the following expression based on moment equilibrium can be 
derived as:

	

M M E y y A R R R
A

ext,0 init cm, r,0 B,s B,p r I,s

c

d− = − − − + + +∫ 0 0 0( ) ( ) (,ε κ ε RRI,p)κ0	

(5.132)

For a reinforced concrete cross-section comprising rectangular compo-
nents (e.g. rectangular flanges and webs) loaded in pure bending (i.e. 
Next,0 = Nint,0 = 0) and with no prestress, Equation 5.131 becomes a qua-
dratic equation that can be solved to obtain the location of the neutral 
axis yn,0.

If the cross-section is prestressed or the axial load Next,0 is not equal to zero 
(i.e. if Next,0 − Pinit ≠ 0), dividing Equation 5.132 by Equation 5.131 gives:
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and dividing the top and bottom of the right-hand side by κ0 and recognis-
ing that at the axis of zero strain y = yn,0 = εr,0/κ0, the previous expression 
becomes:

	

M M
N P

E y y y A R R y
Aext,0 init

ext, init

cm,0 n,0 B,s B,p
c

d
−
−
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− − − +∫
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− + + − +∫
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R R

E y y A R R y R R
A

BB,p)
	 (5.133)

For a rectangular section of width b, Equation 5.133 becomes:
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(5.134)

Equation 5.134 may be solved for yn,0 relatively quickly using a simple trial-
and-error search.

When yn,0 is determined, and the depth of the intact compressive concrete 
above the cracked tensile zone dn,0 is known, the properties of the compres-
sive concrete (Ac, Bc and Ic) with respect to the reference axis may be readily 
calculated. Similarly, the axial rigidity and the stiffness related to the first 
and second moments of area of the cracked section about the reference axis 
(i.e. RA,0, RB,0 and RI,0) are calculated at time t0 using Equations 5.35, 5.36 
and 5.39 and are re-expressed here as:

	 R A E R RA,0 c cm,0 A,s A,p= + + 	 (5.135)

	 R B E R RB,0 c cm,0 B,s B,p= + + 	 (5.136)

	 R I E R RI,0 c cm,0 I,s I,p= + + 	 (5.137)

Using the same solution procedure previously adopted for an uncracked 
cross-section, the system of equilibrium equations governing the problem 
(Equation 5.40) is rewritten here as:

	 r D fext p,init,0 0 0= +ε 	 (5.40)
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The vector ε0 is readily obtained by solving the equilibrium equations 
(Equation 5.40) giving:

	 εε0 0
1

0 0 0= − = −−D r f F r f( ) ( ), ,ext p,init ext p,init 	 (5.45)

where:
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The stress distribution related to the concrete and reinforcement can then 
be calculated from the constitutive equations specified in Equations 5.114 
through 5.117.

As an alternative approach, the solution may also be conveniently obtained 
using the cross-sectional properties of the transformed section. For example, 
for the cross-section of Figure 5.17, the transformed cross-section in equiva-
lent areas of concrete for the short-term analysis is shown in Figure 5.18.

The cross-sectional rigidities of the transformed section defined in 
Equations 5.135 through 5.137 can be recalculated as:

	 R A EA cm, ,0 0 0= 	 (5.138)

	 R B EB cm,0,0 0= 	 (5.139)

	 R I EI,0 cm,= 0 0	 (5.140)

where A0 is the area of the transformed cracked concrete section and B0 
and I0 are the first and second moments of the transformed area about the 
reference x-axis at first loading.

Substituting Equations 5.138 through 5.140 into Equation 5.46, the 
matrix F0 becomes:
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EXAMPLE 5.7

The depth of the concrete compression zone dn and the short-term stress 
and strain distributions are to be calculated on the prestressed concrete beam 
cross-section shown in Figure 5.19, when Mext,0 = 400 kNm (and Next,0 = 0). 
The section contains two layers of non-prestressed reinforcement as shown 
(each with Es = 200,000 MPa) and one layer of bonded prestressing steel 
(Ep = 195,000 MPa). The prestressing force before transfer is Pinit = 900 kN 
(i.e. σp,init = 1200 MPa). The tensile strength of the concrete is 3.5 MPa, and the 
elastic modulus is Ecm,0 = 30,000 MPa.

From Equations 5.122 through 5.127:

	 RA,s = (As(1) + As(2)) Es = (500 + 1,000) × 200,000 = 300 × 106 N

	� RB,s = (ys(1)As(1) + ys(2)As(2)) Es = (250 × 500 − 400 × 1,000) × 200,000

	 = −55.0 × 109 Nmm

	

R y A y A Esl,s s(1) s(1) s(2) s(2)= + = × + − ×

×

( ) [ ( ) , ]2 2 2 2250 500 400 1 000

2200 000,

	 = 38.25 × 1012 Nmm2

if bonded

y

dn,0

dref

=–(dn,0 – dref)
yn,0

x

(αs(1),0 – 1) As(1)

(αs(2),0 – 1) As(2)

αp(1),0  Ap(1)

αp(2),0  Ap(2)

αs(3),0  As(3)

Figure 5.18 � Transformed cracked section with bonded reinforcement transformed into 
equivalent areas of concrete.
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RA,p = Ap Ep = 750 × 195,000 = 146.3 × 106 N

RB,p = yp Ap Es = −275 × 750 × 195,000 = −40.22 × 109 Nmm

RI,p = yp
2 Ap Es = (−275)2 × 750 × 195,000 = 11.06 × 1012 Nmm2

The vector of actions due to initial prestress is given by Equation 5.44:

	
fp,init
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init
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


.

If it is initially assumed that the section is uncracked, an analysis using the 
procedure outlined in Section 5.6.2 indicates that the tensile strength of 
the concrete has been exceeded in the bottom fibres of the cross-section. 
With the reference axis selected at dref = 300 mm below the top of the 
section, the depth of the neutral axis below the reference axis yn,0 is deter-
mined from Equation 5.134. The left-hand side of Equation 5.134 is first 
calculated as:

	

M M
N P

ext,0 init

ext, init

−
−

= × − ×
− ×

= −
0

6 6

3

400 10 247 5 10
0 900 10

169 4
.

. mmm

20050

575

700

50

x

All dimensions in mm.

As(2) = 1000 mm2

As(1) = 500 mm2

dref = 300

Mext,0 = 400 kNm

Pinit = 900 kN
Ap = 750 mm2

Figure 5.19 � Cross-section (Example 5.7).
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Solving gives yn,0 = −206.8 mm and the depth of the neutral axis below the top 
surface is dn,0 = dref − yn,0 = 506.8 mm.

The properties of the compressive concrete (Ac, Bc and Ic) with respect to 
the reference axis are:

	 Ac = 506.8 × 200 − 500 = 100,858 mm2

	 Bc = 506.8 × 200 × (300−253.4) − 500 × (300−50) = +4.599 × 106 mm3

	� Ic �= 200 × 506.83/12 + 506.8 × 200 × (300−253.4)2 − 500 × (300−50)2

	 = 2358 × 106 mm4

The cross-sectional rigidities RA,0, RB,0 and RI,0 are obtained from Equations 
5.135 through 5.137:

	 RA,0 = Ac Ecm,0 + RA,s + RA,p = 100,858 × 30,000 + 300 × 106 + 146.3 × 106

	 = 3,472 × 106 mm2

	 RB,0 = Bc Ecm,0 + RB,s + RB,p = 4.599 × 106 × 30,000 − 55 × 109 − 40.22 × 109

	 = 42.75 × 109 mm3



Design for serviceability  169

	 RI,0 = Ic Ecm,0 + RI,s + RI,p = 2,358 × 106 × 30,000 + 38.25 × 1012 + 11.06 × 1012

	 = 120.1 × 1012 mm4

From Equation 5.46:
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and the strain vector is obtained from Equation 5.45:
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The top (y = 300 mm) and bottom (y = −450 mm) fibre strains are:

	 ε0(top) = εr,0 − 300 × κ0 = (−244.7 − 300 × 1.183) × 10−6 = −600 × 10−6

	 ε0(bot) = = εr,0 + 450 × κ0 = (−244.7 + 450 × 1.183) × 10−6 = +288 × 10−6

The distribution of strains is shown in Figure 5.20b.
The top fibre stress in the concrete and the stress in the non-prestressed 

reinforcement are (Equations 5.114 and 5.116):

	 σc,0(top) = Ecm,0 ε0(top) = 30,000 × (−600 × 10−6) = −17.99 MPa

	� σs(1),0 �= Es (εr,0 − ys(1) κ0) = 200,000 × (−244.7 − 250 × 1.183) × 10−6

	 = −108.1 MPa

	� σs(2),0 �= Es (εr,0 − ys(2) κ0) = 200,000 × (−244.7 + 400 × 1.183) × 10−6 

	 = +45.7 MPa

and the stress in the prestressing steel is given by Equation 5.117:

	� σp,0 = Ep (εr,0 − yp κ0 + εp,init) 

	 = 195,000 × (−244.7 + 275 × 1.183+ 6,000) × 10−6

	 = +1,216 MPa

The stresses are plotted in Figure 5.20c.
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5.9 � TIME-DEPENDENT ANALYSIS OF CRACKED 
CROSS-SECTIONS

5.9.1  Simplifying assumption

For a cracked cross-section under sustained actions, creep causes a grad-
ual change of the position of the neutral axis and the size of the concrete 
compressive zone gradually increases with time. With the size of the 
cross-section gradually changing, and hence the sectional properties of the 
concrete gradually change, the principle of superposition does not apply. 
To accurately account for the increasing size of the compressive zone, a 
detailed numerical analysis is required in which time is discretised into 
many small steps.

However, if one assumes that the depth of the concrete compression zone 
dn remains constant with time, the time analysis of a fully cracked cross- 
section using the AEMM is essentially the same as that outlined in Section 
5.7.3. This assumption greatly simplifies the analysis and usually results in 
a relatively little error in the calculated deformations.

5.9.2 � Long-term analysis of a cracked cross-section 
subjected to combined axial force 
and bending using the AEMM

Consider the fully cracked cross-section shown in Figure 5.21a subjected to 
a sustained external bending moment Mext,k and axial force Next,k. Both the 
short-term and time-dependent strain distributions are shown in Figure 5.21b.

(a) (b) (c)

200 As(1) = 500 mm2

As(2) = 1000 mm2

Ap = 750 mm2

Pp,inst = 900 kN

dref = 300
dn,0 = 506.8

Mext,0 =
400 kNm

50

575
700

50

–600 –17.99

288

–108.1

+1216

+45.7

x
Neutral axis

All dimensions in mm.

y

Figure 5.20 � Stress and strain distributions for cracked section (Example 5.7). 
(a) Section. (b) Strain (×10−6). (c) Stress (MPa).
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For the time analysis, the constitutive relationship for the concrete at tk is 
that given by Equation 5.59 as follows:

	 σ ε ε σc,k c,eff k cs,k e c nfor= − + ≥E F y y( ) , , ,0 0 0	 (5.142)

	 σc,k nfor= <0 0y y , 	 (5.143)

where Ec,eff  and Fe,0 are as defined in Equations 5.57 and 5.60. The stress–
strain relationships for the reinforcement and tendons are as given in 
Equations 5.69 through 5.72.

At time tk, the internal axial force Nint,k and moment Mint,k on the cross-
section are given by Equations 5.83 and 5.88 and the axial rigidity and the 
stiffness related to the first and second moments of area (RA,k, RB,k, and RI,k, 
respectively) are given by Equations 5.84, 5.85 and 5.89 (ignoring the cracked 
concrete below the neutral axis). The equilibrium equations are expressed in 
Equation 5.93, and solving using Equation 5.101 gives the strain vector at 
time tk. The stresses in the concrete, steel reinforcement and tendons at time 
tk are then calculated from Equations 5.103 through 5.107, respectively.

EXAMPLE 5.8

Calculate the change of stress and strain with time on the cracked prestressed 
cross-section of Example 5.7 using the AEMM. The cracked section and the 
initial strain distribution are shown in Figure 5.20. The actions on the section 
are assumed to be constant throughout the time period under consideration 
(i.e. t0 to tk) and equal to:

	 Next,0 = Next,k = 0  and  Mext,0 = Mext,k = 400 kNm

(a) (b)

x

yds(1)

As(1)
As(2)

dn

dref Mext,k

Next,k

ε0(top)

κ0

κk

εk(top)

Ap(1)

Ap(2)
As(3)

dp(1)

dp(2)

ds(3)

ds(2)

Figure 5.21 � Fully cracked cross-section — time analyses (AEMM). (a) Cross-section. 
(b) Strain.
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The relevant material properties are:

	 Ecm,0 = 30 GPa  Es = 200,000 MPa  Ep = 195,000 MPa  φ(tk,t0) = 2.5

	 χ(tk,t0) = 0.65  εcs(tk) = −400 × 10−6  φp(tk,σp(i),0) = 0.02

and the steel reinforcement is assumed to be linear-elastic. The post-tensioned 
tendon was bonded at t0 in the cracked section analysis of Example 5.7.

From Example 5.7:

	 dn,0 = 506.8 mm  εr,0 = −244.7 × 10−6  κ0 = 1.183 × 10−6 mm−1

	 Ac = 101,858 mm2  Bc = +4.599 × 106 mm3  Ic = 2,358 × 106 mm4

and the rigidities of the steel reinforcement and tendons are:

RA,s = 300 × 106 N  RB,s = −55.0 × 109 Nmm  RI,s = 38.25 × 1012 Nmm2

RA,p = 146.3 × 106 N  RB,p = −40.22 × 109 Nmm  RI,p = 11.06 × 1012 Nmm2

From Equations 5.57 and 5.60:

	
E Fc,eff e,MPa and=
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30 000
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From Equation 5.96, the axial force and moment resisted by the concrete 
part of the cross-section at time t0 are:

	 N A E B Ec,0 c cm,0 r, c cm, N= − = − ×ε κ0 0 0
3903 5 10.

	 M B E I Ec, c cm, r, c cm,0 Nmm0 0 0 0
6117 5 10= − + = + ×ε κ .

and from Equations 5.84, 5.85 and 5.89, the cross-sectional rigidities RA,k, RB,k 
and RI,k are:

	 R A E R RA,k c c,eff A,s A,p N= + + = ×1599 106

	 R B E R RB,k c c,eff B,s B,p Nmm= + + = − ×42 66 109.

	 R I E R RI,k c c,eff I,s I,p Nmm= + + = ×76 26 1012 2.

Equation 5.102 gives:
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From Equations 5.96 through 5.100:
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 (from Example 5.7)
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and as the tendon was bonded at transfer:
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The strain vector is obtained from Equation 5.101:
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The top (y = 300 mm) and bottom (y = −450 mm) fibre strains are:

	 εk(top) = εr,k − 300 × κk = (−1121 − 300 × 3.481) × 10−6 = −2166 × 10−6

	 εk(btm) = εr,k + 450 × κk = (−1121 + 450 × 3.481) × 10−6 = +445 × 10−6

At the neutral axis depth at yn,0 = −208.1 mm (below the reference axis):

	 εk(dn) = εr,k − yn,0 × κk = (−1121 + 206.8 × 3.481) × 10−6 = −401 × 10−6
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The concrete stresses at time tk at the top fibre (y = +300  mm) and the 
bottom fibre of the compressive concrete are obtained from Equation 5.103:
At the top of section:

	 σc,k MPa= × − + × − × − = −−11 430 2 166 400 10 0 333 17 99 14 26, ( , ) . ( . ) .�

At y = −206.8 mm:

	 σc,k MPa= × − + × + × − × =−11 430 1121 208 1 3 483 400 10 0 333 0 0 06, ( , . . ) . .�

The stresses in the non-prestressed reinforcement are (Equation 5.104):

	 σ ε κs k s r,k s k MPa( ), ( )( )1 1 398= − = −E y

	 σ ε κs(2),k s r,k s k MPa= − = +E y( ) .( )2 54 2

and the stress in the prestressing steel is given by (Equation 5.105)

	 σ ε κ ε εp,k p r,k p k p.init,k p.rel,k MPa= − + − = +E y( ) 1144

The results are plotted in Figure 5.22. It can be seen that the time-dependent 
loss of prestress in the tendon on this cross-section is only 72 MPa or only 
6% of the initial prestress. With relaxation losses at 2%, creep and shrinkage 
have resulted in only 4% loss as the change in strain at the tendon level is 
relatively small after cracking.

200

Pp,inst = 900 kN

506.8

445

–600 –2166 –14.2–17.99

0.0 +1216 at t0
(+1144 at tk)

+45.7 at t0
(+54.2 at tk)

–108 at t0
(–398 at tk)

t0

tk

tk
t0

All dimensions in mm
(a) (b) (c)

288

dref = 300

Mext,k =
400 kNm

750

y

x

Figure 5.22 � Initial and time-dependent strain and stress distributions. (a) Section. 
(b) Strain (×10−6). (c) Stress (MPa).
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5.10  LOSSES OF PRESTRESS

5.10.1  Definitions

The losses of prestress that occur in a tendon are categorised as either imme-
diate losses or time-dependent losses and are illustrated in Figure 5.23.

Immediate losses occur when the prestress is transferred to the concrete 
at time t0 and may vary along the length of the tendon. Immediate losses 
are the difference between the force imposed on the tendon by the hydraulic 
prestressing jack Pmax (=Pj) and the force in the tendon immediately after 
transfer at a distance x from the active end of the tendon Pm0(x) and can be 
expressed as:

	 Immediate loss = Pmax − Pm0(x)	 (5.144)

Time-dependent losses are the gradual losses of prestress that occur with 
time over the life of the structure. If Pm,t(x) is the force in the prestressing 
tendon at x from the active end of the tendon after all losses, then:

	 Time-dependent loss = Pm0(x) − Pm,t(x)	 (5.145)

Both immediate and time-dependent losses are made up of several compo-
nents. Immediate losses depend on the method and equipment used to pre-
stress the concrete and include losses due to elastic shortening of concrete, 
wedge draw-in at the prestressing anchorage, friction in the jack and along 
the tendon, deformation of the forms for precast members, deformation 
in the joints between elements of precast structures, temperature changes 
that may occur during this period and the relaxation of the tendon in a 
pretensioned member between the time of tensioning the wires before the 
concrete is cast and the time of transfer (particularly significant when 
the concrete is cured at elevated temperatures prior to transfer).

Time-dependent losses are the gradual losses of prestress that occur with 
time over the life of the structure. These include losses caused by the grad-
ual shortening of concrete at the steel level due to creep and shrinkage, 
relaxation of the tendon after transfer and time-dependent deformation 
that may occur within the joints in segmental construction.

Immediate
losses

Pmax Pm0 Pm,t

Time-dependent
losses

Jacking
force

Prestressing force
immediately after

transfer

Final or e�ective
prestressing

force

Figure 5.23 � Losses of prestress in the tendons.
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5.10.2  Immediate losses

The magnitude of immediate losses is taken as the sum of the losses caused 
by each relevant phenomenon. Where appropriate, the effects of one type 
of immediate loss on the magnitude of other immediate losses should be 
considered. For example, in a pretensioned member, the loss caused by 
relaxation of the tendon prior to transfer will affect the magnitude of the 
immediate loss caused by elastic deformation of concrete.

5.10.2.1  Elastic deformation losses

Pretensioned members: The change in strain in a tendon in a pretensioned 
member immediately after transfer Δεp,0 caused by elastic shortening of the 
concrete is equal to the instantaneous strain in the concrete at the steel level εcp,0:

	
ε

σ
ε

σ
cp,0

cp,0

cm,0
p,0

p,0

p

= = =
E E

∆
∆

The corresponding loss of stress in a tendon at transfer is therefore the 
product of the modular ratio (Ep/Ecm,0), and the stress in the adjacent con-
crete at the tendon level σcp,0 and the loss of force in the tendon is given by:

	
∆ ∆P A

E
E

Ael p,0 p
p

cm,0
cp,0 p= =σ σ 	 (5.146)

Post-tensioned members: For post-tensioned members with one tendon, or 
with two or more tendons stressed simultaneously, the elastic deformation 
of the concrete occurs during the stressing operation before the tendons 
are anchored. In this case, elastic shortening losses are zero. In a mem-
ber containing more than one tendon and where the tendons are stressed 
sequentially, stressing of a tendon causes an elastic shortening loss in all 
previously stressed and anchored tendons. Consequently, the first tendon 
to be stressed suffers the largest elastic shortening loss and the last ten-
don to be stressed suffers no elastic shortening loss at all. Elastic shorten-
ing losses in the tendons stressed early in the prestressing sequence can be 
reduced by re-stressing the tendons (prior to grouting of the prestressing 
ducts).

It is relatively simple to calculate the elastic shortening losses in an indi-
vidual tendon of a post-tensioned member, provided the stressing sequence 
is known. For most cases, it is sufficient to determine the average loss of 
stress as follows:

	
∆σp
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E
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1
2

	 (5.147)
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where n is the number of tendons and P/A is the average concrete compres-
sive stress. In post-tensioned members, the tendons are not bonded to the 
concrete until grouting of the duct occurs after the stressing sequence is 
completed. It is the shortening of the member between the anchorage plates 
that leads to elastic shortening, and not the strain at the steel level, as is the 
case for pretensioned members.

5.10.2.2  Friction in the jack and anchorage

The loss caused by friction in the jack and anchorage depends on the 
jack pressure and the type of jack and anchorage system used. It is usu-
ally allowed for during the stressing operation and is generally relatively 
small.

5.10.2.3  Friction along the tendon

In post-tensioned members, friction losses occur along the tendon during 
the stressing operation. Friction between the tendon and the duct causes a 
gradual reduction in prestress with the distance along the tendon x from 
the jacking end. The coefficient of friction between the tendon and the duct 
depends basically on the condition of the surfaces in contact, the profile of 
the duct, the nature of the tendon and its preparation. The magnitude of the 
friction loss depends on the tendon length, x, and the total angular change 
of the tendon over that length, as well as the size and type of the duct con-
taining the tendon. An estimation of the loss of force in the tendon due to 
friction at any distance x from the jacking end may be made using [1]:

	 ∆P x P e kx
µ

µ θ( ) ( )( )= − − +
max 1 	 (5.148)

where θ is the sum in radians of the absolute values of successive angular 
deviations of the tendon over the length x. Care should be taken dur-
ing construction to achieve the same cable profile as that assumed in the 
design. μ is the coefficient of friction between the tendon and its duct 
and depends on the surface characteristics of the tendon and the duct, 
the presence of rust on the surface of the tendon and the elongation of 
the tendon. In the absence of more specific data, the values of μ given in 
Table 5.3 are specified in EN 1992-1-1 [1], when all tendons in contact 
within the same duct are stressed simultaneously. For tendons showing a 
high but still acceptable amount of rusting, the value of μ may increase by 
20%. If the wires or strands in contact in one duct are stressed separately, 
μ may be significantly greater than the values given above and should be 
checked by tests. For external tendons passing over machined cast-steel 
saddles, μ may increase markedly for large movements of tendons across 
the saddles. k is an estimate of the unintentional angular deviation (in 
radians/m) due to wobble effects in the straight or curved parts of internal 
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tendons and depends on the rigidity of sheaths, the spacing and fixing of 
their supports, the care taken in placing the prestressing tendons, the clear-
ance of tendons in the duct, the stiffness of the tendons and the precautions 
taken during concreting. In segmental construction, the angular deviation 
per metre (k) may be greater in the event of mismatching of ducts and the 
designer should allow for this possibility. The most important parameter 
affecting the rigidity of sheaths is their diameter ϕ. In the absence of other 
data, EN 1992-1-1 [1] suggests that for internal tendons k will generally 
be in the range of 0.005 < k < 0.01 per metre. The Australian standard 
AS3600-2009 [9] suggests that:

•	 for sheathing containing wires or strands:
k = 0.024–0.016 rad/m	 when ϕ ≤ 50 mm
k = 0.016–0.012 rad/m	 when 50 mm < ϕ ≤ 90 mm
k = 0.012–0.008 rad/m	 when ϕ > 90 mm

•	 for flat metal ducts containing wires or strands:
k = 0.024–0.016 rad/m

•	 for sheathing containing bars:
k = 0.016–0.008 rad/m	 when ϕ ≤ 50 mm

•	 for bars with a greased-and-wrapped coating:
k = 0.008 rad/m.

EXAMPLE 5.9

Calculate the friction losses in the prestressing cable in the end span of the 
post-tensioned girder of Figure 5.24. The jacking force Pmax = 2500 kN. For 
this cable, μ = 0.19 and k = 0.01.

Table 5.3  �Coefficient of friction μ for post-tensioned tendons [1]

Internal 
tendonsa 

External unbonded tendons 

Steel duct/
non-lubricated

HDPE duct/
non-lubricated

Steel duct/
lubricated

HDPE duct/
lubricated

Cold-drawn 
wire

0.17 0.25 0.14 0.18 0.12

Strand 0.19 0.24 0.12 0.16 0.10
Deformed bar 0.65 — — — —
Smooth round 
bar

0.33 — — — —

HDPE, high-density polyethylene.
a For tendons that fill about half the duct.
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5.10.2.4  Anchorage losses

In post-tensioned members, some slip or draw-in occurs when the pre-
stressing force is transferred from the jack to the anchorage. This causes 
an additional loss of prestress. The amount of slip depends on the type of 
anchorage. For wedge-type anchorages used for strand, the slip (Δslip) may 
be as high as 6 mm. The loss of prestress caused by Δslip decreases with 
distance from the anchorage owing to friction and, for longer tendons, may 
be negligible at the critical design section. For short tendons, this loss may 
be significant and should not be ignored in design.

The loss of tension in the tendon caused by slip is opposed by friction in 
the same way as the initial prestressing force is opposed by friction, but 
in the opposite direction, i.e. μ and k are the same. The variations of pre-
stressing force along a member due to friction before anchoring the tendon 
(calculated using Equation 5.148) and after anchoring are shown in Figure 
5.25, where the mirror image reduction in prestressing force in the vicinity 
of the anchorage is caused by slip at the anchorage. The slope of the draw-
in line adjacent to the anchorage has the same magnitude as the slope of 
the friction loss line (β), but the opposite sign. It follows that tendons with 
a small drape (and therefore small β) will suffer anchorage slip losses over a 
longer length of tendons than tendons with a large drape (larger β).

In order to calculate the draw-in loss at the anchorage ΔPdi, the length 
of the draw-in line Ldi must be determined. By equating the anchorage slip 

From Equation 5.148:

At B: ΔPμ(x) = 2500(1−e−0.19(0.105+0.01×9)) = 90.9 kN (i.e. 3.64% losses)
At C: ΔPμ(x) = 2500 (1−e−0.19(0.210+0.01×18)) = 178.6 kN (i.e. 7.14% losses)
At D: ΔPμ(x) = 2500 (1−e−0.19(0.315+0.01×25)) = 254.5 kN (i.e. 10.2% losses)

9 m 9 m 7 m

A B
C D

0.105 0 –0.105 0
0 0.105 0.210 0.315

x (m): 0 9 18 25

Slope (rad):
θ (rad):

Figure 5.24 � Tendon profile for end span (Example 5.9).
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Δslip with the integral of the change in strain in the steel tendon over the 
length of the draw-in line, Ldi may be determined. If β is the slope of the 
friction loss line (i.e. the friction loss per unit length) as shown in Figure 
5.25, the loss of prestress due to draw-in at a distance x from point O in 
Figure 5.25b is ( )∆P xxdi = 2β  and Δslip can be estimated as follows:

	
∆slip

p p

di
2

p p

2
d

di

= =∫ β βx
E A

x
L

E A

L

0

	 (5.149)

and rearranging gives:

	
L

E A
di

p p slip=
∆
β

	 (5.150)

The immediate loss of prestress at the anchorage caused by Δslip is:

	 ( )∆P LLdi didi = 2β 	 (5.151)

The immediate loss of prestress near an anchorage can be determined from 
geometry using Figure 5.25. At a distance of more than Ldi from the live 
end anchorage, the immediate loss of prestress due to Δslip is zero.

The magnitude of the slip that should be anticipated in design is usually 
supplied by the anchorage manufacturer and should be checked on site. 
Cautious overstressing at the anchorage is often an effective means of com-
pensating for slip.

5.10.2.5  Other causes of immediate losses

Additional immediate losses may occur due to deformation of the forms of 
precast members and deformation in the construction joints between the 
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Figure 5.25 � Variation of prestress adjacent to the anchorage due to draw-in. (a) 
Prestressing force versus distance from anchorage. (b) Loss of prestress in 
vicinity of anchorage.
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precast units in segmental construction, and these losses must be assessed 
in design. Any change in temperature between the time of stressing the ten-
don and the time of casting the concrete in a pretensioned member will also 
cause immediate losses, as will any difference in the temperature between 
the stressed tendons and the concrete during steam curing.

5.10.3  Time-dependent losses of prestress

5.10.3.1  Discussion

We have seen in Sections 5.7 and 5.9 that, in addition to causing time-
dependent increases in deflection or camber, both compressive creep and 
shrinkage of the concrete cause gradual shortening of a concrete member 
and this, in turn, leads to time-dependent shortening of the prestressing 
tendons, and a consequent reduction in the prestressing force. These time-
dependent losses of prestress are in addition to the losses caused by steel 
relaxation and may adversely affect the long-term serviceability of the 
structure and should be accounted for in design.

In Section 5.7, a time analysis was presented for determining the effects of 
creep and shrinkage of concrete and relaxation of the tendon on the long-term 
stresses and deformations of a prestressed concrete cross-section of any shape 
and containing any layout of prestressed and non-prestressed reinforcement.

In the following section, the approximate procedure specified in EN 
1992-1-1 [1] for calculating time-dependent losses of prestress is outlined. 
The method may give inaccurate and sometimes misleading results because 
it does not adequately account for the significant loss of precompression in 
the concrete that occurs when non-prestressed reinforcement is present. For 
a realistic estimate of the time-dependent losses of prestress in the tendon, 
and the redistribution of stresses between the bonded reinforcement and 
the concrete, the method described in Section 5.7 is recommended.

For members containing only tendons, the loss in tensile force in the ten-
dons is simply equal to the loss in compressive force in the concrete. Where 
the member contains a significant amount of longitudinal non-prestressed 
reinforcement, there is a gradual transfer of the compressive prestressing 
force from the concrete into the bonded reinforcement. Shortening of the 
concrete, due to creep and shrinkage, causes a shortening of the bonded rein-
forcement and therefore an increase in compressive stress in the steel. The 
gradual increase in compressive force in the bonded reinforcement is accom-
panied by an equal and opposite decrease in the compressive force in the 
concrete. The loss in compressive force in the concrete is therefore consider-
ably greater than the loss in tensile force in the tendon. The redistribution of 
stresses with time was discussed in Section 5.7, and illustrated, for example, 
in Figures 5.14 and 5.15, where the immediate strain and stress distributions 
(at time t0 immediately after the application of both prestress and the applied 
moment Mext.0) and the long-term strain and stress distributions (after creep 
and shrinkage at time tk) on prestressed concrete cross-sections are shown.
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Many authorities suggest that the total time-dependent loss of prestress 
should be estimated by adding the calculated losses of prestress due to shrink-
age, creep and relaxation. However, separate calculation of these losses is 
problematic as time-dependent losses interact with each other, and this inter-
action should be considered when the sum of all the losses is determined. For 
example, the loss in tendon force due to creep and shrinkage of the concrete 
decreases the average force in the tendon with time, and this in turn reduces 
the relaxation loss. Restraint to shrinkage often substantially reduces the com-
pressive stresses in the concrete at the steel level, and this may significantly 
affect the creep of the concrete at this level and reduce losses due to creep.

5.10.3.2  Simplified method specified in EN 1992-1-1:2004

The time-dependent losses due to creep, shrinkage and relaxation (ΔPc+s+r) 
at any location x under permanent loads may be approximated by:
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	 (5.152)

where: 
σp,c+s+r is the absolute value of the variation of stress in the tendon due 

to creep, shrinkage and relaxation at location x at time t;
εcs is the absolute value of the estimated shrinkage strain at the time 

under consideration and may be estimated using the procedures out-
lined in Section 4.2.5.4;

Δσp,r is the absolute value of the variation of stress in the tendon at time t 
due to relaxation of the tendon and should be calculated from the ini-
tial stress in the tendon caused by Pm0 and the quasi-permanent actions 
(G + ψ2Q);

φ (t,t0) is the creep coefficient at time t for loads applied at t0;
σc.QP is the stress in the concrete adjacent to the tendon due to self-

weight, initial prestress and other quasi-permanent actions where rel-
evant (depending on the stage of construction under consideration);

Ap is the total area of all the tendons at location x;
Ac is the area of the concrete cross-section;
Ic is the second moment of the concrete cross-section about its cen-

troidal axis; and
zcp is the distance between the centre of gravity of the concrete section 

and the tendons.

The denominator in Equation 5.152 accounts for the restraint to creep and 
shrinkage provided by the bonded tendons but largely ignores the effect of 
the restraint offered by any non-prestressed bonded reinforcement on the 
loss of prestress in the tendon.
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5.10.3.3  Alternative simplified method

If a concrete member of length L contains no bonded reinforcement (and no 
bonded tendons) and is unrestrained at its supports and along its length, the 
member would shorten due to shrinkage by an amount equal to εcsL. If the 
member contained an unbonded post-tensioned tendon with an anchorage 
at each end of the member, the tendon would shorten by the same amount 
and the change of stress in the tendon due to shrinkage (ignoring the effects 
of friction) would be constant along its length and equal to Δσp.s = Epεcs. 
In concrete structures, unrestrained contraction is unusual. Reinforcement 
and bonded tendons embedded in the concrete provide restraint to shrink-
age and reduce the shortening of the member. This in turn reduces the loss 
of prestress in any tendon within the member.

Where the centroid of the bonded steel area (non-prestressed and pre-
stressed) is at an eccentricity es from the centroidal axis of the concrete 
cross-section, the change of strain due to shrinkage at the centroid of the 
tendon can be approximated by Equation 5.153 and the corresponding 
change of stress in a tendon at this location is given by Equation 5.154:
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where αep.k is the age-adjusted modular ratio ( )= E Ep c,eff/ , ρ is the ratio of the 
area of the bonded steel (As + Ap) to the area of concrete (i.e. ρ = (As + Ap)/Ac) 
and zcp is the distance between the centroidal axis of the concrete section 
and the tendons. Equation 5.154 is in fact similar to the change in stress 
indicated in the first term of the right-hand side of Equation 5.152, except 
that, in Equation 5.152, the ageing coefficient χ has been taken as 0.8 and 
the only bonded steel assumed to provide restraint is the tendon, Ap.

Creep strain in the concrete at the level of the bonded tendon depends 
on the stress history of the concrete at that level. Because the concrete 
stress varies with time, a reliable estimate of creep losses requires a detailed 
time analysis of the cross-section (such as that presented in Section 5.7). 
An approximate and conservative estimate of creep losses can be made by 
assuming that the concrete stress at the tendon level remains constant with 
time and equal to the short-term value σc.QP which is calculated using the ini-
tial prestressing force (prior to any time-dependent losses) and the sustained 
portion of all the service loads. Under this constant stress, the creep strain 
that would develop in the concrete is the product of the immediate elastic 
strain (σc.QP/Ecm) and the creep coefficient φ (t,t0). With this assumption, the 
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change in stress in the tendon due to creep Δσp.c may be obtained from 
Equation 5.155:
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Again, this is similar to the creep term in Equation 5.152, where χ is 0.8 
and the area of bonded steel is taken as Ap, i.e. the restraint provided by any 
non-prestressed reinforcement has been ignored.

The loss of stress in a tendon due to relaxation depends on the sustained 
stress in the steel. Owing to creep and shrinkage in the concrete, the stress 
in the tendon decreases with time at a faster rate than would occur due to 
relaxation alone. Since the steel strain is reducing with time due to con-
crete creep and shrinkage, the relaxation losses are reduced from those 
that would occur in a constant strain relaxation test. With the creep coef-
ficient for the prestressing steel given in Table 4.9 (or calculated from the 
design relaxation loss using Equation 4.38), the percentage loss of prestress 
due to relaxation may be calculated from a detailed time analysis such as 
described in Section 5.7. In the absence of such an analysis, the change of 
stress in the tendon due to relaxation is approximated by:

	
∆

∆ ∆
σ

σ σ
σ

ϕ σp.r
p.s p.c

pi
p pi= − −

+







1 	 (5.156)

where Δσp.s and Δσp.c are the changes in stress in the tendon caused by 
shrinkage and creep as given by Equations 5.154 and 5.155, respectively, 
and are usually compressive; σpi is the tendon stress just after transfer under 
the sustained service loads (=Pm0/Ap). The absolute values of Δσp.s and Δσp.c 
are used in Equation 5.156 to convert the negative changes of stress into 
positive losses.

EXAMPLE 5.10

Determine the time-dependent loss of prestress in the bonded tendon in the 
post-tensioned concrete cross-section shown in Figure 5.26 using:

	 1.	 the approximate procedure discussed in Section 5.10.3.3 (Equations 
5.154 through 5.156); and

	 2.	 the approach specified in EN 1992-1-1 [1], i.e. Equation 5.152 in Section 
5.10.3.2.
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The material properties are as shown in the figure and the prestressing force 
in the tendon immediately after transfer, when immediate losses had taken 
place and before the duct was grouted, is Pm0 = 1350 kN. The sustained exter-
nal bending moment is Mext = 270 kNm.

In this example, the area of the concrete cross-section is Ac = bh − As(1) − As(2) − Ap 
= 236.3 × 103 mm2 and its centroid lies 397.9 mm below the top of the cross-
section. The second moment of area of the concrete cross-section about its 
centroidal axis is Ic = 12,450 × 106 mm4. The total area of bonded steel is As(1) + 
As(2) + Ap = 3700 mm2 and its centroid is 536.8 mm below the top of the cross-
section. The distance between the centroid of the concrete section and the 
centroid of the bonded steel area is es = 138.9 mm, and the distance between 
the centroid of the concrete section and the centroid of the tendon is zcp = 
202.1 mm. The steel ratio is ρ = 3700/(236.3 × 103) =0.0157.

	 1.	Using the simplified analysis of Section 5.10.3.3:
		  Shrinkage loss: From Equation 5.154:

∆σ
ε

α ρ
p.s

cs p

ep.k
c cp s

c

,=
+ +











= − ×

+

E

A z e
I

1 1

0 0006 195 000

1 17 1

.

. ×× + × × ×
×











= −

0 0157 1
236 3 10 202 1 138 9

12 450 10

82 9

3

6.
. . .

.

,

MPa

The calculated loss of stress in the tendon determined using the time 
analysis of Section 5.7.3 caused by restrained shrinkage is −83.2 MPa, 
and this is in close agreement with the approximation of Equation 5.154.

Ecm,0 = 30,000 MPa

Ee,k = 11,430 MPa

Ep = 195,000 MPa

Pm0 = 1350 kN
(tk, t0) = 2.5

p(tk) = 0.0459
(and from Equation 4.38

Δσpr = –0.0459 σpi)

εcs(tk) = –600 × 10–6

np,0 = Ep/Ecm,0 = 6.5

αep.k = Ep/Ec,eff = 17.1

x

60

b = 300 60

600740
h = 800

As(1) = 900 mm2

Ap = 1000 mm2

As(2) = 1800 mm2

Mext = 300 kNm

Section

400
y

Figure 5.26 � Cross-section and material properties (Example 5.10).
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Creep loss: The concrete stress σc.QP at the tendon level due to the initial 
prestress and sustained actions may be determined using gross section 
properties (Ag = 300 × 800 = 240 × 103 mm2 and Ig = 300 × 8003/12 = 
12,800 × 106 mm4):
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and this value of σc.QP is used in Equation 5.155 to approximate the loss 
of stress in the tendon due to creep:
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Using the time analysis of Section 5.7.3, the loss of stress in the tendon 
due to creep is equal to −60.7 MPa and the approximation of Equation 
5.155 is conservative.

Relaxation loss: With the stress in the tendon immediately after transfer 
σpi = Pm0/Ap = 1350 MPa, the loss of stress in the tendon due to relax-
ation is obtained from Equation 5.156:
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Using the time analysis of Section 5.7.3, the loss of stress in the tendon 
due to relaxation is equal to −56.8 MPa and this is in good agreement 
with the approximation of Equation 5.156.

Total time-dependent losses: Summing the losses caused by shrinkage, 
creep and relaxation, we get:

	 ∆ ∆ ∆ ∆σ σ σ σp.c s r p.s p.c p.r 2 2 9 MPa+ + = + + =− .0
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5.11  DEFLECTION CALCULATIONS

5.11.1  General

If the axial strain and curvature are known at regular intervals along a 
member, it is a relatively simple task to determine the deformation of that 
member. Consider the statically determinate member AB of span l sub-
jected to the axial and transverse loads, as shown in Figure 5.27a. The axial 
deformation of the member eAB (either elongation or shortening) is obtained 
by integrating the axial strain at the centroid of the member εa(z) over the 
length of the member, as shown:

	
e z z
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AB a d= ∫ε ( )
0

	 (5.157)

where z is measured along the member.

This is 15.0% of the initial prestress in the tendon, and this is in excel-
lent agreement with the 14.9% losses (−200.7 MPa) determined using 
the more rigorous time analysis of Section 5.7.3.

	 2.	Simplified approach in EN 1992-1-1 [1]:
		  Equation 5.152 (with values of stresses and strains specified according 

to the sign convention adopted throughout this book) gives:
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This significantly overestimates time-dependent losses. Equation 5.152 
fails to account for the restraining effects of the bonded non-
prestressed steel on the creep and shrinkage losses and inappropri-
ately assumes that the restraint to creep and shrinkage in the concrete 
provided by the tendon also applies to the development of relaxation 
(tensile creep) in the tendon.
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Provided that deflections are small and that simple beam theory is appli-
cable, the slope θ and deflection v at any point z along the member are 
obtained by integrating the curvature κ(z) over the length of the member 
as follows:

	
θ κ= ∫ ( )z
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dz
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	 (5.158)
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Equations 5.158 and 5.159 are quite general and apply to both elastic and 
inelastic material behaviour.

If the axial strain and curvature are calculated at any time after loading 
at a preselected number of points along the member shown in Figure 5.27a 
and, if a reasonable variation of strain and curvature is assumed between 
adjacent points, it is a simple matter of geometry to determine the defor-
mation of the member. For convenience, some simple equations are given 
below for the determination of the deformation of a single span and a can-
tilever. If the axial strain εa and the curvature κ are known at the mid-span 
and at each end of the member shown in Figure 5.27 (i.e. at supports A 
and B and at the mid-span C), the axial deformation eAB, the slope at each 
support θA and θB and the deflection at mid-span vC are given by Equations 
5.160 through 5.167.

Load
A B

l/2 l/2

z

(a)

θA θB

vC
eAB

B B΄

C΄

C

A, A΄

(b)

C

Figure 5.27 � Deformation of a statically determinate member. (a) Original geometry. 
(b) Deformed shape.
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For a linear variation of strain and curvature:

	
e

l
AB aA aC aB= + +

4
2( )ε ε ε 	 (5.160)

	
v

l
C A C B= + +

2

48
4( )κ κ κ 	 (5.161)

	
θ κ κ κA A C B= + +l

24
5 6( )	 (5.162)

	
θ κ κ κB A C B= − + +l

24
6 5( )	 (5.163)

and for a parabolic variation of strain and curvature:

	
e

l
AB aA aC aB= + +

6
4( )ε ε ε 	 (5.164)

	
v

l
C A C B= + +

2

96
10( )κ κ κ 	 (5.165)

	
θ κ κA A C= +l

6
2( )	 (5.166)

	
θ κ κB C B= − +l

6
2( )	 (5.167)

In addition to the simple span shown in Figure 5.27, Equations 5.160 
through 5.167 also apply to any member in a statically indeterminate frame, 
provided the strain and curvature at each end and at mid-span are known.

Consider the fixed-end cantilever shown in Figure 5.28. If the curvatures at 
the fixed support at A and the free end at B are known, then the slope and deflec-
tion at the free end of the member are given by Equations 5.168 through 5.171.

A B

θB

vB

l

Figure 5.28 � Deformation of a fixed-end cantilever.
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For a linear variation of curvature:

	
θ κ κB A B= − +l

2
( )	 (5.168)

	
v

l
B A B= +

2

6
2( )κ κ

	

(5.169)

For a parabolic variation of curvature typical of what occurs in a uniformly 
loaded cantilever:

	
θ κ κB A B= − +l

3
2( )	 (5.170)

	
v

l
B A B= − +

2

4
( )κ κ 	 (5.171)

5.11.2 � Short-term moment–curvature 
relationship and tension stiffening

For any prestressed concrete section, the instantaneous moment–curvature 
relationship before cracking is linear-elastic. For an uncracked cross-
section, the instantaneous curvature may be calculated using the procedure 
of Section 5.6.2. In particular, from Equation 5.45, the instantaneous 
curvature is:

	
κ0

B,0 R,0 A,0 R,0

A,0 I,0 B,0
2=

+
−

R N R M
R R R

	 (5.172)

where RA,0, RB,0 and RI,0 are the cross-sectional rigidities given by Equations 
5.35, 5.36 and 5.39; NR,0 is the sum of the external axial force (if any) and 
the resultant compressive prestressing force exerted on the cross-section by 
the tendons and MR,0 is the sum of the external moment and the resultant 
moment about the centroidal axis caused by the compressive forces exerted 
by the tendons:

	
N N P i

i

m

R,0 ext,0 init( )

p

= −
=
∑

1

	 (5.173)

	
M M y Pi i

i

m

R,0 ext,0 p init( )

p

= +
=
∑ ( )

1

	 (5.174)



Design for serviceability  191

For uncracked, prestressed concrete cross-sections, if the reference axis is 
taken as the centroidal axis of the transformed section, the flexural rigidity 
Ecm,0 Iuncr is in fact the rigidity RI,0 calculated using Equation 5.39, where 
Iuncr is the second moment of area of the uncracked transformed cross-
section about its centroidal axis. Codes of practice generally suggest that, 
for short-term deflection calculations, Iuncr may be approximated by the 
second moment of area of the gross cross-section about its centroidal axis. 
The initial curvature caused by the applied moment and prestress acting on 
any uncracked cross-section may therefore be approximated by:

	
κ0

R,0

cm,0 uncr

=
M

E I
	 (5.175)

After cracking, the instantaneous moment–curvature relationship can 
be determined using the analysis described in Section 5.8 (and illustrated 
in Example 5.7) for any level of applied moment greater than the crack-
ing moment, provided the assumption of linear-elastic material behaviour 
remains valid for both the steel reinforcement/tendons and the concrete in 
compression. The analysis of the cross-section of Figure 5.19 after cracking 
in pure bending (i.e. when Mext,0 = 400 kNm and Next,0 = 0) was illustrated 
in Example 5.7. If the analysis is repeated for different values of applied 
moment (Mext,0 greater than the cracking moment Mcr), the instantaneous 
moment versus curvature (Mext,0 vs κ0) relationship for the cross-section can 
be determined and is shown in Figure 5.29. In addition to the post-cracking 

0

100

200

300

400

500

600

–1.0 –0.5

–0.702 × 10–6 κ0,cr = 0.506 × 10–6 κ0 = 1.182 × 10–6(from Example 5.7)

Curvature, κ0 (×10–6) (mm–1)

0.0 0.5 1.0 1.5 2.0 2.5

Uncracked

Slope of tangent to
curve = (Ecm,0 Icr) 

Mext,0 =
400 kNm

Mcr = 293

Ex
te

rn
al

 m
om

en
t, 

M
ex

t,0
 (k

N
m

)

Ecm,0 Iav

ypPinit

MR,0

200

750

yp = –189.1 Pinit = 900 kN

Mext,0

dref = 385.9

x

All dimensions in mm.

y

Cracked
Ecm,0  Iuncr

Figure 5.29 � Short-term moment–curvature relationship for the prestressed concrete 
cross-section of Figure 5.19.
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relationship, the linear relationship prior to cracking (Equation 5.175) is also 
shown in Figure 5.29, with Ecm,0Iuncr = 242.4 × 1012 Nmm2 in this example.

It is noted that after cracking the neutral axis gradually rises as the applied 
moment increases. With the area of concrete above the crack becoming 
smaller, the second moment of area of the cracked section Icr decreases as 
the applied moment increases. This is not the case for reinforced concrete 
sections where the depth to the neutral axis remains approximately con-
stant with increasing moment and Icr is constant in the post-cracking range.

For the cross-section shown in Figure 5.29, the x-axis has been taken 
to coincide with the centroidal axis of the transformed cross-section, and 
so the y coordinate of the prestressing steel (yp) is numerically equal to the 
eccentricity of the prestressing force e. In this case, from Equation 5.174, 
MR,0 = Mext,0 + ypPinit = Mext,0 − ePinit. In Figure 5.29, at any moment Mext,0 
greater than the cracking moment (Mcr), the curvature is:

	
κ0

R,0

cm,0 av

=
M

E I
	 (5.176)

where Ecm,0Iav is the secant stiffness. The secant stiffness Ecm,0Iav correspond-
ing to the external moment of Mext,0 = 400 kNm is shown in Figure 5.29, 
with ypPinit = − 170.2 kNm and, therefore, MR,0 = 229.8 kNm. With the value 
of curvature determined in Example 5.7 at this moment equal to 1.182 × 10−6, 
the stiffness Ecm,0Iav is obtained from Equation 5.176:
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A conservative estimate of the instantaneous deflection of a prestressed 
concrete member is obtained if the value of Ecm,0Iav for the cross-section at 
the point of maximum moment is taken as the flexural rigidity of the mem-
ber. In addition, when designing for crack control, variations in tensile steel 
stresses after cracking can be determined from the cracked section analysis.

The tangent stiffness Ecm,0Icr is also shown in Figure 5.29. The second 
moment of area of the cracked section Icr may be obtained using the cracked 
section analysis of Section 5.8. In that analysis, the tangent stiffness of 
the cracked cross-section was expressed as RI,0 and was given by Equation 
5.137 or 5.140. In our example, we can now calculate the tangent stiffness 
Ecm,0Icr with respect to the centroidal axis when the external moment is 
Mext,0 = 400 kNm using the rigidities of the cracked section RA,0, RB,0 and 
RI,0 as determined in Example 5.7:

	
E I
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If the reference axis had corresponded to the centroidal axis of the cracked 
section, then RB,0 would equal zero and Ecm,0Icr = RI,0.

For small variations in applied moment, curvature increments can be 
calculated using Icr. In reinforced concrete construction, Icr is constant and 
equal to Iav, but this is not so for prestressed concrete. For the moment–
curvature graph of Figure 5.29, at Mext,0 = 400 kNm, we have Iuncr = 8080 × 
106 mm4, Iav = 6480 × 106 mm4 and Icr = 4020 × 106 mm4. It is noted that 
for this 200 mm by 750 mm rectangular cross-section, Ig = 7030 × 106 mm4 
and this is 13% less than Iuncr.

For the case where Mext,0 = 0 in Figure 5.29, the internal moment caused 
by the resultant prestressing force about the centroidal axis of the uncracked 
section causes an initial negative curvature of MR,0/(Ecm,0Iuncr) = −epPinit/
(Ecm,0Iuncr) = −0.702 × 10−6 mm−1. If the beam remained unloaded for a 
period of time after transfer and, if shrinkage occurred during this period, 
the restraint provided by the bonded reinforcement to shrinkage would 
introduce a positive change of curvature κcs,0 provided the centroid of the 
bonded reinforcement is below the centroidal axis of the cross-section (as 
is the case in Figure 5.29). Shrinkage before loading causes the curve in 
Figure 5.29 to shift to the right. The restraint to shrinkage also causes tensile 
stresses in the bottom fibres of the cross-section, and this may significantly 
reduce the cracking moment. The effect of a modest early shrinkage on the 
moment–curvature relationship of Figure 5.29 is illustrated in Figure 5.30.
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Figure 5.30 � Effect of early shrinkage on the short-term moment–curvature relationship 
for a prestressed concrete cross section.
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For cracked prestressed concrete members, the stiffness of the cracked 
cross-section, calculated using the procedure outlined in Section 5.8.3, 
may underestimate the actual stiffness of the member in the cracked 
region. The intact concrete between adjacent cracks carries tensile force, 
mainly in the direction of the reinforcement, due to the bond between the 
steel and the concrete. The average tensile stress in the concrete is there-
fore not zero and may be a significant fraction of the tensile strength of 
concrete. The stiffening effect of the uncracked tensile concrete is known 
as tension stiffening. The moment–curvature relationship of Figure 5.29 is 
reproduced in Figure 5.31. Also shown as the dashed line in Figure 5.31 is 
the moment versus average curvature relationship, with the average curva-
ture being determined for a segment of beam containing two or more pri-
mary cracks. The hatched region between the curves at moments greater 
than the cracking moment Mcr represents the tension stiffening effect, i.e. 
the contribution of the tensile concrete between the primary cracks to the 
cross-sectional stiffness.

For conventionally reinforced members, tension stiffening contributes 
significantly to the member stiffness, particularly when the maximum 
moment is not much greater than the cracking moment. However, as the 
moment level increases, the tension stiffening effect decreases owing to 
additional secondary cracking at the level of the bonded reinforcement. For 
a prestressed member (or a reinforced member subjected to significant axial 
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compression), the effect of tension stiffening is less pronounced because the 
loss of stiffness due to cracking is more gradual and significantly smaller.

Shrinkage-induced cracking and tensile creep cause a reduction of the 
tension stiffening effect with time. Repeated or cyclic loading also causes a 
gradual breakdown of tension stiffening.

Tension stiffening is usually accounted for in design by an empirical 
adjustment to the stiffness of the fully-cracked cross-section as discussed in 
the following section.

5.11.3  Short-term deflection

If the initial curvature is determined at the mid-span and at each end of the 
span of a beam or slab, the short-term deflection can be estimated using 
Equation 5.161 or 5.165, whichever is appropriate.

For uncracked cross-sections, the initial curvature is given by Equation 
5.175. For cracked prestressed cross-sections, the initial curvature may be 
determined from Equation 5.176. This will be conservative unless an adjust-
ment is made to include the tension stiffening effect. In codes of practice, this 
adjustment is often made using simplified techniques involving the determi-
nation of an effective second moment of area Ief for the member. A num-
ber of empirical equations are available for estimating Ief. Most have been 
developed specifically for reinforced concrete, where for a cracked member, 
Ief lies between the second moments of area of the uncracked cross-section 
and the cracked transformed section about their centroidal axes Iuncr and Icr, 
respectively. We have seen that for a prestressed concrete cross-section, Icr 
varies with the applied moment as the depth of the crack gradually changes 
and its value at any load level is usually considerably less than Iav, as illus-
trated in Figure 5.29. The equations used for estimating Ief for a reinforced 
section are not therefore directly applicable to prestressed concrete.

The empirical equation for Ief proposed by Branson [10] is adopted in 
many codes and specifications for reinforced concrete members, including 
ACI318M [2]. For a prestressed concrete section, the following form of the 
equation can be used:

	 Ief = Iav + (Iuncr − Iav)(Mcr/Mext,0)3 ≤ Iuncr	 (5.177)

where Mext,0 is the maximum bending moment at the section, based on the 
short-term serviceability design load or the construction load and Mcr is the 
cracking moment. The cracking moment is best determined by undertaking 
a time analysis, as outlined in Section 5.7, to determine the effects of creep 
and shrinkage on the time-dependent redistribution of stresses between 
the concrete and the bonded reinforcement. An estimate of the cracking 
moment can be made from:

	
M Z f

P
A

P
A

cr ctm cs= − +





 + ≥σ 0 0. 	 (5.178)
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where Z is the section modulus of the uncracked section, referred to the 
extreme fibre at which cracking occurs; fctm is the mean tensile strength 
given by Equation 4.6 or 4.7; P is the effective prestressing force (after 
all losses); e is the eccentricity of the effective prestressing force mea-
sured to the centroidal axis of the uncracked section; A is the area of 
the uncracked cross-section and σcs is the maximum shrinkage-induced 
tensile stress on the uncracked section at the extreme fibre at which 
cracking occurs. In the absence of more refined calculation, σcs may be 
taken as [9]:
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w cw
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2 5 0 8
1 50
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where ρw is the web reinforcement ratio for the tensile steel (As + Apt)/(bw d); 
ρcw is the web reinforcement ratio for the compressive steel, if any, Asc/(bw d); 
As is the area on non-prestressed tensile reinforcement; Apt is the area of pre-
stressing steel in the tensile zone; Asc is the area of non-prestressed compres-
sive reinforcement; Es is the elastic modulus of the steel in MPa and εcs is the 
final design shrinkage strain (after 30 years).

The approach to account for the tension stiffening effect in EN 1992-1-1 
[1] involves estimating the instantaneous effective curvature of a cracked 
prestressed section κef as a weighted average of the values calculated on a 
cracked section (κcr) and on an uncracked section (κuncr) as follows:

	 κef = ζκcr + (1 − ζ)κuncr	 (5.180)

where ζ is a distribution coefficient that accounts for the moment level and 
the degree of cracking. For prestressed concrete flexural members, ζ may 
be taken as:
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where β is a coefficient to account for the effects of duration of loading or 
repeated loading on the average deformation and equals 1.0 for a single, 
short-term load and 0.5 for sustained loading or many cycles of repeated 
loading; Mcr is the external moment at which cracking first occurs and 
Mext,0 is the external moment at which the instantaneous curvature is to be 
calculated (see Figure 5.31).

The introduction of β = 0.5 in Equation 5.181 for long-term loading 
reduces the cracking moment by about 30% and is a crude way of account-
ing for shrinkage-induced tension and time-dependent cracking. If σcs is 
included in the calculation of Mcr (as in Equation 5.178), β should be taken 
as 1.0 for sustained loading.
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If we express the curvatures in Equation 5.180 in terms of the flexural 
rigidities, i.e. κef = MR,0/(EcmIef), κcr = MR,0/(EcmIav) and κuncr = MR,0/(EcmIuncr), 
Equation 5.180 can be rearranged to give:
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An expression similar to Equation 5.182 for reinforced concrete was first 
proposed by Bischoff [11].

Several other approaches have been developed for modelling the tension 
stiffening phenomenon. However, for most practical prestressed members, 
the maximum in-service moment is less than the cracking moment and 
cracking is not an issue. Even for those members that crack under ser-
vice loads, the maximum moment is usually not much greater than the 
cracking moment and tension stiffening is not very significant. A conserva-
tive, but often quite reasonable estimate of deflection can be obtained by 
ignoring tension stiffening and using Ecm,0 Iav (from Equation 5.176) in the 
calculations.

EXAMPLE 5.11

Determine the short-term or instantaneous deflection immediately after first 
loading of a uniformly loaded, simply-supported post-tensioned beam of span 
12 m. An elevation of the member is shown in Figure 5.32, together with 
details of the cross-section at mid-span (which is identical with the cross-
section analysed in Example 5.3). The prestressing cable is parabolic with the 
depth of the tendon below the top fibre dp at each support equal to 400 mm 
and at mid-span dp = 600 mm, as shown. The non-prestressed reinforcement 
is uniform throughout the span.

Owing to friction and draw-in losses, the prestressing force at the left 
support is P = 1300 kN, at mid-span P =1300 kN and at the right support 
P =1250 kN (see Figure 5.32c). The tendon is housed inside a 60 mm diameter 
ungrouted duct.

The following two service load cases are to be considered:

	 a.	 a uniformly distributed load of 6 kN/m (which is the self-weight of the 
member); and

	 b.	 a uniformly distributed load of 40 kN/m (and this includes self-weight).
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The material properties are Ecm,0 = 30,000 MPa, Es = 200,000 MPa, 
Ep = 195,000 MPa and fck = 40 MPa, and the mean tensile strength is taken to 
be fctm = 3.5 MPa.

At support A: The applied moment at support A is zero for both load cases. 
The prestressing tendon is located at the mid-depth of the section (dp = 
400 mm) and the prestressing force P = 1300 kN. With the reference axis 
taken as the centroidal axis of the gross cross-section (as shown in Figure 
5.32b) and using the cross-sectional analysis described in Section 5.6.2, the 
initial strain at the centroidal axis and the curvature are determined using 
Equation 5.45 as follows:

	 εr,0 = −171.7 × 10−6  and  κ0 = +0.0204 × 10−6 mm−1

At support B: The prestressing force is 1250 kN and the tendon is located 
400  mm below the top fibre. As at support A, Mext,0 = 0, and solving 
Equation 5.45, we get:

	 εr,0 = −165.1 × 10−6  and  κ0 = +0.0196 × 10−6 mm−1
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Figure 5.32 � Beam details (Example 5.11). (a) Elevation. (b) Section at mid-span. 
(c) Prestressing force.
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At mid-span C: The prestressing force is 1300 kN at a depth of 600 mm below 
the top fibre (i.e. at an eccentricity e = 200 mm) and, assuming no shrinkage 
has occurred prior to loading, the cracking moment may be estimated from 
Equation 5.178:
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Using the more accurate uncracked section analysis of Section 5.6.2, the 
second moment of area of the uncracked cross-section is Iuncr = 14,450 × 
106 mm4 and the cracking moment is determined to be Mcr = 570 kNm.

For load case (a): Mext 1 8 kNm,0

26 12
8

0= × =

The cross-section is uncracked and from Equation 5.45:

	 εr,0 = −170.1 × 10−6  and  κ0 = −0.337 × 10−6 mm−1

For load case (b): Mext 72 kNm,0

240 12
8

0= × =

The cross-section has cracked and from Equation 5.134, the depth to the 
neutral axis is dn = 443.6 mm. From Equation 5.45:

	 εr,0 = −70.3 × 10−6  and  κ0 = +1.611 × 10−6 mm−1

The value of Iav is calculated from Equation 5.176 as:
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Deflection: With the initial curvature calculated at each end of the member 
and at mid-span, and with a parabolic variation of curvature along the beam, 
the short-term deflection at mid-span for each load case is determined using 
Equation 5.165.

For load case (a):
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For load case (b):
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5.11.4  Long-term deflection

Long-term deflections due to concrete creep and shrinkage are affected by 
many variables, including load intensity, mix proportions, member size, 
age at first loading, curing conditions, total quantity of compressive and 
tensile reinforcing steel, level of prestress, relative humidity and tempera-
ture. To account accurately for these parameters, a time analysis similar 
to that described in Sections 5.7.3 and 5.9.2 is required. The change in 
curvature during any period of sustained load may be calculated using 
Equation 5.101. Typical calculations are illustrated in Examples 5.5 
and 5.6 for uncracked cross-sections and in Example 5.8 for a cracked 
cross-section.

When the final curvature has been determined at each end of the member 
and at mid-span, the long-term deflection can be calculated using either 
Equation 5.161 or 5.165.

In prestressed concrete construction, a large proportion of the sustained 
external load is often balanced by the transverse force exerted by the ten-
dons. Under this balanced load, the short-term deflection may be zero, but 
the long-term deflection is not zero. The restraint to creep and shrinkage 
offered by non-symmetrically placed bonded reinforcement on a section can 
cause significant time-dependent curvature and, hence, significant deflection 

For load case (b), tension stiffening in the cracked region of the member 
near mid-span has been ignored. To include the effects of tension stiffening 
in the calculations, the effective second moment of area given by Equation 
5.182 can be used instead of Iav for the estimation of curvature. With β = 1 
for short-term calculations, we have:
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The revised curvature at mid-span for load case (b) is:
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of the member. The use of a simple deflection multiplier to calculate long-
term deflection from the short-term deflection is therefore not satisfactory.

In this section, approximate procedures are presented that allow a 
rough estimate of long-term deflections. In some situations, this is all that 
is required. However, for most applications, the procedures outlined in 
Sections 5.7.3 and 5.9.2 are recommended.

5.11.4.1  Creep-induced curvature

The creep-induced curvature κcc(t) of a particular cross section at any time t 
due to a sustained service load first applied at age t0 may be obtained from:

	
κ κ ϕ

αcc sus,0( )
( , )

t
t t= 0 	 (5.183)

where κsus,0 is the instantaneous curvature due to the sustained service 
loads; φ(t,t0) is the creep coefficient at time t due to load first applied at 
age t0 and α is a creep modification factor that accounts for the effects of 
cracking and the restraining action of the reinforcement on creep and may 
be estimated from Equations 5.184, 5.185 and 5.186 [6,12].

For a cracked reinforced concrete section in pure bending (Ief < Iuncr), 
α = α1, where:
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For an uncracked reinforced or prestressed concrete section (Ief = Iuncr), α = α2, 
where:
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and Ast is the equivalent area of bonded reinforcement in the tensile zone 
(including bonded tendons); Asc is the area of the bonded reinforcement in 
the compressive zone between the neutral axis and the extreme compres-
sive fibre; ρ is the tensile reinforcement ratio Ast/(b do) and do is the depth 
from the extreme compressive fibre to the centroid of the outermost layer 
of tensile reinforcement. The area of any bonded reinforcement in the ten-
sile zone (including bonded tendons) not contained in the outermost layer 
of tensile reinforcement (i.e. located at a depth d1 less than do) should be 
included in the calculation of Ast by multiplying that area by d1/do. For the 
purpose of the calculation of Ast, the tensile zone is that zone that would be 
in tension due to the applied moment acting in isolation.
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For a cracked prestressed concrete section or a cracked reinforced con-
crete section subjected to bending and axial compression, α may be taken as:

	
α α α α= + − 
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where α1 is determined from Equation 5.184 provided Icr is replaced by Iav, 
dn is the depth of the intact compressive concrete on the cracked section and 
dn1 is the depth of the intact compressive concrete on the cracked section 
ignoring the axial compression and/or the prestressing force (i.e. the value 
of dn for an equivalent cracked reinforced concrete section in pure bending 
containing the same quantity of bonded reinforcement).

5.11.4.2  Shrinkage-induced curvature

The shrinkage-induced curvature on a reinforced or prestressed concrete 
section is approximated by:
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where h is the overall depth of the section; εcs is the shrinkage strain (note 
that εcs is a negative value) and kr depends on the quantity and location 
of bonded reinforcement areas Ast and Asc and may be estimated from 
Equations 5.188, 5.189, 5.190 and 5.191, as appropriate [6,12].

For a cracked reinforced concrete section in pure bending (Ief < Iuncr), 
kr = kr1, where:
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For an uncracked cross-section (Ief = Iuncr), kr = kr2, where:
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In Equations 5.188, 5.189 and 5.190, Asc is defined as the area of the bonded 
reinforcement on the compressive side of the cross-section. This is a differ-
ent definition to that provided under Equation 5.185. Whilst bonded steel 
near the compressive face of a cracked cross-section that is located at or 
below the neutral axis will not restrain compressive creep, it will provide 
restraint to shrinkage and will be effective in reducing shrinkage-induced 
curvature on a cracked section.

For a cracked prestressed concrete section or for a cracked reinforced 
concrete section subjected to bending and axial compression, kr may be 
taken as:

	
k k k k
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where kr1 and kr2 are determined from Equations 5.188 through 5.190 
by replacing Ast with (Ast + Apt) and, for a cracked prestressed section Icr 
is replaced by Iav in Equation 5.188 and dn and dn1 are as defined after 
Equation 5.186.

Equations 5.183 through 5.190 have been developed [12] as empirical fits 
to the results obtained from a parametric study of the creep- and shrink-
age-induced changes in curvature on reinforced and prestressed concrete 
cross-sections under constant sustained internal actions using the AEMM 
of analysis presented in Sections 5.7 and 5.9.

EXAMPLE 5.12

The final time-dependent deflection of the beam described in Example 5.11 
and illustrated in Figure 5.32 is to be calculated. It is assumed that the duct is 
grouted soon after transfer and the tendon is effectively bonded to the con-
crete for the time period t0 to tk. As in Example 5.11, the following two load 
cases are to be considered:

	 a.	 a uniformly distributed constant sustained load of 6 kN/m; and
	 b.	 a uniformly distributed constant sustained load of 40 kN/m.

For each load case, the time-dependent material properties are:

	 φ(tk,t0) = 2.5;  χ(tk,t0) = 0.65;  εcs(tk) = −450 × 10−6;  φp(tk,σp(i),init) = 0.03.

All other material properties are as specified in Example 5.11.
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	 i.	Calculation using the refined method (AEMM analysis):
At support A: The sustained moment at support A is zero for both load 
cases and the prestressing force is P = 1300 kN at dp = 400 mm. Using 
the procedure outlined in Section 5.7.3 and solving Equation 5.101, the 
strain at the reference axis and the curvature at time tk are:

	 εr,k = −843 × 10−6  and  κk = +0.275 × 10−6 mm−1

At support B: As at support A, the sustained moment is zero, but the 
prestressing force is P = 1250 kN at dp = 400 mm. Solving Equation 
5.101, the strain at the reference axis and the curvature at time tk are:

	 εr,k = −825 × 10−6  and  κk = +0.269 × 10−6 mm−1, respectively.

At mid-span C: For load case (a), Mext, k = 108 kNm and the prestressing 
force is 1300 kN at a depth of 600 mm below the top fibre. For this 
uncracked section, solving Equation 5.101 gives:

	 εr,k = −827 × 10−6  and  κk = −0.503 × 10−6 mm−1

For load case (b), Mext, 0 = 720 kNm and for this cracked cross-section 
with dn = 443.6 mm, Equation 5.101 gives:

	 εr,k = −771 × 10−6  and  κk = +4.056 × 10−6 mm−1

To include tension stiffening, we may use Equations 5.180 and 5.181. 
If the cross-section at mid-span for load case (b) was considered to 
be uncracked, and the uncracked cross-section reanalysed, the final 
curvature is (κk)uncr = +3.293 × 10−6 mm−1. With the cracking moment 
determined in Example 5.11 to be Mcr = 570 kNm, Equation 5.181 gives:
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and from Equation 5.180:

	 κef = 0.687 × 4.056 × 10−6 + (1 − 0.687) × 3.293 × 10−6 = 3.817 × 10−6 mm−1

Deflection: With the final curvature calculated at each end of the mem-
ber and at mid-span, and with a parabolic variation of curvature along 
the beam, the long-term deflection at mid-span for each load case is 
determined using Equation 5.165.
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For load case (a):

	
vC

,
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For load case (b), including the effects of tension stiffening:

	
vC

,
58 1mm= + × + × = + ↓−12 000

96
0 275 10 3 817 0 269 10

2
6[ . . . ] . ( )

	 ii. Calculation using the simplified method (Equations 5.183 
through 5.191):
Load case (a):
The creep- and shrinkage-induced curvatures at each support and at 
mid-span are estimated using Equations 5.183 and 5.187, respectively.

At supports A and B, the cross-section is uncracked, with Asc = As(1) = 
900 mm2, Ast = As(2) = 1800 mm2 (noting that the tendons are at mid-
depth and therefore not in the tension zone) and ρ = Ast/(bdo) = 0.00811. 
From Equation 5.185:
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and from Equation 5.189:
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From Equation 5.183, the creep-induced curvatures are:
At support A:
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At support B:
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and, from Equation 5.187, the shrinkage-induced curvature at each 
support is:
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For load case (a), the cross-section at the mid-span C is uncracked, 
with Asc = 900 mm2, Ast = As(2) + Ap(dp/do) = 1800 + 1000 × (600/740) = 
2611 mm2 and ρ = Ast/(bdo) = 0.0117. From Equations 5.185 and 5.190, 
we get, respectively:
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From Equations 5.183 and 5.187, the creep- and shrinkage-induced 
curvatures at mid-span are, respectively:
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The final curvature at each cross-section is the sum of the instanta-
neous, creep and shrinkage-induced curvatures:

At support A: κ(t) = (0.0139 + 0.0238 + 0.125) × 10−6 

  =  +0.163 × 10−6 mm−1

At support B: κ(t) = (0.0133 + 0.0228 + 0.125) × 10−6

  =  +0.161 × 10−6 mm−1

At mid-span C: κ(t) = (−0.337−0.547 + 0.225) × 10−6

  = −0.659 × 10−6 mm−1

From Equation 5.165, the long-term deflection at mid-span for load 
case (a) is:

vC 9 4 mm= + × − + × = − ↑−12 000
96

0 163 10 0 659 0 161 10
2

6,
( . ( . ) . ) . ( )

For this load case, the simplified equations (Equations 5.183 through 
5.191) overestimate the upward camber of the uncracked beam calcu-
lated using the more refined AEMM method (−6.6 mm).
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Load case (b):
As for load case (a), at supports A and B, the cross-sections are uncracked, with 
Asc = As(1) = 900 mm2, Ast = As(2) = 1800 mm2 and ρ = Ast/(bdo) = 0.00811. The final 
curvatures at the two supports are identical to those calculated for load case (a):

At support A: κ(t) = +0.163 × 10−6 mm−1

At support B: κ(t) = +0.161 × 10−6 mm−1

At mid-span C, the cross-section is cracked, with Asc = 900 mm2, Ast = As(2) + 
Ap(dp/do) = 1800 + 1000 × (600/740) = 2611 mm2 and ρ = Ast/bdo = 0.0117. From 
Example 5.11, dn = 443.6 mm. If the prestress is ignored and a cracked section 
analysis is performed on the equivalent reinforced concrete cross-section, we 
determine that dn1 = 227.3 mm (where dn1 is defined in the text under Equation 
5.186) and Icr = 5360 × 106 mm4. In Example 5.11, the value of Ief determined 
using Equation 5.182 was calculated as Ief = 12,110 × 106 mm4.

From Equations 5.184 and 5.185, we get:
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and from Equation 5.186, we have:
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The creep-induced curvature at mid-span is given by Equation 5.183:
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From Equations 5.188 and 5.190, we get:
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5.12  CRACK CONTROL

5.12.1  Minimum reinforcement

When flexural cracking occurs in a prestressed concrete beam or slab, 
the axial prestressing force on the concrete controls the propagation of the 
crack and, unlike flexural cracking in a reinforced concrete member, the crack 
does not suddenly propagate to its full height (usually a large percentage 
of the depth of the cross-section). The height of a flexural crack gradually 
increases as the load increases and the loss of stiffness due to cracking 
is far more gradual than for a reinforced concrete member. The change 
in strain at the tensile steel level at first cracking is much less than that 
in a conventionally reinforced section with similar quantities of bonded 
reinforcement. After cracking, therefore, a prestressed beam generally suf-
fers less deformation than the equivalent reinforced concrete beam, with 
finer, less extensive cracks. EN 1992-1-1 [1] cautions that the durability 

and Equation 5.191 gives:
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From Equation 5.187, the shrinkage-induced curvature at mid-span is:
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The final curvature at mid-span is therefore:

	 κ( ) ( . . . ) .t = + + × = + ×− − −1 611 1 822 0 289 10 06 3 722 1 mm6 1

From Equation 5.165, the long-term deflection at mid-span for load case (b) 
(including the effects of tension stiffening) is:

	
vC 56 3 mm= + × + × = + ↓−12 000
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For this load case, the deflection determined using the simplified equations 
(Equations 5.183 through 5.191) is in good agreement with the final long-term 
deflection of the cracked beam calculated using the more refined AEMM 
method (+58.1 mm).
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of prestressed members may be more adversely affected by cracking than 
that of reinforced concrete members. Nevertheless, flexural crack control 
in prestressed concrete beams and slabs is not usually a critical design con-
sideration, provided an appropriate distribution and quantity of bonded 
reinforcement is provided in the tensile zone.

According to EN 1992-1-1 [1], if the maximum tensile stress in the con-
crete due to the frequent combinations of service loads (after the effects of 
creep, shrinkage and relaxation have been appropriately considered) is less 
than the effective tensile strength of the concrete fct,eff(t), the section may 
be considered to be uncracked and no further consideration needs to be 
given to crack control. In this context, fct,eff(t) may be taken as either the 
mean value of the tensile strength of the concrete fctm(t) or the mean value 
of the flexural tensile strength of the concrete at the time fctm,fl(t), provided 
that the calculation for the minimum tension reinforcement in Equation 
5.192 is based on the same value. In the calculation of the maximum ten-
sile stress, care should be taken to consider the loss of compressive stress in 
the concrete due to the restraint provided by the bonded reinforcement to 
creep and shrinkage deformations and any restraint provided externally to 
shrinkage by the supports or adjacent parts of the structure.

Where cracking does occur, the maximum crack width must not impair 
the proper functioning of the structure or adversely affect its appearance. 
EN 1992-1-1 [1] specifies a minimum quantity of bonded reinforcement 
for members where crack control is required. This minimum quantity of 
reinforcement is estimated by equating the force in the concrete just before 
cracking with the tensile force in the reinforcement after cracking assum-
ing a stress in the reinforcement equal to the yield stress or an appropri-
ately lower stress required to limit the maximum crack width. In T-beams, 
L-beams or box girders, the minimum reinforcement in each part of the 
cross-section is determined by applying Equation 5.192 to each web or 
flange that is in tension.

	 As,min σs = kc k fct,eff Act	 (5.192)

where As,min is the minimum area of bonded reinforcing steel in the tensile 
zone; Act is the area of the concrete in the tensile zone just before crack-
ing; σs is the absolute value of the maximum stress permitted in the steel 
to satisfy the maximum crack width limit (see Section 5.12.2) (but should 
not exceed fyk); fct,eff is the mean tensile strength of the concrete at the time 
when cracking is expected to occur (either fctm(t) or fctm.fl(t), as appropriate); 
k accounts for non-uniform eigenstresses that develop due to differential 
shrinkage in each web or flange of the cross-section, with k = 1.0 when 
the width of a flange or the depth of a web is less than 300 mm and k = 
0.65 when the width of a flange or the depth of a web is greater than 
800 mm (intermediate values may be interpolated) and kc depends on the 
shape of the stress distribution before cracking. For pure tension, kc = 1.0. 
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For rectangular sections and the webs of box section and T-section sub-
jected to bending or bending and axial force, kc is given by:
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and for flanges of box tension and T-section:
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ct ct,eff

= ≥0 9 0 5. . 	 (5.194)

where:
σc is the mean concrete stress acting on the part of the section under 

consideration (=NEd/bh);
NEd is the axial force at the serviceability limit state acting on the part 

of the section under consideration (compression is taken as positive 
here), including the effect of prestress and axial force;

h* is equal to h for h < 1000  mm and equal to 1000  mm for h ≥ 
1000 mm;

k1 accounts for axial force, with k1 = 1.5 if NEd is compressive and k1 = 
(2h*)/(3h) if NEd is tensile; and

Fcr is the absolute value of the tensile force within the flange immedi-
ately prior to cracking (using fctm to calculate the cracking moment 
on the section).

For cross-sections containing bonded tendons in the tension zone, the 
bonded tendons may be assumed to contribute to crack control up to a 
distance of 150 mm from the centre of the tendon and the minimum rein-
forcement requirements within this area are obtained from the following 
modification to Equation 5.192:

	 A A k kf As min s p p c ct eff ct', ,σ ξ σ+ =1 ∆ 	 (5.195)

where Ap' is the area of the bonded tendons within the concrete area Ac,eff; 
Ac,eff is the effective area of concrete in tension surrounding the tendon with 
depth hc,ef equal to the lesser of 2.5(h − d), (h − x)/3 or h/2; Δσp is the varia-
tion in stress in the tendons from the state of zero strain in the concrete at 
the same level; ξ1 is an adjusted ratio of bond strength to account for the 
different diameters of the tendons and the reinforcing steel given by:

	
ξ ξ φ

φ1 = s

p

	 (5.196)
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where:
ξ is the ratio of bond strength of prestressing and reinforcing steel 

(as given in Table 5.4);
ϕs is the largest bar diameter of the reinforcing steel; and
ϕp is the equivalent diameter of the tendon and is given by:

ϕp  = 1 6. Ap  for bundles of tendons
ϕp = 1.75ϕwire for single 7-wire strands (ϕwire = wire diameter)
ϕp = 1.20ϕwire for single 3-wire strands (ϕwire = wire diameter)

If no conventional reinforcement is included and only the bonded pre-
stressing steel is used to control cracking, ξ ξ1 = .

5.12.2  Control of cracking without direct calculation

According to EN 1992-1-1 [1], when the areas of bonded reinforcement and 
tendons exceed the minimum values obtained from Equations 5.192 and 
5.195, crack widths will not be excessive, provided:

	 1.	For cracking caused dominantly by restraint: the bar sizes given in 
Table 5.5 are not exceeded, where the steel stress is the value deter-
mined on the cracked section immediately after cracking; and

	 2.	For cracking caused dominantly by loading: the bar sizes given in 
Table 5.5 are not exceeded or the bar spacings given in Table 5.6 are 
complied with, where the steel stress is the value determined on the 
cracked section under the relevant combination of actions.

It is recommended here that the bar spacing does not exceed 300 mm and 
that the cover to the bars does not exceed about 100 mm.

For other values of the variables presented in the note at the bottom of 
Tables 5.5 and 5.6, the maximum bar diameter may be modified as follows:
In bending:

	
φ φs s

ct,eff c cr*
2.9 2( )

=
−

f k h
h d

	 (5.197)

Table 5.4  �Ratio of bond strength (ξ) between tendons and reinforcing steel [1]

Prestressing steel 

ξ 

Pretensioned 
tendon

Bonded, post-tensioned

≤C50/60 ≥C70/85

Smooth bars and wires Not applicable 0.3 0.15
Strands 0.6 0.5 0.25
Indented wires 0.7 0.6 0.3
Ribbed bars 0.8 0.7 0.35

Note:	 For intermediate values between C50/60 and C70/85, interpolation may be used.
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In direct tension:

	
φ φs s

ct,eff cr*
2.9 8( )

=
−

f h
h d

	 (5.198)

where ϕs is the modified maximum bar diameter; φs* is the maximum bar 
diameter given in Table 5.5; h is the overall depth of the cross-section; 
hcr is the depth of the tensile zone immediately before cracking consider-
ing the characteristic values of prestress and internal actions under the 
quasi-permanent combination of actions and d is the effective depth to the 
centroid of the outer layer of reinforcement.

Table 5.5  Maximum bar diameters ϕs* for crack controla [1]

Steel stress (MPa) 

Maximum bars size (mm) 

wk = 0.4 mm wk = 0.3 mm wk = 0.2 mm

160 40 32 25
200 32 25 16
240 20 16 12
280 16 12 8
320 12 10 6
360 10 8 5
400 8 6 4
450 6 5 —
a	 The values in the table were determined for c = 25 mm, fct,eff = 2.9 MPa, hcr = 0.5, 

(h − d) = 0.1 h, k1 = 0.8, k2 = 0.5, kc = 0.4, k = 1.0, kt = 0.4 and k′ = 1.0.

Table 5.6  �Maximum bar spacing for crack controla [1]

Steel stress (MPa) 

Maximum bars spacing (mm) 

wk = 0.4 mm wk = 0.3 mm wk = 0.2 mm

160 300 300 200
200 300 250 150
240 250 200 100
280 200 150 50
320 250 100 —
360 100 50 —
a	 The values in the table were determined for c = 25 mm, fct,eff = 2.9 MPa, hcr = 0.5, 

(h − d) = 0.1 h, k1 = 0.8, k2 = 0.5, kc = 0.4, k = 1.0, kt = 0.4 and k′ = 1.0.
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For pretensioned concrete, where crack control is provided by the bonded 
tendons, Tables 5.5 and 5.6 may be used except that the steel stress to 
consider is the total stress after cracking minus the prestress. For post-
tensioned concrete, where crack control is provided mainly by ordinary 
reinforcement, Tables 5.5 and 5.6 may be used with the calculated rein-
forcement stress accounting for prestressing.

For beams where h ≥ 1000 mm and the main reinforcement is concen-
trated at either the top or bottom of the cross-section, skin reinforcement 
is required to control cracking in the side faces of the beam. This side-face 
reinforcement should be uniformly distributed between the main tensile 
steel and the neutral axis and should be located inside the stirrups and tied 
to them. It is preferable to use small-diameter bars at spacing not exceeding 
300 mm. The area of the side-face reinforcement may be determined using 
Equation 5.192 taking k = 0.5 and σs = fyk.

5.12.3  Calculation of crack widths

For crack control by direct calculation, EN 1992-1-1 [1] permits the calcu-
lation of the crack width in a reinforced concrete member using:

	 w s= −r,max sm cm( )ε ε 	 (5.199)

where sr,max is the maximum crack spacing; εsm is the mean strain in the 
reinforcement at design loads, including the effects of tension stiffening 
and any imposed deformations; and εcm is the mean strain in the concrete 
between the cracks.

The difference between the mean strain in the reinforcement and the 
mean strain in the concrete may be taken as:

	
ε ε σ

ρ
α ρ σ

sm cm
s

s

ct,eff

s p,eff
e p,eff

s

s

− = − + ≥
E

k
f

E E
t ( ) .1 0 6 	 (5.200)

where σs is the stress in the tensile reinforcement assuming a cracked sec-
tion. For a pretensioned member, σs may be replaced by the stress variation 
in the tendons Δσp from the state of zero strain of the concrete at the same 
level; kt is a factor that depends on the duration of load and equals 0.6 
for short-term loading and 0.4 for long-term loading; αe is the modular 
ratio Es/Ecm; fct,eff is the mean value of the axial tensile strength of concrete 
at the time cracking is expected; ρp,eff is the reinforcement ratio given by 
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( ) ,A A As p c eff' /+ ξ1
2 ; Ap' and Ac,eff are as defined under Equation 5.195; and ξ1 is 

given by Equation 5.196.
For cross-sections with bonded reinforcement fixed at reasonably close 

centres, i.e. bar spacing ≤ 5(c + 0.5ϕ), the maximum final crack width may 
be calculated from:

	 s c k kr,max p,eff/= +3 4 0 425 1 2. . φ ρ 	 (5.201)

in which ϕ is the bar diameter. Where a section contains different bar 
sizes in the tensile zone, an equivalent bar diameter ϕeq should be used in 
Equation 5.201. For a section containing i different bar diameters:

	
φ φ φ

φ φeq =
+ +
+ +

n n
n n

i i

i i

1 1
2 2

1 1

�
�

	 (5.202)

and ni is the number of bars of diameter ϕi; c is the clear cover to the 
longitudinal reinforcement; k1 is a coefficient that accounts for the bond 
properties of the bonded reinforcement, with k1 = 0.8 for high bond bars 
and k1 = 1.6 for plain bars and prestressing tendons; and k2 is a coefficient 
that accounts for the longitudinal strain distribution, with k2 = 0.5 for 
bending and k2 = 1.0 for pure tension. For cases in combined tension and 
bending, k2 = (ε1 + ε2)/(2ε1) and ε1 is the greater and ε2 is the lesser of the 
tensile strains at the boundaries of the cross-section (assessed on the basis 
of a cracked section).

Where the spacing of the bonded reinforcement exceeds 5(c + 0.5ϕ), 
or where there is no bonded reinforcement in the tensile zone, an upper 
bound to the crack width is obtained by assuming a maximum crack spac-
ing of:

	 s h xr,max = −1 3. ( )	 (5.203)

where x is the depth to the neutral axis on the cracked section.
In a member that is reinforced in two orthogonal directions, where the 

angle between the axes of principal stress and the direction of the reinforce-
ment is significant (>15°), the crack spacing may be taken as:

	

s

s s

r,max

r,max,y r,max,z

cos sin
=

+

1
θ θ 	 (5.204)
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where θ is the angle between the reinforcement in the y direction and the direc-
tion of the axis of principal tension and sr,max,y and sr,max,z are the crack spacings 
in the y and z directions, respectively, calculated using Equation 5.201.

5.12.4 � Crack control for restrained shrinkage 
and temperature effects

Direct tension cracks due to restrained shrinkage and temperature changes 
may lead to serviceability problems, particularly in regions of low moment 
and in directions with little or no prestress. Such cracks usually extend 
completely through the member and are more parallel-sided than flexural 
cracks. If uncontrolled, these cracks can become very wide and lead to 
waterproofing and corrosion problems. They can also disrupt the integrity 
and the structural action of the member.

Evidence of direct tension type cracks is common in concrete slab sys-
tems. For example, consider a typical one-way beam and slab floor system. 
The load is usually carried by the slab in the primary direction across the 
span to the supporting beams, while in the orthogonal direction (the sec-
ondary direction), the bending moment is small. Shrinkage is the same in 
both directions and restraint to shrinkage usually exists in both directions.

In the primary direction, prestress may eliminate flexural cracking, but if 
the level of prestress is such that flexural cracking does occur, shrinkage will 
cause small increases in the widths of flexural cracks and may cause addi-
tional flexure type cracks in the previously uncracked regions. However, in 
the secondary direction, which is in effect a direct tension situation, there may 
be little or no prestress and shrinkage may cause a few widely spaced cracks 
that penetrate completely through the slab. Frequently, more reinforcement 
is required in the secondary direction to control these direct tension cracks 
than is required for bending in the primary direction. As far as cracking is 
concerned, it is not unreasonable to say that shrinkage is a greater problem 
when it is not accompanied by flexure and when the level of prestress is low.

When determining the amount of reinforcement required in a slab to 
control shrinkage- and temperature-induced cracking, account should be 
taken of the influence of bending, the degree of restraint against in-plane 
movements and the exposure classification.

Where the ends of a slab are restrained and the slab is not free to expand 
or contract in the secondary direction, the minimum area of reinforcement 
in the restrained direction given by Equation 5.205 is recommended.

	 A b hs.min cp= − × −( . . )6 0 2 5 10 3σ 	 (5.205)

where σcp is the average prestress Pm,t/A. When a slab or wall is greater than 
500 mm thick, the reinforcement required near each surface may be deter-
mined assuming that h = 250 mm in Equation 5.205.



216  Design of Prestressed Concrete to Eurocode 2

5.12.5  Crack control at openings and discontinuities

Openings and discontinuities in slabs are the cause of stress concentra-
tions that may result in diagonal cracks emanating from re-entrant corners. 
Additional reinforcing bars are generally required to trim the hole and con-
trol the propagation of these cracks. A suitable method of estimating the 
number and size of the trimming bars is to postulate a possible crack and 
provide reinforcement to carry a force at least equivalent to the area of the 
crack surface multiplied by the mean direct tensile strength of the concrete. 
For crack control, the maximum stress in the trimming bars should be lim-
ited to about 200 MPa.

While this additional reinforcement is required for serviceability to con-
trol cracking at re-entrant corners, it should not be assumed that this same 
steel is satisfactory for strength. For a small hole through a slab, it is gener-
ally sufficient for bending to place additional steel on either side of the hole 
equivalent to the steel that must be terminated at the face of the opening. 
The effects of a large hole or opening should be determined by appropriate 
analysis accounting for the size, shape and position of the opening. Plastic 
methods of design, such as the yield line method (see Section 12.9.7) or 
the simplified strip method, are convenient ways of designing such slabs to 
meet requirements for strength.
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Chapter 6

Flexural resistance

6.1  INTRODUCTION

An essential design objective for a structure or a component of a structure is the 
provision of adequate strength. The consequences and costs of strength failures 
are high and therefore the probability of such failures must be very small.

The satisfaction of concrete and steel stress limits at service loads does 
not necessarily ensure adequate strength and does not provide a reliable 
indication of either the actual strength or the safety of a structural member. 
It is important to consider the non-linear behaviour of the member in the 
overloaded range to ensure that it has an adequate structural capacity. Only 
by calculating the design resistance of a member can a sufficient margin 
between the service load and the ultimate load be guaranteed.

The design resistance of a cross-section in bending MRd is calculated 
from a rational and well-established procedure involving consideration of 
the design strength of both the concrete and the steel in the compressive 
and tensile parts of the cross-section. The prediction of the design flexural 
strength is described and illustrated in this chapter. When MRd is deter-
mined, the design requirements for the strength limit state (as discussed in 
Section 2.4) may be checked and satisfied.

In addition to calculating the design strength of a section, a measure of 
the ductility of each section must also be established. Ductility is an impor-
tant objective in structural design. Ductile members undergo large defor-
mations prior to failure, thereby providing warning of failure and allowing 
indeterminate structures to establish alternative load paths. In fact, it is 
only with adequate ductility that the predicted strength of indeterminate 
members and structures can be achieved in practice.

6.2  FLEXURAL BEHAVIOUR AT OVERLOADS

The load at which collapse of a flexural member occurs is called the 
ultimate load. If the member has sustained large deformations prior to 
reaching the ultimate load, it is said to have ductile behaviour. If, on the 
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other hand, it has only undergone relatively small deformations prior to 
failure, the member is said to have brittle behaviour. There is no defined 
deformation or curvature that distinguishes ductile from brittle behaviour. 
Codes of practice, however, usually impose a ductility requirement by lim-
iting the curvature of a beam or slab at the ultimate load to some minimum 
value, thereby ensuring that significant deformation occurs in a flexural 
member prior to failure.

Since beam failures that result from a breakdown of bond between the 
concrete and the steel reinforcement, or from excessive shear, or from fail-
ure of the anchorage zone tend to be brittle in nature, every attempt should 
be made to ensure that, if a beam is overloaded, a ductile flexural failure 
would initiate the collapse. Therefore, the design philosophy should ensure 
that a flexural member does not fail before the required design moment 
capacity of the critical section is attained.

Consider the prestressed concrete cross-section shown in Figure 6.1. 
The section contains non-prestressed reinforcement in the compressive 
and tensile zones and bonded prestressing steel. Typical strain and stress 
distributions for four different values of applied moment are also shown in 
Figure 6.1. As the applied moment M increases from typical in-service lev-
els into the overload range, the neutral axis gradually rises and eventually 
material behaviour becomes non-linear. The non-prestressed tensile steel 
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may yield (if its strain εs exceeds the yield strain εyk, where εyk = fyk/Es), the 
prestressed steel may enter the non-linear part of its stress–strain curve 
as εpt increases, the concrete compressive stress distribution becomes non-
linear when the extreme fibre stress exceeds about 0.5fck, and the non-
prestressed compressive steel may yield (if the magnitude of its strain 
exceeds the yield strain εyk).

A flexural member, which is designed to exhibit ductile behaviour, usu-
ally has failure of the critical section preceded by yielding of the bonded 
tensile steel, i.e. by effectively exhausting the capacity of the tensile steel to 
carry any additional force. Such a member is said to be under-reinforced.

Because the stress–strain curve for the prestressing steel has no distinct 
yield point and the stress increases monotonically as the strain increases (see 
Figure 4.11), the capacity of the prestressing steel to carry additional force 
is never entirely used up until the steel actually fractures. When the tendon 
strain exceeds about 0.01 (for wire or strand), the stress–strain curve becomes 
relatively flat and the rate of increase of stress with strain is small. After yield-
ing of the steel, the resultant internal tensile force (i.e. Ft = Fst + Fpt in 
Figure 6.1) remains approximately constant (as does the resultant internal 
compressive force Fc, which is equal and opposite to Ft). The moment capac-
ity can be further increased slightly by an increase in the lever arm between 
Fc and Ft. Under increasing deformation, the neutral axis rises, the compres-
sive zone becomes smaller and the maximum compressive concrete stress 
increases. Eventually, after considerable deformation, a compressive failure of 
the concrete above the neutral axis occurs and the section reaches its ultimate 
capacity. It is, however, the strengths of the prestressing tendons and the non-
prestressed reinforcement in the tensile zone that control the strength of a 
ductile section. In fact, the difference between the moment at first yielding of 
the tensile steel and the ultimate moment is usually relatively small.

A flexural member, which is over-reinforced, on the other hand, does not 
have significant ductility at failure and fails by crushing of the compressive con-
crete without the prestressed or non-prestressed tensile reinforcement reach-
ing yield or deforming significantly after yield. At the ultimate load condition, 
both the tensile strain at the steel level and the section curvature are relatively 
small and, consequently, there is little deformation or warning of failure.

Because it is the deformation at failure that defines ductility, it is both 
usual and reasonable in design to define a minimum ultimate curvature to 
ensure the ductility of a cross-section. This is often achieved by placing a 
maximum limit on the depth to the neutral axis at the ultimate load condi-
tion. Ductility can be increased by the inclusion of non-prestressed rein-
forcing steel in the compression zone of the beam. With compressive steel 
included, the internal compressive force Fc is shared between the concrete 
and the steel. The volume of the concrete stress block above the neutral 
axis is therefore reduced and, consequently, the depth to the neutral axis is 
decreased. Some compressive reinforcement is normally included in beams 
to provide anchorage for transverse shear reinforcement.
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Ductility is desirable in prestressed (and reinforced) concrete flexural 
members. In continuous or statically indeterminate members, ductility is 
particularly necessary. Large curvatures are required at the peak moment 
regions in order to permit the inelastic moment redistribution that must 
occur if the moment diagram assumed in design is to be realised in practice. 
Consider the stress distribution caused by the ultimate moment on the sec-
tion in Figure 6.1. The resultant compressive force of magnitude Fc equals 
the resultant tensile force Ft and the ultimate moment capacity Mu (also 
termed the resistance) is calculated from the internal couple:

	 Mu(= MR) = Fcz = Ftz	 (6.1)

The lever arm z between the internal compressive and tensile resultants 
(Fc and Ft) is usually about 0.9d, where d is the effective depth of the section 
and may be defined as the distance from the extreme compressive fibre to 
the position of the resultant tensile force in all the steel on the tensile side 
of the neutral axis.

To find the lever arm z more accurately, the location of the resultant com-
pressive force in the concrete Fc needs to be determined by considering the 
actual stress–strain relationship for concrete in the compression zone and 
locating the position of its centroid.

6.3  DESIGN FLEXURAL RESISTANCE

6.3.1  Assumptions

In the analysis of a cross-section to determine its design bending resistance 
MRd, the following assumptions are usually made:

	 1.	the variation of strain on the cross-section is linear, i.e. strains in the 
concrete and the bonded steel are calculated on the assumption that 
plane sections remain plane;

	 2.	perfect bond exists between the concrete and the bonded reinforce-
ment or bonded tendons, i.e. the change in strain in the bonded 
reinforcement or bonded tendons is the same as that in the adjacent 
concrete;

	 3.	concrete carries no tensile stress, i.e. the tensile strength of the con-
crete is ignored;

	 4.	the stresses in the compressive concrete and in the steel reinforcement 
(both prestressed and non-prestressed) are obtained from actual or 
idealised stress–strain relationships for the respective materials; and

	 5.	the initial strain in the prestressing tendons is taken into account 
when determining the stress in the tendon.
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6.3.2 � Idealised compressive stress 
blocks for concrete

In order to simplify numerical calculations for the design flexural resis-
tance, EN 1992-1-1 [1] specifies the idealised stress blocks shown in 
Figure 6.2 for the concrete on the compressive side of the neutral axis. 
Compressive strains are shown as positive in these figures. The strain limits 
and the exponent n are given in Table 6.1 for the standard strength grades 
of concrete. As an alternative, to the stress blocks in Figure 6.2, an ide-
alised rectangular stress block may be used to model the compressive stress 
distribution in the concrete.

In Figure 6.3a, an under-reinforced section at the ultimate moment is 
shown. The section has a single layer of bonded prestressing steel. The strain 
diagram and the actual concrete stress distribution used for the ultimate 
limit state design are also shown. In Figure 6.3b, the idealised rectangular 
stress block specified in EN 1992-1-1 [1] to model the design compressive 
stress distribution in the concrete above the neutral axis is shown. The 
dimensions of the rectangular stress block are calibrated such that the vol-
ume of the stress block and the position of its centroid are approximately 
the same as for the curvilinear design stress block.

At the design ultimate moment, the extreme fibre-compressive strain is 
taken to be εcu3 and the depth to the neutral axis is x. In reality, the actual 
extreme fibre strain may vary depending on the degree of confinement, 
but for under-reinforced members, with the flexural resistance very much 
controlled by the strength of the tensile steel (both prestressed and non-
prestressed), variation in the assumed value of εcu3 does not have a signifi-
cant effect on the design resistance MRd.
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Figure 6.2 � Idealised stress blocks for concrete in compression. (a) Parabola–rectangle 
diagram. (b) Bilinear diagram.
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Table 6.1  �Strain limits for idealised stress blocks [1]

Strength classes for concrete 

Analytical relationship for 
fck ≥ 50 MPa 

fck 
MPa ≤50 55 60 70 80 90 

fcm
MPa

– 63 68 78 88 98 fcm = fck + 8 (MPa)

εcu1 0.0035 0.0032 0.003 0.0028 0.0028 0.0028 εcu1 = �0.0028 + 0.027 
[(98 − fcm)/100]4

εc2 0.002 0.0022 0.0023 0.0024 0.0025 0.0026 εc2 = �0.002 + 0.085 × 10–3 

(fck − 50)0.53

εcu2 0.0035 0.0031 0.0029 0.0027 0.0026 0.0026 εcu2 = �0.0026 + 0.035 
[(90 − fck)/100]4

n 2.0 1.74 1.6 1.45 1.4 1.4 n = �1.4 + 23.4 
[(90 − fck)/100]4

εc3 0.00175 0.0018 0.0019 0.002 0.0022 0.0023 εc3 = �0.00175 + 0.00055 
[(fck − 50)/40]

εcu3 0.0035 0.0031 0.0029 0.0027 0.0026 0.0026 εcu3 = �0.0026 + 0.035 
[(90 − fck)/100]4
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The depth of the rectangular stress block (in Figure 6.3b) is λx and the 
uniform stress intensity is ηfcd. For the rectangular section of Figure 6.3b, 
the hatched area Ac (= λxb) is therefore assumed to be subjected to a uniform 
stress of ηfcd. In EN 1992-1-1 [1], λ and η depend on the compressive 
strength of concrete and are given by:

	 λ = 0.8	 for fck ≤ 50 MPa	 (6.2)

	 λ = 0.8 − (fck − 50)/400	 for 50 < fck ≤ 90 MPa	 (6.3)

	 η = 1.0	 for fck ≤ 50 MPa	 (6.4)

	 η = 1.0 − (fck − 50)/200	 for 50 < fck ≤ 90 MPa	 (6.5)

EN 1992-1-1 [1] recommends that the value of ηfcd should be reduced by 
10% for cross-sections that reduce in width as the extreme compressive 
fibre is approached.

For the rectangular section of Figure 6.3b, the resultant compressive 
force Fcd is the volume of the rectangular stress block given by:

	 Fcd = ηfcdAc = ηfcdλxb	 (6.6)

and the line of action of Fcd passes through the centroid of the hatched area 
Ac, i.e. at a depth of λx/2 below the extreme compressive fibre (provided, 
of course, that Ac is rectangular). The resultant tensile force Fptd on the 
cross-section is the force in the tendon:

	 Fptd = σpudAp	 (6.7)

where σpud is the design stress in the tendon and is determined from consid-
erations of equilibrium, strain compatibility and the design stress–strain 
relationship for the tendon (given in Figure 4.12).

Axial equilibrium requires that Fptd = Fcd and therefore:

	 σpud = ηfcdλxb/Ap	 (6.8)

The flexural design resistance is obtained from Equation 6.1:

	
M F z A d

x
Rd ptd pud p p= = −






σ λ

2
	 (6.9)

The ultimate design curvature κud is an indicator of ductility and is the 
slope of the design strain diagram at failure (as shown in Figure 6.3b):

	
κ ε

ud
cu3=
x

	 (6.10)
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Ductile failures are associated with large deformations at the ultimate 
load condition. Ductility is generally acceptable if the depth of the neu-
tral axis at the design resistance x is less than about 0.3 d, where d is the 
effective depth to the line of action of Fptd. EN 1992-1-1 [1] requires that 
in regions of plastic hinges, x/d should not exceed 0.45 when fck ≤ 50 MPa 
and 0.35 when fck ≥ 55 MPa.

6.3.3 � Prestressed steel strain components 
(for bonded tendons)

For reinforced concrete sections, the strains in the reinforcing steel and in 
the concrete at the steel level are the same at every stage of loading, while 
for the tendons on a prestressed concrete section, this is not the case. The 
strain in the bonded prestressing steel at any stage of loading is equal to the 
strain caused by the initial prestress plus the change in strain in the con-
crete at the steel level caused by the applied load. To calculate accurately 
the design flexural resistance of a section, an accurate estimate of the final 
strain in the prestressed and non-prestressed steel is required. The design 
tensile strain in the prestressing steel εpud is much larger than the tensile 
strain in the concrete at the steel level, owing to the large initial prestress. 
For a bonded tendon, εpud is usually considered to be the sum of several 
subcomponents. Figure 6.4 shows the instantaneous strain distributions on 
a prestressed section at three stages of loading.

Stage (a) shows the elastic instantaneous concrete strain caused by the 
effective prestress Pm,t, when the externally applied moment is zero. The 
instantaneous strain in the concrete at the steel level is compressive, with 
magnitude approximately equal to:
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where A is the area of the section, I is the second moment of area of the 
section about its centroidal axis and e is the eccentricity of the prestressing 
force (as shown in Figure 6.4).

The stress and strain in the prestressing steel at stage (a) are:

	
σpm,t

m,t

p

=
P
A

	 (6.12)

and
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p p

= =
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E A

	 (6.13)

provided that the steel stress is within the elastic range.
Stage (b) is the concrete strain distribution when the applied moment is 

sufficient to decompress the concrete at the steel level. Provided that there 
is bond between the steel and the concrete, the change in strain in the pre-
stressing steel is equal to the change in concrete strain at the steel level. The 
strain in the prestressing steel at stage (b) is therefore equal to the value at 
stage (a) plus a tensile increment of strain equal in magnitude to εce (from 
Equation 6.11).

Strain diagram (c) in Figure 6.4 corresponds to the design ultimate load 
condition. The concrete strain at the steel level εptd can be expressed in 
terms of the extreme compressive fibre strain εcu3 and the depth to the neu-
tral axis x and is given by:

	
ε εptd cu3

p=
−d x
x

	 (6.14)

From the requirements of strain compatibility, the change in strain in the 
bonded prestressing steel between load stages (b) and (c) is also equal to εptd. 
Therefore, the strain in the bonded tendon at the design ultimate load condi-
tion may be obtained from:

	 εpud = εpe + εce + εptd	 (6.15)

and εpud can therefore be determined in terms of the position of the neutral 
axis at failure x and the extreme compressive fibre strain εcu3. If εpud is 
known, the design stress σpud in the prestressing steel at the design resis-
tance can be determined from the design stress–strain diagram for the 
prestressing steel (Figure 4.12). With the area of prestressing steel known, 
the design tensile force Fptd can be calculated. In general, however, the 
design steel stress is not known at failure, and it is necessary to equate the 
design tensile force in the steel tendon (plus the design tensile force in any 
non-prestressed tensile steel) with the design concrete compressive force 
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(plus the design compressive force in any non-prestressed compressive steel) 
in order to locate the neutral axis depth and hence find εpud.

In general, the magnitude of εce in Equation 6.15 is very much smaller 
than either εpe or εptd, and may often be ignored without introducing serious 
errors.

6.3.4 � Determination of MRd for a singly 
reinforced section with bonded tendons

Consider the section shown in Figure 6.3a and the idealised compressive 
stress block shown in Figure 6.3b. In order to calculate the design bending 
resistance using Equation 6.9, the depth to the neutral axis x and the final 
stress in the prestressing steel σpud must first be determined.

An iterative trial-and-error procedure is usually used to determine the 
value of x for a given section. The depth to the neutral axis is adjusted until 
horizontal equilibrium is satisfied, i.e. Fptd = Fcd, in which both Fptd and Fcd 
are functions of x. For this singly reinforced cross-section, Fcd is the volume 
of the compressive stress block given by Equation 6.6 and Fptd depends on 
the strain in the prestressing steel εpud. For any value of x, the strain in the 
prestressing steel is calculated using Equation 6.15 (and Equations 6.11 
through 6.14). The design steel stress σpud, which corresponds to the cal-
culated value of strain εpud, can be obtained from the design stress–strain 
curve for the prestressing steel and the corresponding tensile force is given 
by Equation 6.7. When the correct value of x is found (i.e. when Fptd = Fcd), 
the design flexural resistance MRd may be calculated from Equation 6.9.

A suitable iterative procedure is outlined and illustrated in the follow-
ing example. About three iterations are usually required to determine a 
good estimate of x and hence MRd.

	 1.	With εcu3 taken from the bottom row in Table 6.1, select an appropri-
ate trial value of x (= x1) and determine the corresponding value of 
εpud (= εpud1) from Equation 6.15 and Fcd (= Fcd1) from Equation 6.6. 
By equating the tensile force in the steel to the compressive force in 
the concrete, the stress in the tendon σpud (= σpud1) may be determined 
from Equation 6.8.

	 2.	Plot the points εpud1 and σpud1 on the graph containing the design 
stress–strain curve for the prestressing steel (as illustrated subse-
quently in Figure 6.6). If the point falls on the curve, then the value of 
x selected in step 1 is correct. If the point is not on the curve, then the 
stress–strain relationship for the prestressing steel is not satisfied and 
the value of x is not correct.

	 3.	If the points εpud1 and σpud1 plotted in step 2 are not sufficiently close 
to the design stress–strain curve for the steel, repeat steps 1 and 2 
with a new estimate of x (= x2) to obtain revised estimates of tendon 
strain and stress (εpud2 and σpud2). A larger value for x is required if the 



Flexural resistance  229

point plotted in step 2 is below the design stress–strain curve and a 
smaller value is required if the point is above the curve. Plot the new 
points εpud2 and σpud2 on the curve.

	 4.	Interpolate between the plots from steps 2 and 3 to obtain a close 
estimate for εpud and σpud and the corresponding value for x.

	 5.	With the values of σpud and x determined in step 4, calculate the design 
moment resistance MRd. If the area above the neutral axis is rectan-
gular, MRd is obtained from Equation 6.9. Non-rectangular-shaped 
cross-sections are considered in Section 6.5.

EXAMPLE 6.1

The design flexural resistance MRd of the rectangular section of Figure 6.5 is 
to be calculated.

The steel tendon consists of ten 12.9 mm strands (steel type Y1860S). From 
Table 4.8, Ap = 1,000 mm2, fpk = 1,860 MPa, fpd = 1,391 MPa, Ep = 195,000 MPa, 
γs = 1.15 and εuk = 0.035. The effective prestress is Pm,t = 1,200 kN. The design 
stress–strain relationship for prestressing steel is shown in Figure 6.6 (taken 
as Line 1 from Figure 4.12). The concrete properties are fck = 40 MPa and 
Ecm = 35,000 MPa.

With the partial safety factor for concrete γC = 1.5 and the coefficient 
αcc = 1.0, the design strength of concrete is given by Equation 4.11:

	
f

f
cd

cc ck

C

26 67 MPa= = × =α
γ

1 0 40
1 5

.
.

.

From Equation 6.2, λ = 0.8 and, from Equation 6.4, η = 1.0.
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Fptd
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Stresses and forces at
the design resistance

η fcd

λx

λx/2

750
650

εptd

Figure 6.5 � Section details and stress and strain distributions used for the calculation 
of design flexural resistance MRd (Example 6.1).
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The initial strain in the tendons due to the effective prestress is given by 
Equation 6.13:

	
εpe

m,t

p p

= = ×
×

=P
E A

1 200 10
195 000 1 000

0 00615
3,

, ,
.

The strain in the concrete caused by the effective prestress at the level of the 
prestressing steel (εce in Figure 6.4) is calculated using Equation 6.11. Because 
εce is small compared with εpe, it is usually acceptable to use the properties of 
the gross cross-section for its determination:

	
εce
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The concrete strain at the prestressed steel level at the design ultimate con-
dition is obtained from Equation 6.14:

	
εptd = × −






0 0035
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.

x
x

and the final strain in the prestressing steel is given by Equation 6.15:
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	 (6.1.1)
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Figure 6.6 � Stress–strain curve for strand (Example 6.1).



Flexural resistance  231

When εpd (= fpd/Ep) ≤ εpud ≤ εud, the stress–strain relationship for the 
tendon is obtained from Figure 4.12 as:

	

σ
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ε
ε

pud pd

pk s pd

pud pd p

uk pd p/
/
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−
−

=
−
−

f
f f

f E
f E( )
( )
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The magnitude of resultant compressive force Fcd carried by the concrete 
on the rectangular section is the volume of the idealised rectangular stress 
block in Figure 6.5 and is given by Equation 6.6:

	 Fcd = ηfcdλxb = 1.0 × 26.67 × 0.8 × 350x = 7467x

The resultant tensile force Fptd is given by Equation 6.7:

	 Fptd pud= ×1000 σ

Horizontal equilibrium requires that Fcd = Fptd and hence:

	 σpud = 7 467. x 	 (6.1.2)

Trial values of x are selected and the corresponding values of εpud and σpud 
(calculated from Equations 6.1.1 and 6.1.2 earlier) are tabulated in the follow-
ing text and plotted on the stress–strain curve for the steel in Figure 6.6.

Trial x 
(mm) 

εpud 
Equation 6.1.1 

σpud (MPa) 
Equation 6.1.2 

Point plotted on 
Figure 6.6 

210 0.0138 1568 1
190 0.0150 1419 2
195 0.0147 1456 3

Point 3 lies sufficiently close to the stress–strain curve for the tendon and 
therefore the correct value for x is close to 195 mm. With x/d = 0.300 < 0.45, 
the ductility requirements of EN 1992-1-1 [1] are satisfied.

The design moment resistance is given by Equation 6.9:

	
MRd Nmm kNm= × − ×






 = × =1456 1000 650

0 8 195
2

833 10 8336.

and Equation 6.10 gives the design curvature corresponding to MRd:

	
κud mm= = × − −0 0035

195
18 0 10 6 1.

.
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6.3.5 � Determination of MRd for sections containing 
non-prestressed reinforcement and 
bonded tendons

Frequently, in addition to the prestressing reinforcement, prestressed con-
crete beams contain non-prestressed longitudinal reinforcement in both the 
compressive and tensile zones. This reinforcement may be included for a 
variety of reasons. For example, non-prestressed reinforcement is included 
in the tensile zone to provide additional flexural strength when the strength 
provided by the prestressing steel is not adequate. Non-prestressed tensile 
steel is also included to improve crack control when cracking is anticipated 
at service loads. Non-prestressed compressive reinforcement may be used 
to strengthen the compressive zone in beams that might otherwise be over-
reinforced. In such beams, the inclusion of compression reinforcement not 
only increases the design ultimate strength, but also increases the curvature 
at failure and, therefore, improves ductility.

The use of compressive reinforcement also reduces long-term deflections 
caused by creep and shrinkage and, therefore, improves serviceability. If 
for no other reason, compression reinforcement may be included to provide 
anchorage and bearing for the transverse reinforcement (stirrups) in beams.

When compressive reinforcement is included, closely spaced transverse 
ties should be used to laterally brace the highly stressed bars in compression 
and prevent them from buckling outward. In general, the spacing of these 
ties should not exceed about 16 times the diameter of the compressive bar.

Consider the doubly reinforced section shown in Figure 6.7a. The resul-
tant design compressive force consists of a steel component Fsd(1) (= σsd(1) As(1)) 
and a concrete component Fcd (= ηfcdλxb). The magnitude of the strain in the 
compressive reinforcement is determined from the geometry of the linear 
strain diagram shown in Figure 6.7b and is given by:

	
ε

ε
sd(1)

cu3 s(1)=
−( )x d
x

	 (6.16)
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Figure 6.7 � Doubly reinforced rectangular cross-section at the ultimate design moment. 
(a) Section. (b) Strain. (c) Stresses. (d) Forces.
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If the idealised elastic–plastic design stress–strain relationship of Figure 4.8 
is used, when εsd(1) is less than or equal to the design yield strain of the 
non-prestressed steel (εyd = fyd/Es = fyk/(γSEs)) then the design stress in the 
compressive steel is σsd(1) = εsd(1)Es. If εsd(1) exceeds the design yield strain, 
then σsd(1) = fyd = fyk/γS.

The resultant tensile force in Figure 6.7d consists of a prestressed compo-
nent Fptd (= σpudAp) and a non-prestressed steel component Fsd(2) (= σsd(2)As(2)). 
The design stress in the non-prestressed tensile steel is determined from the 
strain εsd(2) given by:

	
ε

ε
sd(2)

cu3 s(2)=
−( )d x

x
	 (6.17)

If εsd(2) ≤ εyd, then σsd(2) = εsd(2) Es. If εsd(2) > εyd, then σsd(2) = fyd.
In order to calculate the depth to the neutral axis x at the ultimate design 

moment, a trial-and-error approach similar to that outlined in Section 
6.3.4 can be employed. Successive values of x are tried until the value which 
satisfies the following horizontal equilibrium equation is determined:

	 Fptd + Fsd(2) = Fcd + Fsd(1)	 (6.18)

Since one of the reasons for the inclusion of compressive reinforcement 
is to improve ductility, most doubly reinforced beams are, or should be, 
under-reinforced, i.e. the non-prestressed tensile steel As(2) is at yield at the 
ultimate design moment. Whether or not the compressive steel As(1) has 
yielded depends on its depth ds(1) from the top compressive surface of the 
section and on the depth to the neutral axis x.

For any value of x, with the stresses in the compressive and tensile rein-
forcement determined from the strains εsd(1) and εsd(2) (given by Equations 
6.16 and 6.17, respectively), Equation 6.18 can be expanded as:

	 Fcd = ηfcdλxb

	 = Fptd + Fsd(2) − Fsd(1) = σpudAp + σsd(2)As(2) − σsd(1)As(1)

and this can be rearranged to give the following expressions for x and σpud:

	
x

A A A
f b

=
− +σ σ σ

η λ
pud p sd(2) s(2) sd(1) s(1)

cd

	 (6.19)

	
σ

η λ σ σ
pud

cd sd(2) s(2) sd(1) s(1)

p

=
− +f xb A A

A
	 (6.20)

When the value of σpud (calculated from Equation 6.20) and the value 
of εpud (calculated from Equation 6.15) together satisfy the stress–strain 
relationship of the prestressing steel, the correct value of x has been found. 



234  Design of Prestressed Concrete to Eurocode 2

If it has been assumed that the non-prestressed steel has yielded in the cal-
culations, the corresponding steel strains should be checked to ensure that 
the steel has, in fact, yielded. If the compressive steel is not at yield, then 
the compressive force Fs(1) has been overestimated and the correct value of 
x is slightly greater than the calculated value. The compressive steel stress 
σsd(1) in Equations 6.19 and 6.20 should be taken as εsd(1)Es instead of fyd. 
Further iteration may be required to determine the correct value of x and 
the corresponding internal forces Fcd, Fsd(1), Fptd and Fsd(2).

With horizontal equilibrium satisfied, the design moment resistance of 
the section may be determined by taking moments of the internal forces 
about any convenient point on the cross-section. Taking moments about 
the non-prestressed tensile reinforcement level gives:

	 MRd = Fcd zc + Fsd(1) zs − Fptd zp	 (6.21)

For the rectangular section shown in Figure 6.7, the lever arms from the 
non-prestressed tensile reinforcement to each of the internal forces in 
Equation 6.21 are:

	
z d

x
z d d z d dc s(2) s s(2) s(1) p s(2) p= − = − = −λ

2

In these equations, Fsd(1) and Fcd are the magnitudes of the compressive 
forces in the steel and concrete, respectively, and are therefore considered 
to be positive.

The design ultimate curvature is obtained from Equation 6.10. For duc-
tility to be acceptable, the depth of the neutral axis x should be less than 
about 0.3d, where d is the effective depth to the line of action of the resul-
tant of the tensile forces Fptd and Fsd(2). The minimum design curvature 
required for ductility is therefore:

	
( )

.
minκ ε

ud
cu3= 3 33

d
	 (6.22)

EXAMPLE 6.2

To the cross-section shown in Figure 6.5 and analysed in Example 6.1, non-
prestressed reinforcing bars of area As = 1350 mm2 are added in the tensile 
zone at a depth ds = 690 mm. Calculate the design flexural resistance MRd of 
the section. From Table 4.6, for B500B type reinforcing steel, the design yield 
stress is fyd = 435 MPa and the elastic modulus is Es = 200,000 MPa. All other 
material properties and cross-sectional details are as specified in Example 6.1.
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The design strain in the prestressing steel is as calculated in Example 6.1:

	
εpud = + × −






0 006491 0 0035

650
. .

x
x

	 (6.2.1)

and the magnitude of the compressive force Fcd carried by the concrete above 
the neutral axis is:

	 Fcd = ηfcdλxb = 1.0 × 26.67 × 0.8 × 350x = 7467x

From Equation 6.17 and with εcu3 = 0.0035, the non-prestressed tensile 
steel is at yield, i.e. εsd ≥ εyd (= fyd/Es = 0.002175), provided that the depth 
to the neutral axis x is less than or equal to 0.6167ds (= 425.6 mm). If σsd is 
assumed to equal fyd, the resultant tensile force Ftd (= Fptd + Fsd) is given by:
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and enforcing horizontal equilibrium (i.e. Fcd = Ftd):

	 σpud = 7.467x − 587.3	 (6.2.2)

Trial values of x are now selected, and the respective values of εpud and σpud 

are tabulated here and plotted on the stress–strain curve in Figure 6.8:

Trial x 
(mm) 

εpud 
Equation 6.2.1 

σpud (MPa) 
Equation 6.2.2 

Point plotted on 
Figure 6.8 

280 0.0111 1503 4
260 0.0117 1354 5
269.5 0.0114 1425 6

Since point 6 lies sufficiently close to the stress–strain curve for the ten-
don, the value for x is taken as 269.5 mm, and the effective depth to the 
resultant tensile force is d = 670 mm and, therefore, x/d = 0.402.

It is apparent in Figure 6.8 that the strain in the prestressing steel is 
decreased by the introduction of tensile reinforcement (from point 3 to point 6) 
and the depth to the neutral axis is increased. From Equation 6.10, the design 
ultimate curvature is:

	
κud mm= = × − −0 0035

269 5
13 0 10 6 1.

.
.

and this is 27.8% less than that obtained in Example 6.1 (where As = 0).
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The strain in the tensile reinforcement at the strength limit state is given 
by Equation 6.17:

	
ε εsd(2) yd= − = >0 0035 690 269 5

269 5
0 0055

. ( . )
.

.

and therefore the non-prestressed steel has yielded, as previously assumed. 
The depth from the top surface to the resultant force in the tensile steel is:
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A d f A d
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The minimum curvature required to ensure some measure of ductility is 
obtained from Equation 6.22:
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.minκud mm= × = × − −3 33 0 0035
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and this is greater than κud. The section is therefore non-ductile and, in design, 
it would be prudent to insert some non-prestressed compressive reinforce-
ment to increase the design ultimate curvature and improve ductility (at least 
to the level required by Equation 6.22).
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Figure 6.8 � Stress–strain curve for strand (Example 6.2).
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The design compressive force in the concrete is Fcd = 7467 x 269.5 x 10–3 
= 2012 kN and the tensile force in the tendon is Fptd = σpudAp = 1425 kN. The 
design moment resistance is calculated from Equation 6.21:
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EXAMPLE 6.3

Consider the effect on both strength and ductility of the cross-section of 
Example 6.2 if reinforcement of area As(1) = 900 mm2 is included in the com-
pression zone. Details of the cross-section are shown in Figure 6.9, together 
with the stress and strain distributions at the ultimate design moment. All 
data are as specified in Examples 6.1 and 6.2.

From Examples 6.1 and 6.2, the design ultimate strain in the tendons is:
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Figure 6.9 � Section details and stress and strain distributions at the design ultimate 
moment condition (Example 6.3).
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and the strain in the non-prestressed tensile reinforcement in Example 6.2 is 
greater than εsd and, hence, σsd(2) = fyd.

The magnitude of the compressive steel strain is given by Equation 6.16:

	
εsd(1) =

−0 0035 60. ( )x
x

	 (6.3.2)

and the stress in the compression steel can be readily obtained from εsd(1) for 
any value of x.

By equating (Fcd + Fsd(1)) with (Fptd + Fsd(2)), the expression for σpud given by 
Equation 6.20 becomes:
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Values of εpud, εsd(1), σsd(1) and σpud for trial values of x are tabulated below 
and plotted as points 7–9 in Figure 6.10:

Trial x 
(mm) 

εpud 
Equation 

6.3.1 

εsd(1) 
Equation 

6.3.2 
σsd(1) 
(MPa) 

σpud (MPa) 
Equation 

6.3.3 
Point plotted on 

Figure 6.10 

230 0.0129 0.00259 435 1522 7
210 0.0138 0.00250 435 1372 8
219 0.0134 0.00254 435 1440 9
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Figure 6.10 � Stress–strain curve for strand (Example 6.3).
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6.3.6  Members with unbonded tendons

In post-tensioned concrete, where the prestressing steel is not bonded to the 
concrete, the design stress in the tendon σpud is significantly less than that 
predicted for a bonded tendon, and the final strain in the tendon is more 
difficult to determine accurately. The design resistance of a section contain-
ing unbonded tendons may be as low as 75% of the strength of an equiva-
lent section containing bonded tendons. Hence, from a strength point of 
view, bonded construction is to be preferred.

From Figure 6.10, point 9 lies very close to actual stress–strain curve and 
therefore the neutral axis depth is taken as x = 219 mm.

It is apparent from Figure 6.10 that the design strain in the prestressing 
steel is increased by the introduction of compressive reinforcement (from 
point 6 to point 9) and the depth to the neutral axis is decreased. The design 
ultimate curvature is obtained from Equation 6.10:

	
κud mm= = × − −0 0035

219
16 0 10 6 1.

.

which represents a 23% increase in final curvature caused by the introduction 
of the compressive reinforcement and an improvement in the ductility of the 
cross-section.

The magnitudes of the resultant forces on the cross-section are:

	 Fcd = 1635 kN  Fsd(1) = 392 kN  Fptd = 1440 kN  Fsd(2) = 587 kN

and the design moment resistance is calculated using Equation 6.21:
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This represents a 5.4% increase in strength compared to the section without 
compressive steel that was analysed in Example 6.2. In general, for non-ductile 
sections, the addition of compressive reinforcement causes a significant 
increase in curvature (i.e. a significant increase in ductility) and a less significant, 
but nevertheless appreciable, increase in strength.
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An unbonded tendon is not restrained by the concrete along its length, 
and slip between the tendon and the duct takes place as the external loads 
are applied and the member deforms. The tendon strain is more uniform 
along the length of the member and tends to be lower in regions of maxi-
mum moment than would be the case for a bonded tendon. The design 
resistance of the section may be reached before the stress in the unbonded 
tendon reaches its yield stress. For members not containing any bonded 
reinforcement, crack control may be a problem if cracking occurs in the 
member for any reason. If flexural cracking occurs, the number of cracks in 
the tensile zone is fewer than in a beam containing bonded reinforcement, 
but the cracks are wider and less serviceable.

To determine the increase in design stress in an unbonded tendon at 
the ultimate limit state Δσp, it is necessary to consider the deformation 
of the whole member using the mean values of the material properties. 
The design value of the stress increase is Δσpd = ΔσpγΔP. When non-linear 
analysis is undertaken, the partial safety factor γΔP is taken as 1.2 when 
the upper characteristic value of Δσpd is required, and γΔP = 0.8 when the 
lower characteristic value of Δσpd is required. If linear analysis is applied, 
with uncracked section properties, the calculated member deformation 
will generally underestimate the actual deformations and EN1992-1-1 [1] 
permits γΔP to be taken as 1.0 and Δσpd = Δσp.

If no detailed calculation of the change in length of the tendon is made, 
EN 1992-1-1 [1] allows the stress in the tendon at the ultimate limit state 
to be assumed to equal the effective prestress (after all losses) plus Δσp,ULS = 
100 MPa.

To ensure robustness and some measure of crack control, it is good prac-
tice to include non-prestressed bonded tensile reinforcement in members 
where the post-tensioned tendons are to remain unbonded for a significant 
period during and after construction.

EXAMPLE 6.4

The design flexural resistance of a simply-supported post-tensioned beam 
containing a single unbonded cable is to be calculated. The beam spans 12 m 
and its cross-section at mid-span is shown in Figure 6.5. Material properties 
and prestressing arrangement are as specified in Example 6.1.

The stress in the tendon caused by the effective prestressing force Pm,t = 
1200 kN is:

	 σpm,t = Pm,t/Ap = 1200 × 103/1000 = 1200 MPa
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6.4  DESIGN CALCULATIONS

6.4.1  Discussion

The magnitude of the effective prestressing force Pm,t and the quantity of 
the prestressing steel Ap are usually selected to satisfy the serviceability 
requirements of the member, i.e. to control deflection or to reduce or elimi-
nate cracking. With serviceability satisfied, the member is then checked for 
adequate strength. The design resistance MRd for the section containing 
the prestressing steel (plus any non-prestressed steel added for crack con-
trol or deflection control) is calculated and the design resistance is com-
pared with the design action, in accordance with the design requirements 
outlined in Section 2.4. The design action MEd is the moment caused by the 
most severe factored load combination specified for the strength limit state 
(see Section 2.3.2). The design requirement is expressed by:

	 MRd ≥ MEd	 (6.23)

The prestressing steel needed for the satisfaction of serviceability require-
ments may not be enough to provide adequate strength. When this is the case, 

EN1992-1-1 [1] permits the design stress in the tendon at the strength limit 
state to be taken as:

	 σ σpud pm,t MPa= + =100 1300

and therefore the tensile force in the steel is Fptd = 1300 kN (= Fcd). This is 
almost 10.7% lower than the value determined in Example 6.1 where the ten-
don was bonded to the concrete. The depth to the neutral axis is calculated as:

	
x

F
f b

= = ×
× × ×

=ptd

cd

mm
η λ

1300 10
1 0 26 67 0 8 350

174 1
3

. . .
.

and Equation 6.9 gives:

	
MRd kNm= × × − ×






 × =−1300 1000 650

0 8 174 1
2

10 7546. .

In Example 6.1, the design bending resistance of the same cross-section 
with a bonded tendon was calculated to be 833 kNm. Clearly, the strength 
afforded by a post-tensioned tendon is significantly reduced if it remains 
unbonded.
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the design moment resistance can be increased by the inclusion of addi-
tional non-prestressed tensile reinforcement. Additional compressive rein-
forcement may also be required to improve ductility.

6.4.2 � Calculation of additional non-prestressed 
tensile reinforcement

Consider the singly reinforced cross-section shown in Figure 6.11a. It is 
assumed that the effective prestress Pm,t, the area of the prestressing steel 
Ap and the cross-sectional dimensions have been designed to satisfy the 
serviceability requirements of the member. The idealised strain and stress 
distributions specified in EN1992-1-1 [1] for the ultimate limit state are 
also shown in Figure 6.11a. The design moment resistance of the section, 
denoted as MRd1, is calculated as follows:

	
M A d

x
Rd1 pud1 p p= −






σ λ 1

2
	 (6.24)

where the tendon stress at the ultimate limit state σpud1 can be calculated from 
the actual stress–strain curve for the steel (as illustrated in Example 6.1) or 
from the approximation illustrated in Example 6.4.

(a) Section
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Stresses Forces
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Fcd2 = η fcdbλ(x–x1)
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Fsd

z2MRd

(b) Section Strain Stresses Forces
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b
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εptd
εsd

εcu3

σpud
σsd = fyd

η fcd

ds

Figure 6.11 � Cross-section containing tensile reinforcement – ultimate design condition. 
(a) Singly reinforced prestressed cross-section. (b) Cross-section containing 
both prestressed and non-prestressed tensile reinforcement.
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If the design resistance MRd1 is greater than or equal to MEd, then no addi-
tional tensile steel is necessary, and the cross-section has adequate strength. 
If MRd1 is less than MEd, the section is not adequate and additional tensile 
reinforcement is required.

In addition to providing adequate strength, it is important also to ensure 
that the section is ductile. To ensure that the design ultimate curvature κud 
is large enough to provide sufficient ductility, an upper limit for the depth 
to the neutral axis of about 0.3dp should be enforced. If the value of xl in 
Figure 6.11a is greater than 0.3dp, some additional non-prestressed com-
pressive reinforcement is required to relieve the concrete compressive zone 
and reduce the depth to the neutral axis. The design procedure outlined in 
Section 6.4.3 for doubly reinforced cross-sections is recommended in such 
a situation.

For the cross-section shown in Figure 6.11a, if MRd1 is less than MEd and if 
xl is small so that ductility is not a problem, the aim in design is to calculate 
the minimum area of non-prestressed tensile reinforcement As that must be 
added to the section to satisfy strength requirements (i.e. the value of As such 
that MRd = MEd). In Figure 6.11b, the cross-section containing As is shown, 
together with the revised strain and stress distributions at the ultimate limit 
state design condition. With x small enough to ensure ductility, the tensile 
steel strain εsd is greater than the yield strain εyd (= fyd/Es), so that σsd = fyd. 
The addition of As to the cross-section causes an increase in the resultant 
design tension (Fptd + Fsd) and hence an increase in the resultant compression 
Fcd (= Fcd1 + Fcd2). To accommodate this additional compression, the depth 
of the compressive stress block in Figure 6.11b must be greater than the 
depth of the stress block in Figure 6.11a (i.e. λx > λx1). The increased value 
of x results in a reduction in the design ultimate curvature (i.e. a decrease in 
ductility), a reduction in the strain in the prestressing steel and a consequent 
decrease in σpud. While the decrease in σpud is relatively small, it needs to be 
verified that the modified cross-section possesses adequate ductility (i.e. that 
the value of x remains less than about 0.3d).

If σpud is assumed to remain constant, a first estimate of the magnitude 
of the area of non-prestressed steel As required to increase the design resis-
tance from MRd1 (the strength of the section prior to the inclusion of the 
additional steel) to the design bending moment MEd (equal to the required 
minimum strength of the section) may be obtained from:

	
A

M M
f z

s
Ed Rd1

yd

≥ −

2

	 (6.25)

where z2 is the lever arm between the design tension force in the additional 
steel Fsd and the equal and opposite compressive force Fcd2 which results 
from the increase in the depth of the compressive stress block. The lever 
arm z2 may be approximated initially as:

	 z d x2 0 9= −. ( )s 1λ 	 (6.26)
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EXAMPLE 6.5

The design resistance of the singly reinforced cross-section shown in Figure 6.12 
is MRd1 = 931 kNm. The stress and strain distributions corresponding to MRd1 
are also shown in Figure 6.12 and the material properties are fck = 40 MPa 
(fcd = 26.67 MPa), λ = 0.8, η = 1.0, fpk = 1860 MPa, fpd = 1391 MPa, Ep = 
195000 MPa. Calculate the additional amount of non-prestressed tensile rein-
forcement located at ds = 840 mm (fyd = 435 MPa) if the design bending moment 
on the section is MEd = 1250 kNm.

For the section in Figure 6.12, x1 = 159 mm = 0.212dp and the section is 
ductile. If the additional tensile steel is to be added at ds = 840 mm, then the 
lever arm z2 in Equation 6.26 may be approximated by:

	 z d x2 0 9 0 9 840 0 8 159 641 5= − = × − × =. ( ) . ( . ) .s 1 mmλ

and the required area of non-prestressed steel is estimated using Equation 6.25:

	
As mm≥ − ×

×
=( )

.
1250 931 10

435 641 5
1143

6
2

Choose four 20 mm diameter bars (As = 1256 mm2) located at a depth ds = 
840 mm.

A check of this section to verify that MRd ≥ 1250 kNm, and also that the 
section is ductile, can now be made using the trial-and-error procedure illus-
trated in Example 6.2.

Section

εptd1

x1 = 159 mm

λx1 = 127.2 mm

λx1/2
η fcd = 26.67 MPa

Fcd1 = 1357 kN

σpud1 = 1508 kN Fptd1 = 1357 kN

Muo1 = 931 kNm

Strain Stresses Forces

400 0.0035

750

150
Ap = 900 mm2

Figure 6.12 � Singly reinforced cross-section of Example 6.5.
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6.4.3  Design of a doubly reinforced cross-section

For a singly reinforced section (such as that shown in Figure 6.13a) in which 
xl is greater than about 0.3dp, the inclusion of additional tensile reinforce-
ment may cause ductility problems. In such cases, the design resistance may 
be increased by the inclusion of suitable quantities of both tensile and com-
pressive non-prestressed reinforcement without causing any reduction in 
curvature, i.e. without increasing x. If the depth to the neutral axis is held 
constant at xl, the values of both Fcd (the compressive force carried by the 
concrete) and Fptd (the tensile force in the prestressing steel) in Figures 6.13a 
and b are the same. In each figure, Fcd is equal and opposite to Fptd. With the 
strain diagram in Figure 6.13b known, the strains at the levels of the top 
and bottom non-prestressed steel may be calculated using Equations 6.16 
and 6.17, respectively, and hence the non-prestressed steel stresses σsd(1) and 
σsd(2) may be determined. The equal and opposite forces which result from 
the inclusion of the non-prestressed steel are:

	 F Asd(1) s(1) sd(1)= σ 	 (6.27)

and

	 F Asd(2) s(2) sd(2)= σ 	 (6.28)
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Figure 6.13 � Doubly reinforced section at the ultimate limit state condition. (a) Cross-section 
containing prestressed steel only. (b) Cross-section containing top and 
bottom non-prestressed reinforcement.
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When the depth to the compressive reinforcement is less than λx, the 
compressive force Fsd(1) could be calculated as Fsd(1) = As(1)(σsd(1)−ηfcd), in 
order to account for the voids in the compressive concrete created by the 
compressive reinforcement.

If MRd1 is the design resistance of the singly reinforced section in Figure 
6.13a (calculated using Equation 6.9) and MEd is the design moment (equal 
to the minimum required strength of the doubly reinforced cross-section), 
the minimum area of the tensile reinforcement is given by:

	
A

M M
d d

s(
Ed Rd1

sd(2) s(2) s(1)
2)

( )
= −

−σ
	 (6.29)

For conventional non-prestressed steel, σsd(2) is usually at yield (i.e. 
σsd(2) = fyd) provided that εsd(2) ≥ εyd and the depth to the neutral axis x satis-
fies the stated ductility requirements. For equilibrium, the forces in the top 
and bottom non-prestressed steel are equal and opposite, i.e. Fsd(1) = Fsd(2), 
since Fcd = Fptd. From Equations 6.27 and 6.28:
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s(1)

s(2) sd(2)

sd(1)
=

σ
σ

	 (6.30)

If the depth to the neutral axis in Figure 6.13b is greater than about 0.3d, 
then the section may be considered to be non-ductile and the value of x 
must be reduced. An appropriate value of x may be selected (say x = 0.3d). 
For this value of x, all the steel strains (εsd(1), εsd(2) and εptd) and hence all the 
design steel stresses at ultimate limit state design condition (σsd(1), σsd92) and 
σpud) may be determined. Once εptd is calculated from the assumed value 
for x, the total strain in the prestressing steel εpud can be calculated using 
Equation 6.15, and the stress σpud can be read directly from the stress–
strain curve. In this way, the magnitude of the tensile force in the tendon 
(Fptd = Apσpud) and the compressive force in the concrete (Fcd = ηfcdλxb) can 
be evaluated. If the required design resistance of the section MRd exceeds 
the design bending moment MEd, the minimum area of compressive steel 
can be obtained by taking moments about the level of the non-prestressed 
tensile reinforcement:
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Horizontal equilibrium requires that Fsd(2) = Fcd + Fsd(1) − Fptd and there-
fore the area of non-prestressed tensile steel is:
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	 (6.32)
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EXAMPLE 6.6

Determine the additional non-prestressed steel required to increase the 
design flexural resistance of the section in Figure 6.5 (and analysed in 
Example 6.1) if the design bending moment MEd is 1150 kNm. Take the 
depth to the additional tensile steel as ds(2) = 690 mm and the depth to the 
compressive steel (if required) as ds(1) = 60 mm. Assume for the reinforce-
ment fyd = 435 MPa and Es = 200,000 MPa.

From Example 6.1, MRd1 = 833 kNm and x1 = 195 mm. If only non-prestressed 
tensile steel were to be added, the lever arm z in Equation 6.26 would be:

	 z = × − × =0 9 690 0 8 195 481. ( . ) mm

and from Equation 6.25:

	
As(2) mm≥ − ×

×
=( )1150 833 10

435 481
1515

6
2

This corresponds to the addition of five 20 mm diameter bars (1570 mm2) 
in the bottom of the section at a depth ds(2) = 690 mm.

A check of the section to verify that MRd ≥ 1150 kNm can next be made 
using the trial-and-error procedure illustrated in Example 6.2. In this exam-
ple, however, the neutral axis depth increases above 0.3d, and the curva-
ture at the ultimate limit state condition is less than the minimum value 
recommended in Equation 6.22. For this cross-section, it is appropriate to 
supply the additional moment capacity via both tensile and compressive non-
prestressed reinforcement.

If the depth to the neutral axis is held constant at the value determined in 
Example 6.1, i.e. x = x1 = 195 mm, then the stress and strain in the prestressed 
steel remain as previously calculated, i.e. εpud = 0.0147 and σpud = 1456 MPa.

With ds(1) = 60 mm, from Equation 6.16:

	
ε ε σsd(1) yd sd(1) ydand MPa= − = > = =0 0035195 60

195
0 00242 435

. ( )
. f

From Equation 6.17:

	
ε ε σsd(2) yd sd(2) ydand MPa= − = > = =0 0035 690 195
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. f
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6.5  FLANGED SECTIONS

Flanged sections such as those shown in Figure 6.14a are commonly used in 
prestressed concrete construction, where the bending efficiency of I-, T- and 
box-shaped sections can be effectively utilised. Frequently, in the construction 
of prestressed floor systems, beams or wide bands are poured monolithically 
with the slabs. In such cases, a portion of slab acts as either a top or a bot-
tom flange of the beam, as shown in Figure 6.14b. The effective flange width 
(beff in Figure 6.14b) is selected such that the stresses across the width of the 
flanged beam may be assumed to be uniform and beff depends on the beam 

The minimum areas of additional tensile and compressive steel are obtained 
using Equations 6.29 and 6.30, respectively:

	
As( mm2

6
21150 833 10

435 690 60
1157)

( )
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≥ − ×
× −

=
 

	
As(1) mm= × =1157 435

435
1157 2

A suitable solution is to include four 20 mm diameter reinforcing bars in 
the top and bottom of the section (at ds(1) = 60 mm and ds(2) = 690 mm).

T-section Double-T-section Inverted-T-section

(a) Box sections

(b)

beff beff beff = bw

bw bw

Figure 6.14 � Typical flanged sections. (a) Precast. (b) Monolithic.
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and slab dimensions, the span and the support conditions, the type of loading 
and the amount and distribution of transverse reinforcement in the slab.

EN1992-1-1 [1] specifies the effective width in terms of the distance l0 
along the beam between the points of zero moment (as illustrated in Figure 
6.15a) and the cross-sectional geometry (as defined in Figure 6.15b):

	 For T-sections:  beff = beff,1 + beff,2 + bw	 (6.33)

	 For L-sections:  beff = beff,1 + bw	 (6.34)

where:

	 beff,i = 0.2bi + 0.1l0 ≤ 0.2l0	 (6.35)

except that the overhanging part of the effective flange should not exceed 
half the clear distance to the next parallel beam (i.e. beff,i ≤ bi). In structural 
analysis, it is permissible to assume that the effective width is constant 
over the whole span, with the value of beff determined for the span section 
(marked region A in Figure 6.15a).

It is recommended in ACI 318M-14 [2] that the overhanging part of the 
effective flange on each side of the web of a T-beam should not exceed eight 
times the slab thickness. For L-beams with a slab on one side only, the over-
hanging part of the effective flange width should not exceed six times the 
slab thickness. Although these are not formal requirements of EN1992-1-1 
[1], their satisfaction is recommended here.

l1 l2
l0 = 0.15(l1 + l2)

l0 = 0.15 l1 + l3l0 = 0.85l1 l0 = 0.7 l2

(a)

AAA
l3

(b)
b

b1bw

beff beff,1 beff,2

beff

b1 b2
bw

b2

Figure 6.15 � Effective flange width parameters [1]. (a) Elevation – definitions of l0. 
(b) Effective beam cross-sections.
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The flexural resistance calculations discussed in Section 6.3 can also be 
used to determine the flexural strength of non-rectangular sections. The 
equations developed earlier for rectangular sections are directly appli-
cable provided the depth of the idealised rectangular stress block is less 
than the thickness of the compression flange, i.e. provided the portion 
of the cross-section subjected to the uniform compressive stress is rect-
angular (beff wide and λx deep). The design resistance MRd is unaffected 
by the shape of the concrete section below the compressive stress block 
and depends only on the area and position of the steel reinforcement and 
tendons in the tensile zone. If the compressive stress block acts on a non-
rectangular portion of the cross-section, some modifications to the for-
mulae are necessary to calculate the resulting concrete compressive force 
and its line of action.

Consider the T-sections shown in Figure 6.16, together with the idealised 
rectangular stress blocks (previously defined in Figure 6.3b). If λx ≤ t (as 
in Figure 6.16a), the area of the concrete in compression Ac is rectangular, 
and the strength of the section is identical with that of a rectangular sec-
tion of width beff containing the same tensile steel at the same effective 

x

(a) Section Strain Stresses Forces

t

(b) Section

Á
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Figure 6.16 � Flanged sections subjected to the design flexural resistance. (a) Compressive 
stress block in the flange. (b) Compressive stress block in the flange and web.
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depth. Equation 6.21 may therefore be used to calculate the design resis-
tance of such a section. The depth of the neutral axis x may be calculated 
using Equation 6.19, except that beff replaces b in the denominator.

If λx > t, the area of concrete in compression Ac is T-shaped, as shown 
in Figure 6.16b. Although not strictly applicable, the idealised stress block 
may still be used on this non-rectangular compressive zone. A uniform 
stress of ηfcd may therefore be considered to act over the area Ac.

It is convenient to separate the resultant compressive force in the concrete 
into a force in the flange Fcdf and a force in the web Fcdw as follows (and 
shown in Figure 6.16b):

	 Fcdf = ηfcdtbeff	 (6.36)

and

	 Fcdw = ηfcd(λx − t)bw	 (6.37)

By equating the tensile and compressive forces, the depth to the neutral 
axis x can be determined by trial and error, and the design moment resis-
tance MRd can be obtained by taking moments of the internal forces about 
any convenient point on the cross-section.

EXAMPLE 6.7

Evaluate the design flexural resistance of the double-tee section shown in 
Figure 6.17. The cross-section contains a total of twenty-six 12.9 mm diameter 
strands (13 in each cable) placed at an eccentricity of 408 mm to the centroidal 
axis. The effective prestressing force Pm,t is 3250 kN. The stress–strain rela-
tionship for the prestressing steel is shown in Figure 6.18, and its elastic modu-
lus and tensile strength are Ep = 195,000 MPa and fpk = 1,860 MPa, respectively. 
The properties of the section and other relevant material data are as follows:

	� A = 371 × 103 mm2;  I = 22.8 × 109 mm4;  Zbtm = 43.7 × 106 mm3;  
Ztop = 82.5 × 106 mm3;  Ap = 26 × 100 = 2,600 mm2;

	 fpd = 1,391 MPa;   Ecm = 35,000 MPa;  fck = 40 MPa;  fcd = 26.67 MPa;
	 λ = 0.8   and   η = 1.0.
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Using the same procedure as was illustrated in Example 6.1, the strain 
components in the prestressing steel are obtained from Equations 6.11 
through 6.14:
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Figure 6.17 � Double-tee cross-section (Example 6.7).
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Figure 6.18 � Stress–strain curve for strand (Example 6.7).
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and from Equation 6.15:

	
εpud = + −
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x
x

	 (6.7.1)

At this point, an assumption must be made regarding the depth of the equiva-
lent stress block. If x is less than the flange thickness, the calculation would 
proceed as in the previous examples. However, a simple check of horizontal 
equilibrium indicates that λx is significantly greater than the flange thickness 
of 50 mm. This means that the entire top flange and part of the top of each 
web is in compression. From Equation 6.36:

	 Fcdf N= × × × = ×1 0 26 67 50 2400 3200 103. .

In this example, the web is tapering and bw varies with the depth. The width 
of the web at a depth of λx is given by:
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The compressive force in the web is therefore:
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The resultant compression force is the sum of the flange and web compres-
sive forces:

	 F F F x xcd cdf cdw= + = − + +1 7069 8961 1 2 647 0002. . , ,

and the resultant tensile force in the tendons is:

	 Fptd pud= 2600 σ

Equating Fcd and Fptd gives:

	 σpud = − + +0 0006565 3 4466 1018 12. . .x x 	 (6.7.2)
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6.6 � DUCTILITY AND ROBUSTNESS OF 
PRESTRESSED CONCRETE BEAMS

6.6.1  Introductory remarks

Ductility is the ability of a structure or structural member to undergo large 
plastic deformations without significant loss of load carrying capacity. 
Ductility is important for many reasons. It provides indeterminate struc-
tures with alternative load paths and the ability to redistribute internal 
actions as the collapse load is approached. After the onset of cracking, con-
crete structures are non-linear and inelastic. The stiffness varies from loca-
tion to location depending on the extent of cracking and the reinforcement/
tendon layout. In addition, the stiffness of a particular cross-section or 

Trial values of x may now be used to determine εpud and σpud from the previ-
ous expressions, and the resulting points are tabulated here and plotted on 
the stress–strain curves in Figure 6.18:

Trial x 
(mm) 

εpud 
Equation 6.7.1 

σpud (MPa) 
Equation 6.7.2 

Point plotted on 
Figure 6.18 

150 0.0198 1520 1
140 0.0210 1488 2
144 0.0205 1500 3

Since point 3 lies sufficiently close to the stress–strain curve for the tendon, 
the value taken for x is 144 mm.

The depth of the stress block is λx = 115.2 mm, which is greater than 
the flange thickness (as was earlier assumed). The resultant forces on the 
cross-section are:

	 F Fcd ptd kN= = × × =−2600 1500 10 39003

For this section, x = 0.210dp < 0.3dp and therefore the failure may be 
considered to be ductile. The compressive force in the flange Fcdf = 3200 kN 
acts 25 mm below the top surface, and the compressive force in the web 
Fcdw = 700 kN acts at the centroid of the trapezoidal areas of the webs above 
λx, i.e. 82.4 mm below the top surface.

By taking moments of these internal compressive forces about the level of 
the tendons, we get:

	 MRd kNm= × − × + × − × =− −3200 685 25 10 700 685 82 4 10 25343 3( ) ( . )
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region is time-dependent, with the distribution of internal actions changing 
under service loads due to creep and shrinkage, as well as other imposed 
deformations such as support settlements and temperature changes and gra-
dients. All these factors cause the actual distribution of internal actions in 
an indeterminate structure to deviate from that assumed in an elastic anal-
ysis. Despite these difficulties, codes of practice, including EN1992-1-1 [1], 
permit the design of concrete structures based on elastic analysis. This is 
quite reasonable provided the critical regions possess sufficient ductility 
(plastic rotational capacity) to enable the actions to redistribute towards 
the calculated elastic distribution as the collapse load is approached. If criti-
cal regions have little ductility (such as in over-reinforced elements), the 
member may not be able to undergo the necessary plastic deformation and 
the safety of the structure could be compromised.

Ductility is also important to resist impact and seismic loading, and to 
provide robustness. With proper detailing, ductile structures can absorb 
the energy associated with sudden impact (as may occur in an accident or 
a blast or a seismic event) without collapse of the structure. With proper 
detailing, ductile structures can also be designed to resist progressive 
collapse.

Figure 6.19 shows the load–deflection curves for two prestressed concrete 
beams, one under-reinforced (Curve A) and one over-reinforced (Curve B). 
Curve A indicates ductile behaviour with large plastic deformations develop-
ing as the peak load is approached. The relatively flat post-yield plateau (1–2) 
in Curve A, where the structure deforms while maintaining its full load carry-
ing capacity (or close to it) is characteristic of ductile behaviour. Curve B indi-
cates non-ductile or brittle behaviour, with relatively little plastic deformation 
before the peak load. There is little or no evidence of a flat plastic plateau, 
and the beam immediately begins to unload when the peak load is reached.

Curve A
(under-reinforced)

1 2

Curve B
(over-reinforced)

Deflection 

Lo
ad

Figure 6.19 � Ductile and non-ductile load–deflection curves.
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Structures with load–deflection relationships similar to Curve B in 
Figure  6.19 are simply too brittle to perform adequately under signifi-
cant impact or seismic loading and they cannot resist progressive collapse. 
Prestressed concrete beams can be designed to be robust and not to sud-
denly collapse when overloaded, but ductility is the key and a ductile load-
displacement relationship such as that shown as Curve A in Figure 6.19 is 
an essential requirement. Structures should be designed to be robust, but 
in most codes of practice qualitative statements rather than quantitative 
recommendations are made and relatively little guidance is available. To 
design a prestressed structure for robustness, some quantitative measure of 
robustness is required.

Beeby [3] stated that a structure is robust if it is able to absorb dam-
age resulting from unforeseen events without collapse. He also argued 
that this could form the basis of a design approach to quantify robustness. 
Explosions or impacts are clearly inputs of energy. Beeby [3] suggests that 
accidents or even design mistakes could also be considered as inputs of 
energy and that robustness requirements could be quantified in terms of a 
structure’s ability to absorb energy.

The area under the load–deflection response of a member or structure 
is a measure of the energy absorbed by the structure in undergoing that 
deformation. Consider the load–deflection response of a simply-supported 
under-reinforced prestressed beam shown in Figure 6.20. The area under 
the curve up to point 1 (before the tensile steel yields) is W1 and represents 
the elastic energy. The area under the curve between points 1 and 2 (when the 
plastic hinge develops and the peak load is reached) is W2, which represents 
the plastic energy. A minimum value of the ratio W2/W1 could be specified 
to ensure an acceptable level of ductility and, if all members and connec-
tions were similarly ductile and appropriately detailed, an acceptable level 
of robustness (or resistance to collapse) could be achieved.

1
2

Deflection 
vudvyd

Lo
ad

W2

W1

Figure 6.20 � Typical under-reinforced load–deflection curve.



Flexural resistance  257

A ductile simply-supported member is one for which W2/W1 exceeds about 
2.0, but for statically indeterminate structures where significant redistribu-
tion of internal actions may be required as the peak load is approached, 
satisfaction of the following is recommended:

	 W2/W1 ≥ 3.0	 (6.38)

6.6.2  Calculation of hinge rotations

A typical moment curvature relationship for an under-reinforced pre-
stressed concrete cross-section was shown in Figure 1.15, and an idealised 
elastic–plastic design moment–curvature curve is shown in Figure 6.21. 
A plastic hinge is assumed to develop at a point in a beam or slab when the 
peak (design ultimate) moment is reached at a curvature of κyd and rotation 
of the plastic hinge occurs as the curvature increases from κyd to κud. The 
rotation at the plastic hinge θs is the change in curvature multiplied by the 
length of the plastic hinge lh in the direction of the member axis. For under-
reinforced cross-sections with ductile tensile reinforcement and tendons, 
the length of the plastic hinge lh may be taken as 1.2 times the depth of 
the member [1], i.e. lh = 1.2 h. The maximum rotation available at a plastic 
hinge may therefore be approximated by:

	 θs = lh(κud − κyd) ≈ 1.2h(κud − κyd)	 (6.39)

6.6.3 � Quantifying ductility and robustness 
of beams and slabs

To investigate the ductility of a prestressed concrete beam, it is convenient 
to assume that the load–deflection curve is elastic perfectly plastic. As an 
example, consider the idealised load–deflection response shown in Figure 
6.22 of a simply-supported prestressed concrete beam of span l and sub-
jected to a point load P applied at mid-span. The deflection is the downward 

Moment, M

MRd

Curvature, κ

ApAs

κyd κud

(EcmIcr)

h ds dp

Figure 6.21 � Idealised elastic–plastic moment–curvature relationship.
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deflection at mid-span caused by the applied load. A plastic hinge is assumed 
to develop at mid-span when the applied load first reaches PRd and the mid-
span deflection caused by PRd is vyd. The design moment resistance at the 
plastic hinge is MRd = PRdl/4. After the formation of the plastic hinge, it is 
assumed that the deflection at mid-span increased from vyd to vud by rotation 
of the plastic hinge through an angle θs, and this can be described as follows:

	
( )v v

l
ud yd

s

4
− = θ

	 (6.40)

The design moment resistance at the plastic hinge MRd may be deter-
mined from Equation 6.21 and may be expressed as:

	
M A d
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f A d
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 + −
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2 2
1 	 (6.41)

where b is the section width and d is the effective depth to the resultant of 
the tensile forces in the prestressed and non-prestressed steel. The term β1 

depends on the area, position and strength of the reinforcement and ten-
dons and is typically in the range of 3–10. For example, if we assume the 
beam contains Ap/bd = 0.005 and As/bd = 0.005, with fck = 40 MPa, 
Ecm = 35,000 MPa, β1 is about 8. For the centrally loaded simply-supported 
beam, the deflection Δyd caused by PRd may be approximated as:

	
v

P l
E I

M l
E I

yd
Rd 

cm cr

Rd 

cm cr

= =
3 2

48 12
	 (6.42)

and, for the stated material properties and steel quantities, the cracked 
moment of inertia of the cross-section is approximated by:

	 I bdcr
3= 0 037. 	 (6.43)

Deflection 

PRd

vudvyd

l/2 l/2

θs

Load

PRd

W2

W1

Figure 6.22 � Idealised load–deflection curve.
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Substituting Equations 6.41 and 6.43 into Equation 6.42 gives:

	
v

l
d

yd =
2

1940
	 (6.44)

and the elastic energy W1 (shown in Figure 6.22) may be approximated as:

	
W

P v
bdl1

Rd yd= =
2

0 00825. 	 (6.45)

If we assume that satisfaction of Equation 6.38 is required for robustness, 
the minimum internal plastic energy W2 that must be absorbed during the 
hinge rotation is 3W1 = 0.0247bdl and this must equal the external work:

	 P v v W bdlRd ud yd( ) .− = ≥2 0 0247 	 (6.46)

and substituting Equations 6.40 and 6.41 into Equation 6.46, we get:

	 ( )( ) .4 4 8 0 02472M l l bd bdlu s s/ /θ θ= ≥

	
∴ ≥ × −θs 3 09 10 3.

l
d

	 (6.47)

It is evident that the plastic rotation required at the hinge at mid-span 
depends on the span to effective depth ratio. To achieve a ductility corre-
sponding to W2/W1 = 3.0, the minimum rotation required at the hinge at 
mid-span and the span to final deflection ratio (l/vud) are determined from 
Equations 6.47, 6.40 and 6.44 and given in the following table.

l/d 
Minimum θs

(rad) (l/vud) 

10 0.031 77
14 0.043 56
18 0.056 43
22 0.068 35
26 0.080 30

In a simplified procedure, EN 1992-1-1 [1] suggests that the rotation θs 
should be less than an allowable rotation given by the product of θpl.d and 
kλ, where θpl.d is the basic value of allowable rotation given in Figure 6.23 
for steel Classes B and C and tendons, and kλ is a factor that depends on 
the shear slenderness. The values of θpl.d in Figure 6.23 apply for a shear 
slenderness λ = 3. For different values of shear slenderness, kλ =  (λ/3)0.5. 
The shear slenderness λ is the ratio of the distance along the beam from the 
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plastic hinge to the nearest point of zero moment (after redistribution) and 
the effective depth d.
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Chapter 7

Design resistance in shear 
and torsion

7.1  INTRODUCTION

In Chapter 5, methods were presented for the determination of the strains 
and stresses normal to a cross-section caused by the longitudinal prestress 
and the bending moment acting at the cross-section. Procedures for cal-
culating the flexural resistance of beams were discussed in Chapter 6. In 
structural design, shear failure must also be guarded against. Shear failure 
is sudden and difficult to predict with accuracy. It results from diagonal 
tension in the web of a concrete member produced by shear stress in com-
bination with the longitudinal normal stress. Torsion, or twisting of the 
member about its longitudinal axis, also causes shear stresses which lead to 
diagonal tension in the concrete and consequential inclined cracking.

Conventional reinforcement in the form of transverse stirrups is used to 
carry the tensile forces in the webs of prestressed concrete beams after the 
formation of diagonal cracks. This reinforcement should be provided in 
sufficient quantities to ensure that flexural failure, which can be predicted 
accurately and is usually preceded by extensive cracking and large deforma-
tion, will occur before diagonal tension failure.

In slabs and footings, a local shear failure at columns or under concen-
trated loads may also occur. This so-called punching shear type of failure 
often controls the thickness of flat slabs and plates in the regions above the 
supporting columns. In this chapter, the design for adequate strength of 
prestressed concrete beams in shear and in combined shear and torsion is 
described. Procedures for determining the punching shear strength of slabs 
and footings are also presented.

7.2  SHEAR IN BEAMS

7.2.1  Inclined cracking

Cracking in prestressed concrete beams subjected to overloads, as shown 
in Figure 7.1, depends on the local magnitudes of moment and shear. 
In regions where the moment is large and the shear is small, vertical 
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flexural cracks appear after the normal tensile stress in the extreme con-
crete fibres exceeds the tensile strength of concrete. These are the cracks 
referred to in Sections 5.8.1 and 5.12.1 and are shown in Figure 7.1 as 
crack type A.

Where both the moment and shear force are relatively large, flexural 
cracks which are vertical at the extreme fibres become inclined as they 
extend deeper into the beam owing to the presence of shear stresses in the 
beam web. These inclined cracks, which are often quite flat in a prestressed 
beam, are called flexure-shear cracks and are designated crack type B in 
Figure 7.1. If adequate shear reinforcement is not provided, a flexure-shear 
crack may lead to a so-called shear-compression failure, in which the area 
of concrete in compression above the advancing inclined crack is so reduced 
as to be no longer adequate to carry the compression force resulting from 
flexure.

A second type of inclined crack sometimes occurs in the web of a pre-
stressed beam in the regions where moment is small and shear is large, 
such as the cracks designated type C adjacent to the discontinuous support 
and near the point of contraflexure in Figure 7.1. In such locations, high 
principal tensile stress may cause inclined cracking in the mid-depth region 
of the beam before flexural cracking occurs in the extreme fibres. These 
shear-tension cracks (also known as web-shear cracks) occur most often in 
beams with relatively thin webs.

7.2.2  Effect of prestress

The longitudinal compression introduced by prestress delays the forma-
tion of each of the crack types shown in Figure 7.1. The effect of prestress 
on the formation and direction of inclined cracks can be seen by examin-
ing the stresses acting on a small element located at the centroidal axis 
of the uncracked beam shown in Figure 7.2. Using a simple Mohr’s circle 
construction, the principal stresses and their directions are readily found. 

C B A B

B A B

C

Region A: Flexural cracks (M/V is high)

Region C: Shear-tension cracks (M/V is low)
Region B: Flexure-shear cracks (M/V is moderate)

Figure 7.1 � Types of cracking at overload.
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When the principal tensile stress σl reaches the tensile strength of concrete, 
cracking occurs and the cracks form in the direction perpendicular to the 
direction of σl.

When the prestress is zero, σl is equal to the shear stress v and acts at 
45° to the beam axis, as shown in Figure 7.2a. If diagonal cracking occurs, 
it will be perpendicular to the principal tensile stress, i.e. at 45° to the 
beam axis. When the prestress is not zero, the normal compressive stress 
σ (= P/A) reduces the principal tension σl, as illustrated in Figure 7.2b. The 
angle between the principal stress direction and the beam axis increases, 
and consequently, if cracking occurs, the inclined crack is flatter. Prestress 
therefore improves the effectiveness of any transverse reinforcement (stirrups) 
that may be used to increase the shear strength of a beam. With prestress 
causing the inclined crack to be flatter, a larger number of vertical stirrup 
legs are crossed by the crack and, consequently, a larger tensile force can be 
carried across the crack.

In the case of I-beams, the maximum principal tension may not occur at 
the centroidal axis of the uncracked beam where the shear stress is greatest, 
but may occur at the flange–web junction where shear stresses are still high 
and the longitudinal compression is reduced by external bending.
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Figure 7.2 � Effect of prestress on the principal stresses in a beam web. (a) At P = 0. 
(b) At P > 0.
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If the prestressing tendon is inclined at an angle θp, the vertical component 
of prestress Pv (= P sin θp ≈ Pθp) usually acts in the opposite direction to the 
load-induced shear. The force Pv may therefore be included as a significant 
part of the shear strength of the cross-section. Alternatively, Pv may be 
treated as an applied load and the net design shear force VEd to be resisted 
by the section may be taken as:

	 VEd = Vloads − Pv	 (7.1)

In summary, the introduction of prestress increases the shear strength of 
a reinforced concrete beam. Nevertheless, prestressed sections often have 
thin webs, and the thickness of the web may be governed by shear strength 
considerations.

7.2.3  Web reinforcement

In a beam containing no shear reinforcement, the shear strength is reached 
when inclined cracking occurs. The inclusion of shear reinforcement, usu-
ally in the form of vertical stirrups, increases the shear strength. After 
inclined cracking, the shear reinforcement carries tension across the cracks 
and resists widening of the cracks. Adjacent inclined cracks form a regular 
pattern as shown in Figure 7.3a. The behaviour of the beam after cracking 
is explained conveniently in terms of an analogous truss, first described by 
Ritter [1] and shown in Figure 7.3b.

(b) 

(a)

Vertical 
stirrup

Inclined 
crackingPrestressing

tendon

Figure 7.3 � The analogous truss used to model a beam with shear reinforcement. 
(a) Beam elevation after inclined cracking. (b) The truss analogy.
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The web members of the analogous truss resist the applied shear and 
consist of vertical tension members (which represent the vertical legs of 
the closely spaced steel stirrups) and inclined compression members (which 
model the concrete segments between the inclined cracks). In reality, there 
exists a continuous field of diagonal compression in the concrete between 
the diagonal cracks. This is idealised in the analogous truss by the discrete 
diagonal compression struts. In a similar manner, the vertical members of 
the analogous truss may represent a number of more closely spaced verti-
cal stirrups. The top compressive chord of the analogous truss represents 
the concrete compressive zone plus any longitudinal compressive reinforce-
ment, and the bottom chord models the longitudinal prestressed and non-
prestressed reinforcement in the tensile zone. At each panel point along the 
bottom chord of the analogous truss, the vertical component of the com-
pressive force in the inclined concrete strut must equal the tension in the 
vertical steel member, and the horizontal component must equal the change 
in the tensile force in the bottom chord (i.e. the change in force in the pre-
stressing tendon and any other longitudinal non-prestressed reinforcement).

The analogous truss can be used to visualise the flow of forces in a beam 
after inclined cracking, but it is at best a simple model of a rather complex 
situation. The angle of the inclined compressive strut θ has traditionally 
been taken as 45°, although in practical beams it is usually less. The stirrup 
stresses predicted by a 45° analogous truss are considerably higher than 
those measured in real beams [2] because the truss is based on the assump-
tion that the entire shear force is carried by the vertical stirrups. In fact, 
part of the shear is carried by dowel action of the longitudinal tensile steel 
and part by friction on the mating surfaces of the inclined cracks (known as 
aggregate interlock). Some shear is also carried by the uncracked concrete 
compressive zone. In addition, the truss model neglects the tension carried 
by the concrete between the inclined cracks. The stress in the vertical leg of 
a stirrup in a real concrete beam is therefore maximum at the inclined crack 
and is significantly lower away from the crack.

At the ultimate limit state, shear failure may be initiated by yielding of 
the stirrups or, if large amounts of web reinforcement are present, crushing 
of the concrete compressive strut. The latter is known as web-crushing and 
is usually avoided by placing upper limits on the quantity of web reinforce-
ment. Not infrequently, premature shear failure occurs because of inad-
equately anchored stirrups. The truss analogy shows that the stirrup needs 
to be able to carry the full tensile force from the bottom panel point (where 
the inclined compressive force is resolved both vertically and horizontally) 
to the top panel point. To achieve this, care must be taken to detail the 
stirrup anchorages adequately to ensure that the full tensile capacity of the 
stirrup can be developed at any point along the vertical leg. After all, an 
inclined crack may cross the vertical leg of the stirrup at any point.

Larger diameter longitudinal bars should be included in the corners of 
the stirrup to form a rigid cage and to improve the resistance to pull out of 
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the hooks at the stirrup anchorage. These longitudinal bars also disperse 
the concentrated force from the stirrup and reduce the likelihood of split-
ting in the plane of the stirrup anchorage. Stirrup hooks should be located 
on the compression side of the beam where anchorage conditions are most 
favourable and the clamping action of the transverse compression greatly 
increases the resistance to pull out. If the stirrup hooks are located on the 
tensile side of the beam, anchorage may be lost if flexural cracks form in the 
plane of the stirrup. In current practice, stirrup anchorages are most often 
located at the top of a beam. In the negative moment regions of such beams, 
adjacent to the internal supports, for example where shear and moment are 
relatively large, the shear capacity may be significantly reduced owing to 
loss of stirrup anchorages after flexural cracking.

It is good practice for the shear reinforcement calculated as being nec-
essary at any cross-section to be provided for a distance h from that cross-
section in the direction of decreasing shear, where h is the overall depth 
of the member. The first stirrup at each end of a span should be located 
within 50 mm from the face of the support. Shear reinforcement should 
extend as close to the compression face and the tension face of the mem-
ber as cover requirements and the proximity of other reinforcement and 
tendons permit. The bends in bars used as stirrups should also enclose, 
and be in contact with, a longitudinal bar with a diameter not less than 
the diameter of the fitment (stirrup) bar.

In Figure 7.4, some satisfactory and some unsatisfactory stirrup arrange-
ments are shown. Generally, stirrup hooks should be bent through an angle 
of at least 135°. A 90° bend (a cog) will become ineffective should the cover 
be lost, for any reason, and will not provide adequate anchorage. Fitment 
cogs of 90° should not be used when the cog is located within 50 mm of 
any concrete surface.

In addition to carrying diagonal tension produced by shear, and con-
trolling inclined web cracks, closed stirrups also provide increased ductil-
ity to a beam by confining the compressive concrete. The open stirrups 

(c)

Compressive side

Tensile side

(a) (b)

Tensile
lapped splice

Figure 7.4 � Stirrup shapes. (a) Incorrect. (b) Satisfactory in some situations. (c) Desirable.
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shown in Figure 7.4b are commonly used, particularly in post-tensioned 
beams where the opening at the top of the stirrup facilitates the placement 
and positioning of the post-tensioning duct along the member. This form 
of stirrup does not provide confinement for the concrete in the compres-
sion zone and is undesirable in heavily reinforced beams where confine-
ment of the compressive concrete may be required to improve ductility of 
the member.

It is good practice to use adequately anchored stirrups, even in areas of 
low shear, particularly when tensile steel quantities are relatively high and 
cross-sectional ductility is an issue. EN 1992-1-1 [3] suggests that when 
calculations indicate that no shear reinforcement is required (see Section 
7.2.4), minimum shear reinforcement should nevertheless be provided 
(as given by Equation 7.17). EN 1992-1-1 [3] also specifies that minimum 
shear reinforcement may be omitted in slabs where transverse distribution 
of loads is possible and in members of minor importance that do not con-
tribute to the overall strength and stability of the structure.

7.2.4 � Design strength of beams without 
shear reinforcement

The design shear strength of a beam without shear reinforcement VRd,c is 
usually considered to be the load required to cause the first inclined crack. 
In regions of a beam where the design shear force VEd ≤ VRd,c, no calculated 
shear reinforcement is necessary.

According to EN 1992-1-1 [3], the design value of the shear resistance 
VRd,c (in N) in a prestressed concrete member cracked in bending is given by:

	
V C k f k b d v k b dRd,c Rd,c l ck cp w cp w= +  ≥ +( ) ( )/

min100 1 3
1 1ρ σ σ 	 (7.2)

where fck is in MPa; k d d= + ≤1 200 2 0/ with in mm. ( ); ρl = Asl/(bwd) ≤ 
0.02; Asl is the area of the longitudinal tensile reinforcement that extends 
at least (lbd + d) beyond the section considered; bw is the smallest width of 
the cross-section in the tensile area (in mm); σcp = NEd/Ac<0.2fcd  (in MPa); 
NEd is the magnitude of the axial compressive force on the cross-section 
due to the design loading and prestress (in N); Ac is the area of the con-
crete cross-section (in mm2); CRd,c = 0.18/γc = 0.12 for persistent and 
transient loads; k1 = 0.15 and v k fmin

..= 0 035 1 5
ck

0.5. Equation 7.2 may be 
considered as the shear force required to develop a flexure-shear crack 
(refer Figure 7.1).

For members with loads applied to the top surface relatively close to the 
support (i.e. when av ≤ 2d), the contribution of such loads to the design 
shear force VEd may be multiplied by β = av/2d ≥ 0.25, where av is defined 
in Figure 7.5 and is measured from the edge of a rigid support (as shown) or 
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the centre of bearing for a flexible bearing. The factored design shear force 
calculated without reduction by β should always satisfy:

	
V b df

f
Ed w cd

ck

250
≤ −





0 3 1. 	 (7.3)

In regions of a beam that are uncracked in bending (i.e. when the extreme 
fibre flexural tensile stress is less than fctk,0.05/γc), the design shear resistance 
is limited by the tensile strength of the concrete in the web and is given by:

	
V

Ib
S

f fRd,c
w

ctd cp ctd= +( )2
1α σ 	 (7.4)

where I is the second moment of area; bw is the width of the cross-section 
at the centroidal axis (allowing for the presence of ducts in accordance with 
Equations 7.19 and 7.20); S is the first moment of the area above and about 
the centroidal axis; α1 = lx/lpt2 ≤ 1.0 for pretensioned members and α1 = 1.0 
for other types of prestressed members; lx is the distance of the cross-section 
under consideration from the start of the transmission length; σcp is the mag-
nitude of the concrete compressive stress at the centroidal axis due to axial 
loading and/or prestressing (σcp = NEd/Ac in MPa); lpt2 is the upper bound of 
the transmission length (lpt2 = 1.2lpt) and lpt is given by Equation 8.2.

On cross-sections, where the width varies over the height, the maximum 
principal tension may occur on an axis other than the centroidal. In such 
cases, Equation 7.4 should be used to locate the axis for which VRd,c is at its 
minimum value with bw and S referring to the axis under consideration and 
σcp replaced by the concrete stress caused by prestress and bending at the 
axis under consideration. Equation 7.4 should be considered as the shear 
force required to cause a shear-tension crack (refer Figure 7.1)

7.2.5 � Design resistance of beams 
with shear reinforcement

In Figure 7.6, the transfer of shear force across a diagonal crack in a beam 
with vertical shear reinforcement is shown. The part of the shear force 

av

av

dd

Figure 7.5 � Loads near a support [3].
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carried by shear stresses in the uncracked concrete compression zone is Vc, 
the part carried by bearing and friction between the two surfaces of the 
inclined crack is Va, the part carried by dowel action in the longitudinal 
steel crossing the crack is Vd and the contribution of stirrups to the shear 
strength of the beam depends on the area of the vertical legs of each stirrup 
Asw and the stress in each stirrup crossed by the inclined crack.

At the ultimate limit state, EN 1992-1-1 [3] conservatively assumes that 
the design strength in shear VRd is calculated based on the truss model 
shown in Figure 7.7 and is given by:

	 VRd = VRd,s + Vccd + Vtd	 (7.5)

where VRd,s is the design value of the maximum shear force that can be 
resisted by the yielding shear reinforcement and is given by Equation 7.7; 
Vccd is the design value of the shear component of the compressive force in 
the compression chord of the truss at the cross-section under consideration 
(and is only non-zero when the compression chord is inclined) and Vtd is 
the design value of the shear component of the tensile force in the tensile 

≈ d cot θv

d

s

Vd
Pv

Ph

bw

Vc

Va

Aswσsw

θv

P

Figure 7.6 � Transfer of shear at an inclined crack.

s

Compression chord
Strut

Shear reinforcement Tension chord

d z α
θv

Ftd

Fcd

V

V (cot θv–cot  α)

z/2

z/2 M
N

V

Figure 7.7 � Truss model for shear in a beam with shear reinforcement [3].
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reinforcement at the cross-section under consideration (and is only non-
zero when the tensile chord is inclined).

In Figure 7.7, Fcd is the design value of the compressive force in the direc-
tion of the member’s longitudinal axis, Ftd is the design value of the tensile 
force in the tension chord, θv is the angle between the compression strut 
and the longitudinal axis perpendicular to the shear force, α is the angle 
between the shear reinforcement and the longitudinal axis perpendicular to 
the shear force and z is the perpendicular distance between the compression 
and tension chords and may generally be taken as z = 0.9d.

It is reasonable to take the length of the horizontal projection of the 
inclined crack to be z cot θv. The number of stirrups crossing the diagonal 
crack is therefore z cot θv/s, where s is the spacing of the stirrups required 
for shear in the direction of the member axis. EN 1992-1-1 [3] imposes the 
limits on the angle θv given by:

	 1 ≤ cot θv ≤ 2.5	 (7.6)

For members with shear reinforcement perpendicular to the longitudinal 
axis of the member (i.e. α = 90°), the design shear resistance VRd is given by 
either Equation 7.7 or 7.8, whichever is the smaller value:
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where Asw is the cross-sectional area of each stirrup, bw is the minimum 
width of the cross-section between the tension and compression chords 
(allowing for any post-tensioning ducts in the web – see Equations 7.19 
and 7.20), fywd is the design yield strength of the shear reinforcement, ν1 is a 
strength reduction factor for concrete cracked in shear given by:
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except that, if the design shear stress in the shear reinforcement is less than 
0.8fyk, then ν1 = 0.6 for fck ≤ 60 MPa and ν1 = (0.9 − fck/200) > 0.5 for 
fck > 60 MPa.

The coefficient αcw accounts for the state of stress in the compression 
chord and equals 1.0 for non-prestressed members. For prestressed mem-
bers αcw is given by:
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where σcp is the magnitude of the mean compressive stress in the concrete 
due to the design axial force.

For members with inclined shear reinforcement (i.e. 45° ≤ α < 90°), the 
design shear resistance VRd is given by either Equation 7.11 or 7.12, which-
ever is the smaller value:

	
V A f

z
s
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v= +(cot cot )sinθ α α

	 (7.11)
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The design shear resistance VRd,s in Equations 7.7 and 7.11 is equal to the 
vertical force carried by the web reinforcement when the design stress in 
every stirrup crossed by the inclined crack is fywd. The resistance VRd,max in 
Equations 7.8 and 7.12 is the maximum design shear resistance and is gov-
erned by crushing of the concrete in the inclined compression strut between 
the shear cracks.

The maximum area of vertical shear reinforcement (i.e. α = 90°) that can 
be included in a particular cross-section is when cot θv = 1 and is obtained 
by equating Equations 7.7 and 7.8:

	

A b f
f
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= α ν1
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For inclined stirrups (i.e. 45° ≤ α < 90°), equating Equations 7.11 and 7.12 
with cot θv =1 gives:
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In regions of a beam, where the design shear force diagram is continuous, 
the shear reinforcement required in any length l = z(cot θv + cot α) may be 
calculated using the smallest value of the design shear force (VEd) in that 
length.

The shear reinforcement ratio is given by:
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where:
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and from Equation 7.15, the minimum quantity of shear reinforcement is 
therefore:

	

A
s

b f

f
sw,min w ck

yk

=
0 08. sinα

	 (7.17)

EN 1992-1-1 [3] specifies that the maximum longitudinal spacing between 
stirrups is:

	 sl,max = 0.75d (1 + cot α)	 (7.18)

For webs containing grouted metal ducts of outer diameter ϕ > bw/8, the 
maximum design shear resistance VRd.max should be calculated by substitut-
ing bw,nom for bw in either Equation 7.8 or 7.12 as appropriate, where:

	 bw,nom = bw − 0.5Σϕ	 (7.19)

and Σϕ is determined for the most unfavourable level on the cross-section. 
For grouted metal ducts with ϕ ≤ bw/8, bw,nom = bw. For non-grouted ducts, 
grouted plastic ducts and unbonded tendons:

	 bw,nom = bw − Σϕ	 (7.20)

The additional tensile force ΔFtd in the longitudinal reinforcement due to 
the design shear force VEd is given by:

	 ΔFtd = 0.5VEd (cot θv − sin α)	 (7.21)

except that the force in the tensile reinforcement (MEd/z) + ΔFtd should not 
be taken greater than (MEd,max/z), where MEd,max is the maximum moment 
along the beam.

For members with loads applied to the top surface relatively close to the 
support (i.e. when av ≤ 2d), as shown in Figure 7.8, the contribution of such 
loads to the design shear force VEd may be reduced by β = av/2d ≥ 0.25. In 
addition, the design shear force calculated this way should satisfy:

	 V A fEd sw ywd≤ sinα	 (7.22)

where Aswfywd is the design resistance of the shear reinforcement located 
within the length 0.75av centrally located within the shear span av, as shown 
in Figure 7.8. The reduction factor β should only be applied when calculating 
the required shear reinforcement and only when the longitudinal reinforce-
ment is fully anchored at the support. In addition, the design shear force VEd 
calculated without reduction by β should always satisfy Equation 7.3.

In EN 1992-1-1 [3], θv may be varied between the limits specified in 
Equation 7.6, i.e. 45° ≥ θv ≥ 21.8°. It is evident from Equations 7.7 and 
7.11 that the contribution of stirrups to the shear strength of a beam 
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depends on θv. The flatter the inclined crack (i.e. the smaller the value of θv), 
the greater is the number of effective stirrups and the greater is the value 
of VRd,s. In order to achieve the desired shear strength in design, fewer 
stirrups are required as θv is reduced. The choice of θv = 21.8° leads to the 
least amount of shear reinforcement. However, if the slope of the diago-
nal compression member in the analogous truss of Figure 7.3 is small, 
the change in force in the longitudinal tensile steel is relatively large (see 
Equation 7.21). More longitudinal steel is required in the shear span near 
the support than would otherwise be the case, and greater demand is 
placed on the anchorage requirements of these bars. It should also be 
noted that a choice of θv = 45° will give the largest value of VRd,max in 
Equation 7.12 and the smallest possible web width bw.

For a given amount of shear reinforcement (Asw/s), the optimum value of 
θv is when the design shear resistance provided by the stirrups VRd,s is equal 
to the maximum design shear resistance provided by the compressive strut 
VRd,max. In design, VRd,s ≥ VEd. Therefore, if VRd,max is set equal to VEd, the 
optimum value of θv can be determined.

EN 1992-1-1 [3] also requires that the longitudinal steel necessary for 
flexure at any particular section must be provided and developed at a 
section a distance a1 along the beam in the direction of increasing shear. 
For beams without shear reinforcement, a1 = d. For members with shear 
reinforcement:

	 a1 = z(cot θv − cot α)/2	 (7.23)

7.2.6  Summary of design requirements for shear

The design requirements for shear in EN 1992-1-1 [3] are summarised in 
the following:

	 1.	The design shear resistance of a member without shear reinforcement 
is VRd,c given by Equation 7.2 for a member cracked in bending or 
given by Equation 7.4 for a member uncracked in bending.

0.75av
0.75av

av av

αα

Figure 7.8 � Shear reinforcement in short shear spans with direct strut action.
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	 2.	The design shear resistance of a member with shear reinforcement is 
VRd given by Equation 7.5.

	 3.	The contribution of the shear reinforcement to the design shear resis-
tance VRd,s is given by Equation 7.11 (repeated here for convenience):

	
V A f

z
s

Rd,s sw ywd
v= +(cot cot )sinθ α α

	 (7.11)

		  where s is the centre-to-centre spacing of the shear reinforcement 
measured parallel to the axis of the member and θv is the angle of the 
concrete compression strut to the beam axis and may be taken as any 
value between 21.8° and 45°.

	 4.	The maximum design shear resistance of a member with shear rein-
forcement is governed by crushing of the inclined concrete struts in 
the web of the member. In no case should the design shear strength 
VRd,s exceed VRd,max (as defined in Equation 7.12). The corresponding 
upper limit on the amount of shear reinforcement permitted in the 
member is given by Equation 7.14. The minimum quantity of shear 
reinforcement permitted in a beam is given by Equation 7.17.

	 5.	For members subject to predominantly uniformly distributed load, 
the design shear force need not be checked at a distance less than d 
from the face of the support. Any shear reinforcement required at the 
section d from the face of the support should continue to the face of 
the support. Notwithstanding this requirement, the shear at the sup-
port should not exceed VRd,max given by Equation 7.12. In addition, 
the longitudinal tensile reinforcement required at d from the face of 
the support shall be continued into the support and shall be fully 
anchored past that face.

		    Where diagonal cracking can take place at the support or extend 
into the support, such as when the support is above the beam, the 
design shear force should be checked at the face of the support.

	 6.	Where the VEd ≤ VRd,c, no shear reinforcement is theoretically required, 
but minimum shear reinforcement as given by Equation 7.17 should 
be included in all members, with the exception of slabs and members 
of minor importance that do not contribute to the overall strength 
and stability of the structure.

		    Where VEd > VRd,c, shear reinforcement should be provided in accor-
dance with Equation 7.7 (for vertical stirrups) or Equation 7.11 (for 
inclined stirrups).

	 7.	The maximum spacing between stirrups sl,max, measured in the direc-
tion of the beam axis, is given by Equation 7.18. The maximum trans-
verse spacing between the vertical legs of a stirrup measured across 
the web of a beam should not exceed the lesser of 0.75 d or 600 mm. 
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The first stirrup at each end of a span should be positioned no more 
than 50 mm from the face of the adjacent support.

	 8.	Stirrups should be anchored on the compression side of the beam 
using standard hooks bent through an angle of at least 135° around 
a larger diameter longitudinal bar. It is important that the stirrup 
anchorage be located as close to the compression face of the beam 
as is permitted by concrete cover requirements and the proximity of 
other reinforcement and tendons.

7.2.7  The design procedure for shear

An appropriate procedure for the design of a beam for shear resistance is 
outlined below.

	 1.	Calculate the design shear force VEd along the span. The maximum 
value need not be determined closer than d from the face of the 
support.

	 2.	Calculate the unreinforced concrete capacity VRd,c using Equation 7.2 
for a section that has been cracked in flexure or Equation 7.4 for a 
section that is uncracked in flexure.

	 3.	If VEd ≤ VRd,c, then minimum reinforcement given by Equation 7.17 is 
required.

		  Go to Step 6.
	 4.	If VEd > VRd,c, shear reinforcement is required to resist the design shear 

force VEd.
Calculate VRd,max,1 from Equation 7.12 (or Equation 7.8 for vertical 

stirrups) for cot θv = 1.0.
Calculate VRd,max,2.5 from Equation 7.12 for cot θv = 2.5.
If VEd > VRd,max,1, the section is inadequate and requires a redesign 

involving an increase in section dimensions and/or an increase in 
concrete strength.

If VEd ≤ VRd,max,2.5, take cot θv = 2.5, i.e. θv = 21.8°.
If VEd > VRd,max,2.5, θv may be estimated using:

	
θv

Ed Rd.max,2.5
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21 8 23 2. .
V V
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	 5.	Determine the amount of shear reinforcement using the value of θv 
determined in Step 4 and Equation 7.11, by satisfying the strength 
requirement VEd ≤ VRd,s. If vertical stirrups are used, Equations 7.5 
and 7.7 give:
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		  and therefore:
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	 6.	The maximum longitudinal spacing of shear reinforcement is given by 
Equation 7.18. That is:

	 sl,max = 0.75d(1 + cot α).

EXAMPLE 7.1

The shear reinforcement for the post-tensioned beam shown in Figure 7.9 
is to be designed (assume 12  mm diameter stirrups each with two verti-
cal legs and fyk = 500 MPa). The beam is simply-supported over a span of 
30 m and carries a uniformly distributed load, consisting of an imposed load 
wQ = 25 kN/m and a permanent load wG = 40 kN/m (which includes the 
beam self-weight). The beam is prestressed by a bonded parabolic cable with 
an eccentricity of 700 mm at mid-span and zero at each support. The area 
of the prestressing steel is Ap = 3800 mm2 and the metal duct diameter is 
120 mm. The prestressing force at each support is 4500 kN and at mid-span is 
4200 kN and is assumed to vary linearly along the beam length. The concrete 

Properties of gross section:
A = 543,800 mm2

I = 87.7 × 109 mm4

S = 96.0 × 109 mm4

ytop = 423.7 mm
ybtm = 876.3 mm

Concrete strength:
fck = 40 MPa

(All dimensions in mm)

Parabolic cable profile

e

wG = 40 kN/m  and  wQ = 25 kN/m 

30 m

x

y

Elevation

Section

Centroidal
axis

100 1500

1300e 250

Ap = 3800 mm2

ybtm

ytop
. .

. .

Figure 7.9 � Beam details (Example 7.1).
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cover to the reinforcement is taken to be 40 mm. The strength class for 
concrete is C40/50.

The factored design load combination for the strength limit state (see 
Section 2.3.2) is given by Equation 2.1:

	 wEd = 1.35wG + 1.5wQ = 1.35 × 40 + 1.5 × 25 = 91.5 kN/m

At x m from support A, the design shear force VEd is the shear caused by wEd 
minus the vertical component of prestress at this point. Accordingly:

	 VEd = 1372.5 − 91.5x − Pv(x)  and  M 
Ed = 1372.5x − 45.75x2	 (7.1.1)

Using Equations 1.3 and 1.4, the distance of the parabolic prestressing cable 
below the centroidal axis of the section at x m from A and the slope of the 
cable at that point are:
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With 40 mm cover and assuming 12 mm diameter stirrups and 28 mm diam-
eter bottom reinforcement in the tension chord, the depth to the centroid of 
the tensile reinforcement is d = 1300 − 40 − 12 − 14 = 1234 mm and the lever 
arm between the compression and tension chords is approximated by:

	 z = 0.9d = 1111 mm

In Table 7.1, a summary of the calculations and reinforcement requirements 
at a number of sections along the beam is presented. In the following, sample 
calculations are provided for the sections at 1 m from the support and at 2 m 
from the support. In this example, bw,nom = bw − 0.5 Σϕ =190 mm, and from 
Equations 4.11 and 4.12, when fck = 40 MPa, fcd = 26.67 MPa and fctd = 1.67 MPa. 
From Table 4.6, fywd = 435 MPa.

From Equation 7.10, αcw = 1.25, and from Equation 7.9, ν1 = 0.6 × (1 − 40/250) = 
0.504. The maximum and minimum quantities of shear reinforcement are 
obtained from Equations 7.14 and 7.17, respectively:
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s
= × × ×

× ×
=1 25 190 0 504 26 67
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. . .
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Using 12 mm diameter vertical stirrups with 2 vertical legs, i.e. Asw = 220 mm2, 
the maximum stirrup spacing to satisfy the minimum steel requirement is 
smax = 220/0.192 = 1146 mm. However, the maximum spacing is limited to 
0.75d  (Equation 7.18).

At x = 1.0 m

From Equation 7.1.2:

	 y = −0.0902 m (and therefore e = 90.2 mm)  and  y′ = θp = −0.0871 rad

For this cross-section, Pm,t = 4480 kN and the concrete stress at the centroi-
dal axis and the vertical component of prestress are:

	 σcp = Pm,t/A = 8.24 MPa  and  Pv = −Pm,tθp = 390 kN

From Equation 7.1.1:

	 VEd = 891 kN  and  M 
Ed = 1327 kNm

Check whether the section has cracked in bending under the full design 
bending moment:

	
σbtm

m,t m,t btm Ed btm 8 24 4 4 13 26 98 MPa= − − + = − − + = <P
A

P ey
I

M y
I

. . . .0 0 ffctd

and therefore, the cross-section has not cracked.
From Equation 7.4:
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Therefore, shear reinforcement is required.
For cot θv = 1, Equation 7.8 gives:
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For cot θv = 2.5, Equation 7.8 gives:

	
VRd,max.2.5 1223 kN= × × × ×
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With VEd < VRd,max,2.5, the slope of the inclined compressive strut may be taken 
as θv = 21.8° (i.e. cot θv = 2.5). Equation 7.25 gives the required amount of 
shear reinforcement:
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≥ − − ×
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435 1111 2 5

0 738
3

and with Asw = 220 mm2, the stirrup spacing must satisfy s ≤ 220/0.738 = 
298 mm.

Using 12 mm diameter steel stirrups (with two vertical legs) at 290 mm cen-
tres satisfies both the minimum and maximum transverse steel requirements 
and the maximum spacing requirement (Equation 7.18) of EN 1992-1-1 [3].

From Equation 7.21, the additional tensile force ΔFtd in the longitudinal rein-
forcement due to the design shear force VEd is ΔFtd = 0.5VEd cot θv = 1114 kN, 
and the area of anchored tensile reinforcement in the bottom chord to carry 
this force is As = ΔFtd/fyd = 2561 mm2.

Use five 28 mm diameter bottom bars. Therefore ρ1 = As/(bwd) = 0.0131.

At x = 2.0 m

From Equation 7.1.2:

	 y = −0.174 m (and therefore e = 174 mm)  and  y′ = θp = −0.0809 rad

For this cross-section, Pm,t = 4460 kN. The concrete stress at the centroidal 
axis and the vertical component of prestress are:

	 σcp = Pm,t/A = 8.20 MPa  and  Pv = −Pm,tθp = 360.8 kN

From Equation 7.1.1:

	 VEd
 = 829 kN  and  M 

Ed = 2562 kNm

Check whether the section has cracked in bending under the full design bend-
ing moment:

	
σbtm

m,t m,t btm Ed btm 8 2 7 75 25 6 9 65 MPa= − − + = − − + = +P
A
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I

M y
I

. . . .0 0 >> fctd

and therefore, the cross-section has cracked.
In Equation 7.2, CRd,c = 0.12, k = 1 200 1234+ /  = 1.40, vmin = 0.035 × 1.401.5 × 

400.5 = 0.37, k1 = 0.15 and ρ1 = 0.0131. From Equation 7.2:

	

VRd,c = × × × × + ×  × × ×0 12 1 40 100 0 0131 40 0 15 8 20 190 12341 3. . ( . ) . ./ 110 3−

= 435 8 kN.

This is less than VEd, and therefore, shear reinforcement is required.
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With VEd
 < VRd,max,2.5, the slope of the inclined compressive strut may be 

taken as θv = 21.8° (i.e. cot θv = 2.5) and the required amount of shear rein-
forcement is obtained from Equation 7.25:
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With Asw = 220 mm2, the stirrup spacing must satisfy s ≤ 220/0.686 = 321 mm.
Using 12 mm diameter steel stirrups (with two vertical legs) at 320 mm 

centres satisfies both the minimum and maximum transverse steel 
requirements and the maximum spacing requirement (Equation 7.18) of 
EN 1992-1-1 [3].

For other cross-sections, results are shown in Table 7.1. When x 
exceeds about 8.3 m, the design shear VEd is less than VRd,c and the con-
crete alone can carry the shear. The minimum amount of shear reinforce-
ment is required, therefore, in the middle portion of the span (from x = 
9 to 21 m).

Table 7.1  �Summary of results – Example 7.1

x 
(m) 

VEd 
(kN) 

MEd 
(kNm) 

Pm,t 
(kN) 

Cracked 
in 

bending 

Equation 
7.4 

VRd,c (kN)

Equation 
7.2 

VRd,c (kN)

Specified 
spacing of 
12 mm 

vertical steel 
stirrups 

(2 legs) (mm) 

1 890.7 1327 4480 No 706.2 – 298
2 828.7 2562 4460 Yes – 435.8 321
3 766.5 3706 4440 Yes – 434.5 347
4 704.0 4758 4420 Yes – 433.3 378
5 641.2 5719 4400 Yes – 432.0 415
6 578.2 6588 4380 Yes – 430.7 460
7 515.0 7366 4360 Yes – 429.4 516
8 451.5 8052 4340 Yes – 428.1 588
9 397.7 8647 4320 Yes – 426.8 833*

10 323.7 9150 4300 Yes – 425.5 833*

*	 Minimum steel required (VEd < VRd,c) and s = 0.75d.
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7.2.8 � Shear between the web 
and flange of a T-section

As the moment varies along a T-beam, the change in force in the flange 
is transmitted to the web of the beam by longitudinal shear stresses that 
develop at the junction between the web of the beam and the flange on 
each side of the web. Figure 7.10 shows a segment of a T-beam where the 
longitudinal force in the flange on each side of the web due to bending at 
the ultimate limit state varies from Fd at Section A–A to Fd + ΔFd at Section 
B–B. EN 1992-1-1 [3] specifies that the shear strength of the flange may 
be calculated by treating the flange as a system of compressive struts and 
tensile ties in the direction perpendicular to the beam axis. The average 
longitudinal shear stress vEd at the junction between one side of the flange 
and the web is given by:

	
v

F
h x

Ed
d

f

= ∆
∆

	 (7.26)

where hf is the flange thickness and Δx is the length of the beam over which 
ΔFd develops (as shown in Figure 7.10).

The length Δx should not be taken greater than half the distance from 
the section where the moment is zero to the section where the moment is the 
maximum. For a beam subjected to point loads, Δx should not be greater 
than the distance between point loads.

The area per unit length of transverse reinforcement in the slab must be 
sufficient to carry the transverse tension generated by the inclined compres-
sion struts in the flange shown in Figure 7.10 and may be determined from:
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v h s
f

sf
Ed f f

yd f

≥
cot θ

	 (7.27)
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Fd + ∆Fd
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A

B

B

be�

θf

Figure 7.10 � Notation for shear at a flange–web junction [3].
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where the angle between the compression strut and the longitudinal axis of 
the beam may be taken within the ranges 45° ≥ θf ≥ 26.5° (i.e. 1.0 ≤ cot θf 

≤ 2.0) for compressive flanges and 45° ≥ θf ≥ 38.6° (i.e. 1.0 ≤ cot θf ≤ 1.25) 
for tensile flanges.

To prevent crushing of the compression struts in the flange, vEd should 
satisfy:

	 v vfEd cd f f≤ sin cosθ θ 	 (7.28)

where v is the strength reduction factor for concrete cracked in shear and is 
equal to ν1 given by Equation 7.9.

In beam and slab floor systems, the slab spans between the beams result-
ing in transverse bending in the flange of the T-beam. The reinforcement 
required to resist this bending will often exceed the reinforcement required 
to satisfy Equation 7.27 (i.e. required to resist the shear between the flange 
and the web).

When the flange does resist transverse bending, as well as shear between 
the flange and the web, EN 1992-1-1 [3] requires that the area of transverse 
steel should be greater than the value given by Equation 7.27 or half that 
given by Equation 7.27 plus that required for transverse bending.

If νEd is less than 0.4fctd, no additional reinforcement needs to be provided 
other than that required for flexure.

If longitudinal tensile reinforcement is required in the flange at a particu-
lar section, it should be anchored beyond the strut required to transmit the 
bar force back to the web at the section where this reinforcement is required 
(see Figure 7.10).

7.3  TORSION IN BEAMS

7.3.1  Compatibility torsion and equilibrium torsion

In addition to bending and shear, some members are subjected to twisting 
about their longitudinal axes. A common example is a spandrel beam sup-
porting the edge of a monolithic floor, as shown in Figure 7.11a. The floor 
loading causes torsion to be applied along the length of the beam. A second 
example is a box girder bridge carrying a load in one eccentric traffic lane, 
as shown in Figure 7.11b. Members which are curved in plan such as the 
beam in Figure 7.11c may also carry significant torsion.

For the design of spandrel beams, designers often disregard torsion and 
rely on redistribution of internal forces to find an alternative load path. 
This may or may not lead to a satisfactory design. When torsional cracking 
occurs in the spandrel, its torsional stiffness is reduced and, therefore, the 
restraint provided to the slab edge is reduced. Additional rotation of the 
slab edge occurs and the torsion in the spandrel decreases.
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Torsion that may be reduced by redistribution, such as the torsion in 
the spandrel beam, is often called compatibility torsion. Whereas indeter-
minate structures generally tend to behave in accordance with the design 
assumptions, full redistribution will occur only if the structure possesses 
adequate ductility and may be accompanied by excessive cracking and large 
local deformations. Ductile reinforcement is essential. For some statically 
indeterminate members (and for statically determinate members) twisted 
about their longitudinal axes, some torsion is required for equilibrium and 
cannot be ignored. In the case of the box girder bridge of Figure 7.11b, for 
example, torsion cannot be disregarded and will not be redistributed, as 
there is no alternative load path. This is equilibrium torsion and must be 
considered in design. EN 1992-1-1 [3] states that where equilibrium of the 
structure depends on the torsional resistance of its elements, a full torsional 
design covering both ultimate and serviceability limit states is required. 
However, in statically indeterminate structures, where torsion arises from 
considerations of compatibility only, it is usually not necessary to consider 
torsion at the ultimate limit state, but to provide sufficient reinforcement to 
control cracking at service loads.

The behaviour of beams carrying combined bending, shear and torsion 
is complex. Most current design recommendations rely heavily on gross 
simplifications and empirical estimates derived from experimental observa-
tions and the provisions of EN 1992-1-1 [3] are no exception.

m

T

T

(a)

T

T

(b)

(c)

Figure 7.11 � Members subjected to torsion. (a) Compatibility torsion. (b) Equilibrium 
torsion. (c) Equilibrium and compatibility torsion.



284  Design of Prestressed Concrete to Eurocode 2

7.3.2  Effects of torsion

Prior to cracking, the torsional stiffness of a member may be calculated 
using elastic theory. The contribution of reinforcement to the torsional 
stiffness before cracking is insignificant and may be ignored. When crack-
ing occurs, the torsional stiffness decreases significantly and is very depen-
dent on the quantity of steel reinforcement. In addition to causing a large 
reduction of stiffness and a consequential increase in deformation (twisting), 
torsional cracks tend to propagate rapidly and may be wider and more 
unsightly than flexural cracks.

Torsion causes additional longitudinal stresses in the concrete and the 
steel and additional transverse shear stresses. Large torsion results in a sig-
nificant reduction in the load carrying capacity in bending and shear. To 
resist torsion after the formation of torsional cracks, additional longitudinal 
reinforcement and closely spaced closed stirrups are required. Cracks caused 
by pure torsion form a spiral pattern around the beam, hence the need for 
closed ties with transverse reinforcement near the top and bottom surfaces 
of a beam as well as the side faces. Many such cracks usually develop at 
relatively close centres, and failure eventually occurs on a warped failure 
surface. The angles between the crack and the beam axis on each face of 
the beam are approximately the same. EN 1992-1-1 [3] allows the effects of 
torsion and shear to be superimposed, assuming the same value for the strut 
angle θv, with the limits on θv as specified in Equation 7.6.

Tests show that prestress increases the torsional stiffness of a member 
significantly but does not greatly affect the strength in torsion. The intro-
duction of prestress delays the onset of torsional cracking, thereby improv-
ing the member stiffness and increasing the cracking torque. The strength 
contribution of the concrete after cracking, however, is only marginally 
increased by prestress, and the contribution of the transverse reinforcement 
is unchanged by prestress.

For a beam in pure torsion, the behaviour after cracking can be described 
in terms of the three-dimensional analogous truss shown in Figure 7.12. 
The closed stirrups act as transverse tensile web members (both vertical 
and horizontal); the longitudinal reinforcement in each corner of the stir-
rups acts as the longitudinal chords of the truss and the compressive web 
members inclined at an angle θv on each face of the truss carry the inclined 
compressive forces and represent the concrete between the inclined cracks 
on each face of the beam.

The three-dimensional analogous truss ignores the contribution of the 
interior concrete to the post-cracking torsional strength of the member. 
The diagonal compressive struts are located on each face of the truss and, 
in the actual beam, diagonal compressive stress is assumed to be located 
close to each surface of the member. The beam is therefore assumed to 
behave similarly to a hollow thin-walled section. Tests of members in pure 
torsion tend to support these assumptions.
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Design models for reinforced and prestressed concrete beams in torsion 
are usually based on a simple model such as that of Figure 7.12.

7.3.3  Design provisions for torsion

When designing for torsion in accordance with EN 1992-1-1 [3], a solid 
cross-section may be idealised as a thin-walled closed section with shear flow 
in each of the section walls resisting the applied torque. Non-rectangular 
cross-sections, such as T-sections, are divided into subsections, each mod-
elled as an equivalent thin-walled section. The torsional strength of the sec-
tion is taken as the sum of the strengths of the individual subsections. The 
distribution of the applied design torsion to the various subsections is in 
proportion to their uncracked torsional stiffness and each subsection may 
be designed separately.

Consider the cross-section shown in Figure 7.13a and the idealised thin-
walled section shown in Figure 7.13b. If the total area of the cross-section 
inside the outer circumference is A (in Figure 7.13a, A = bh) and the outer 
circumference is u, the effective thickness of the thin walls of Figure 7.13b 
is tef = A/u, but not less than twice the distance between the outside edge 
and the centre of the longitudinal reinforcement.

For a cross-section subjected to an applied design torsion TEd, the shear flow 
qt,i in the i-th wall of the idealised section is the product of the shear stress 
τt,i and the effective wall thickness tef,i and may be taken as:

	
q t

T
A

t,i t,i ef,i
Ed

k

= =τ
2

	 (7.29)

and the shear force in the ith wall due to torsion is:

	 V q zEd,i t,i i= 	 (7.30)

Longitudinal
chords

Steel web ties 
(stirrups)

Concrete web struts

(b)(a)

T
θv

θv

T

Figure 7.12 � Three-dimensional truss analogy for a beam in pure torsion. (a) Beam 
segment. (b) Analogous truss.
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where zi is the side length of wall i defined by the distance between the 
intersection points with the centre line of adjacent walls and Ak is the area 
enclosed by the centre lines of the connecting walls, including inner hollow 
areas.

The additional transverse reinforcement required in each wall of the 
idealised thin-walled cross-section is determined inserting Equations 7.29 
and 7.30 into Equation 7.25:
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A f
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Ed

k ywd v

≥ =
cot cotθ θ2

	 (7.31)

where Asw is the area of the single leg of transverse steel in each wall of the 
idealised thin-walled section.

The additional cross-sectional area of longitudinal reinforcement ΣAsl 
required to resist torsion may be determined from:

	

ΣA f
u

T
A

sl yd

k

Ed

k
v=

2
cotθ 	 (7.32)

where uk is the perimeter of the area Ak, θv is the angle of the compressive 
strut and fyd is the design yield stress of the longitudinal steel.

In the compression side of the cross-section, the longitudinal reinforce-
ment may be reduced in proportion to the available compressive force caused 
by bending. In the tension side, the amount of longitudinal reinforcement 
required for torsion should be added to that required for bending and axial 
tension. The longitudinal steel required for torsion should generally be 

h h

b

Centre line

b

TEd TEd tef

tef/2

(a) (b)

Figure 7.13 � Idealisation of cross-section in torsion. (a) Solid cross-section. (b) Idealised 
thin-walled cross-section.
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distributed over the length of the side zi but for small cross-sections it can 
be lumped at the ends of this length, i.e. in the corners of the closed ties.

To avoid crushing of the concrete struts, for a section in combined shear 
and torsion, the following interaction equation must be satisfied:

	

T
T

V
V

Ed

Rd,max

Ed

Rd,max

+ ≤ 1 0. 	 (7.33)

where VEd is the design transverse force and TRd,max is the maximum design 
torsional resistance given by:

	 T f A tRd,max cw cd k ef,i v v= 2να θ θsin cos 	 (7.34)

ν is the same as ν1 in Equation 7.9 and αcw is given in Equation 7.10. In 
Equation 7.33, VRd,max is the maximum design shear resistance given by 
either Equation 7.8 or 7.12.

For solid rectangular sections that satisfy Equation 7.35, only minimum 
reinforcement is required for shear and torsion:

	

T
T

V
V

Ed

Rd,c

Ed

Rd,c

+ ≤ 1 0. 	 (7.35)

where TRd,c is the torsion required to cause first cracking in an otherwise 
unloaded beam, determined by setting τt,i = fctd, and may be taken as:

	 T J f fRd,c t ctd cp ck/= +( )1 10σ 	 (7.36)

The torsional constant Jt may be taken as:

Jt = 0.33x2y	 for solid rectangular sections;

	 = 0.33Σx2y	 for solid T-shaped, L-shaped or I-shaped sections; and

	 = 2Aktw	� for thin-walled hollow sections, where Ak is the area 
enclosed by the centre lines of the walls of a single closed 
cell and tw is the minimum thickness of the wall of the 
hollow section.

The terms x and y are, respectively, the shorter and longer overall dimen-
sions of the rectangular part(s) of the solid section. The beneficial effect of 
the prestress on TRd,c is accounted for by the term ( )1 10+ σcp ck/f  and σcp is 
the average effective prestress Pm,t/A.
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EXAMPLE 7.2

A prestressed concrete beam has a rectangular cross-section 400 mm wide 
and 550 mm deep. At a particular cross-section, the beam must resist the 
following factored design actions: MEd = 300 kNm, VEd = 150 kN and TEd = 
60 kNm.

The dimensions and properties of the cross-section are shown in Figure 7.14. 
An effective prestress of 700 kN is applied at a depth of 375 mm by a single 
cable consisting of seven 12.9  mm diameter strands in a grouted duct of 
60 mm diameter. The area of the strands is Ap = 700 mm2 and the character-
istic tensile strength is fpk = 1860 MPa. The vertical component of the pre-
stressing force at the section under consideration is 50 kN, and the concrete 
strength is fck = 40 MPa (and therefore fcd = 26.67 MPa and fctd = 1.67 MPa).

Determine the longitudinal and transverse reinforcement requirements.

	 (1)	Initially, the cross-section is checked for web-crushing. The effective 
width of the web for shear is obtained from Equation 7.19:

	 bw,nom mm= − × =400 0 5 60 370.

With σcp = Pm,t/A = 3.18 MPa, Equation 7.10 gives αcw = 1.12 and 
Equation 7.9 gives ν1 = 0.504.

A = 220 × 103 mm2;

I = 5546 × 106 mm4;

u = 2 × (400 + 550) = 1900 mm;

tef  = A/u = 115.8 mm;

Ak = (400 − 115.8) × (550 − 115.8) 

= 284.2 × 434.2 = 123.4 × 103 mm2;

uk = 2 × (284.2 + 434.2) = 1436.8 mm;

Pm,t = 700 kN;  Pv = 50 kN

Ap = 700 mm2;  φduct = 60 mm;

fyk = fywk = 500 MPa.

50 300 50

50

50

450

375

60

Figure 7.14 � Cross-section details (Example 7.2).
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Initially ignoring any non-prestressed tensile steel, d = dp = 375 mm (and 
therefore, z = 0.9d = 337.5 mm), Asl = Ap = 700 mm, ρ1 = 700/(370 × 375) = 
0.005 and, with cot θv = 2.5 (i.e. θv = 21.8°), Equations 7.8 and 7.34 give, 
respectively:

	
VRd,max kN= × × × ×

+
× =−1 12 370 337 5 0 504 26 67

2 5 0 4
10 648 33. . . .

( . . )
.
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× ×
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Checking Equation 7.33:

	

T
T

V
V

Ed

Rd,max

Ed

Rd,max

+ = + = ≤60
148 4

150
648 3

0 64 1 0
. .

. .

Therefore, web-crushing will not occur and the size of the cross-
section is acceptable.

	 (2)	Check whether transverse reinforcement is required for shear and 
torsion. The torsional constant Jt is:

	 Jt = 0.33x2y = 0.33 × 4002 × 550 = 29.0 × 106 mm3

and Equation 7.36 gives:

	 TRd,c kNm= × × + × =29 10 1 67 1 10 3 18 40 64 96 . ( . / ) .

From Equation 7.2:
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Equation 7.35 gives:

	

60
64 9

150
144 6

1 96 1 0
. .

. .+ = >

Therefore, transverse reinforcement in the form of closed stirrups is 
required.
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	 (3)	The longitudinal reinforcement required for bending must next be 
calculated. From the procedures outlined in Chapter 6, the design 
bending resistance provided by the seven prestressing strands (ignor-
ing the longitudinal non-prestressed reinforcement) is MRd = 332 kNm 
(refer Example 6.1) and the distance z between Fcd and Ftd is 315 mm 
and the neutral axis depth x = 119  mm. With MRd > MEd, no non-
prestressed steel is required for flexural strength.

	 (4)	Determine the quantity of transverse reinforcement required. Assume 
12 mm closed stirrups are to be used. Assuming θv = 21.8° (i.e. cot θv = 2.5) 
and two vertical legs per stirrup, the stirrup spacing (s = sv) required to 
carry VEd is obtained from Equation 7.25:

	

2 110 150 10 50 10
500 1 15 315 2 5

0 292
3 3× ≥ × − ×
× ×

=
sv /( . ) .

.

Therefore the spacing of stirrups required for shear sv ≤ 753 mm, 
i.e. at least 1.328 stirrups are required for shear per metre length along 
the beam.

The spacing (s = st) of the additional 12 mm closed stirrups required 
for torsion (Asw = 110 mm2) is obtained from Equation 7.31:
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= ∴ ≤
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i.e. an additional 2.033 stirrups are required for torsion per metre 
length of beam.

Summing the transverse steel requirements for shear and torsion, 
we have at least 3.361 stirrups required per metre, i.e. s ≤ 1000/3.361 = 
297.5  mm. This is greater than the maximum permitted spacing of 
0.75d = 281 mm.

Use 12 mm diameter stirrups at 280 mm centres (fywk = 500 MPa).

Note: The required maximum spacing of transverse stirrups could have 
been calculated directly from sv and st using:

	

1 1 1
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	 (5)	The additional longitudinal tensile force caused by torsion is obtained 
from Equation 7.32:
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7.4  SHEAR IN SLABS AND FOOTINGS

7.4.1  Punching shear

In the design of slabs and footings, strength in shear frequently controls the 
thickness of the member, particularly in the vicinity of a concentrated load 
or a column. Consider the pad footing shown in Figure 7.16. Shear failure 
may occur on one of two different types of failure surface. The footing 
may act essentially as a wide beam and shear failure may occur across the 
entire width of the member, as illustrated in Figure 7.16a. This is beam-
type shear (or one-way shear) and the shear strength of the critical section 

The depth to the neutral axis in bending is 119 mm (23.8% of the cross-
section) and bending causes a design compression force in this region 
Fcd = MRd/z = 1050 kN, so that no additional steel is required for torsion 
in the compressive zone. Two 20 mm bars will be included in the top 
corners of the stirrups. The remaining 76.2% of the cross-section (i.e. 
that part of the cross-section in tension due to bending) will be subjected 
to an additional tensile force due to torsion of 0.762 × 873.3 = 665.5 kN. 
The additional non-prestressed reinforcement required to resist torsion 
in the tensile zone (with fyd = 500/1.15 = 435 MPa) is therefore:

	
ΣAsl

2mm= × =665 5 10
435

1530
3.

This is equivalent to 5–20 mm diameter deformed longitudinal bars. 
Use 1–20 mm bar in each corner of the stirrup and one additional bar 
in the middle of the bottom and the two side legs of the stirrup as 
shown in Figure 7.15.

Non-prestressed reinforcement:

Transverse bars:

12 mm diam at 280 centres

Longitudinal bars:

7–20 mm bars as shown

50 300 50

50

250

50

375

500
60

Figure 7.15 � Reinforcement details (Example 7.2).
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is calculated as for a beam. The critical section for this type of shear failure 
is usually assumed to be located at a distance d from the face of the column 
or concentrated load. Beam-type shear is often critical for footings but will 
rarely cause concern in the design of floor slabs.

An alternative type of shear failure may occur in the vicinity of a concen-
trated load or column and is illustrated in Figure 7.16b. Failure may occur 
on a surface that forms a truncated cone or pyramid around the loaded 
area, as shown. This is known as punching shear failure (or two-way shear 
failure) and is often a critical consideration when determining the thick-
ness of pad footings and flat slabs at the intersection of slab and column. 
The critical section for punching shear is usually taken to be geometrically 
similar to the loaded area and located at some distance from the face of the 
loaded area. The critical section (or surface) is assumed to be perpendicular 
to the plane of the footing or slab.

Ideally in design, the column support should be large enough for the 
concrete to carry satisfactorily the moments and shears being transferred 
across the critical surface without the need for any shear reinforcement. If 
this is not possible, procedures for the design of an adequate quantity of 
properly detailed reinforcement must be established. The remainder of this 
chapter is concerned with this type of shear failure.

7.4.2  The basic control perimeter

Where shear failure can occur locally around a column support or con-
centrated load, the design shear strength of the slab must be greater than 
or equal to the design shear force VEd acting on the critical shear perimeter. 
EN 1992-1-1 [3] requires that the shear resistance must be checked at 

(a) (b)

Critical shear failure
surfaces

Figure 7.16 � Shear failure surfaces in a footing or slab. (a) Beam-type shear. (b) Punching 
shear.
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the face of the column and around the basic control perimeter of length u1. 
The basic control perimeter is taken to be at a distance 2deff from the 
loaded area Aload (i.e. the shaded areas shown in Figure 7.17) and the basic 
control perimeter is so constructed that its length is minimised, as shown 
in Figure 7.17a. The distance deff is the average of the effective depths of 
the tensile reinforcement in two orthogonal directions in the slab or foot-
ing, i.e. deff = (dy + dz)/2. The basic control area Acont is the area between 
the basic control perimeter and the loaded area.

For loaded areas, at or near the edge or a corner of the slab or footing, 
the control perimeter is as shown in Figure 7.17b. When the loaded area 
is less than 6deff from an opening, that part of the control perimeter con-
tained between two tangents drawn to the opening from the centroid of the 
loaded area (as shown in Figure 7.17c) is considered to be ineffective.

The control section is perpendicular to the mid-plane of the slab or foot-
ing, it follows the control perimeter and has an effective depth deff.

For slabs with column capitals or drop panels, with lH ≤ 2hH as shown in 
Figure 7.18, the punching shear stresses need only be checked on the critical 
shear perimeter outside the column head located at a distance rcont from the 
centroid of the column. For circular column heads:

	 r d l ccont eff H= + +2 0 5. 	 (7.37)

u1

u1

u1

u1

u1

u1
2deff

2deff

2deff 2deff

2deff

2deff

≤6deff l1 ≤ l2 l1 > l2

l2

l1l2

2deff

2deff 2deff

2deff

(a)

(c)(b)

Opening

bz

by

Figure 7.17 � Basic control perimeters. (a) Around loaded areas. (b) Around loaded areas 
at an edge or corner. (c) Near an opening.
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where lH is the distance from the column face to the edge of the column 
head and c is the diameter of the circular column. For rectangular columns 
with rectangular column heads of smaller and larger plan dimensions 
l1 (= c1 + 2lH1) and l2 (= c2 + 2lH2), respectively, and with lH < 2hH, rcont may 
be taken as the lesser of:

	 r d l lcont eff= +2 0 56 1 2. 	 (7.38)

and

	 r d lcont eff= +2 0 69 1. 	 (7.39)

For slabs column connections with drop panels or column capitals where 
lH > 2hH, checks must be made on shear perimeters both within the slab 
beyond the column head and within the column head, where deff is taken as 
dH, as defined in Figure 7.19. For circular columns, the distances from the cen-
troid of the column (loaded area) to the control perimeters in Figure 7.19 are:

	 r l d ccont.ext H eff= + +2 0 5. 	 (7.40)

and

	 r d h ccont.int eff H= + +2 0 5( ) . 	 (7.41)

7.4.3  Shear resistance of critical shear perimeters

The design values of the punching shear resistance of a control section with 
or without shear reinforcement are denoted in EN 1992-1-1 [3] as vRd,cs and 
vRd,c, respectively.

c

rcont rcont

hH

lH ≤ 2hH lH ≤ 2hH

hH

d
θ θ

θ = arctan (0.5)
=  26.6° Loaded area

Figure 7.18 � Critical shear perimeter for slab with enlarged column head where lH ≤ 2hH [3].
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For a slab or column base without shear reinforcement:

	 v C k f k v kRd,c Rd,c l ck cp cp= + ≥ +( ) ( )/
min100 1 3

1 1ρ σ σ 	 (7.42)

which is similar to the design stress contained within Equation 7.2. In 
Equation 7.42, fck is in MPa; k d= + ≤1 200 2 0/ .  (with d in mm); CRd,c = 
0.18/γc = 0.12 for persistent and transient loads; k1 = 0.1; v k fmin ck

0.5= 0 035 1 5. . ; 
ρ ρ ρ1 1y 1z= ≤ 0 2. ; ρ1y and ρ1z are the tensile steel reinforcement ratios in the 
y and z directions, respectively, related to a slab width equal to the column 
width plus 3d on each side of the column; σcp = (σcy + σcz)/2; σcy and σcz are 
the normal compressive stresses on the control section in the orthogonal 
y and z directions, respectively (in MPa, compression is positive), i.e. σcy = 
NEd,y/Acy and σcz = NEd,z/Acz and NEd,y and NEd,z are the longitudinal forces 
in each direction (due to both applied load and prestressing acting on the 
concrete areas Acy and Acz) across the full bay for internal columns and 
across the control perimeter for edge columns.

For a slab or column base with shear reinforcement placed as shown in 
Figure 7.20a or 7.20b, the design punching shear resistance of the shear 
perimeter is:

	
v v

d
s

A f
u d

Rd,cs Rd,c
eff

r
sw ywd,ef

eff

= +0 75 1 5
1

1

. .
( )

sinα	 (7.43)

where Asw is the area of steel in one perimeter of shear reinforcement around 
the column (mm2); sr is the radial spacing of perimeters of shear reinforce-
ment (mm); fywd.ef is the effective design strength of the shear reinforcement 
given by fywd.ef = 250 + 0.25deff ≤ fywd (MPa) and α is the angle between the 
shear reinforcement and the plane of the slab.

c

θ = arctan (0.5)
= 26.6° Loaded area

rcont.ext

rcont.int rcont.int

rcont.ext

lH > 2(deff + hH) lH > 2(deff + hH)

hH
dH

dH

deff

hH

θ

θθ

θ

Figure 7.19 � Critical shear perimeter for slab with enlarged column head (lH > 2(d + hH)) [3].
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An outer shear perimeter (of length uout or uout,ef) should be found 
where shear reinforcement is no longer required (marked as perimeter A 
in Figure 7.20a and perimeter B in Figure 7.20b). The shear reinforcement 
should extend radially from the column at a radial spacing not exceeding 
0.75deff to a minimum distance of 1.5deff from the first outer shear perim-
eter where shear reinforcement is not required. The spacing of shear bars 
around a perimeter within a distance 2deff from the column face should not 
exceed 1.5deff and, for perimeters outside the basic control perimeter, the 
spacing should not exceed 2deff. The first bar in each radial line of shear 
reinforcement should be located about 0.5deff from the column face.

7.4.4  Design for punching shear

According to EN 1992-1-1 [3], checks for punching shear must be made 
at the face of the column and at the basic control perimeter u1. At the face 
of the column (i.e. at the perimeter of the loaded area, u0), the maximum 
punching shear stress vEd should not exceed the maximum design shear 
stress vRd,max:

	 vEd ≤ vRd,max	 (7.44)

where:

	
v

f
fRd max

ck
cd

250
, .= × −





0 3 1 	 (7.45)

Punching shear reinforcement is not necessary if, at the basic control perim-
eter, the punching shear stress vEd is less than vRd,c. If vEd is greater  than 

>2d

≤1.5d

≤1.5d d

d

B≤2dA

(a) (b)

Figure 7.20 � Outer control perimeters beyond the punching shear reinforcement [3]. 
(a) Perimeter A, uout. (b) Perimeter B, uout,ef.
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vRd,c  on the basic control perimeter, punching shear reinforcement is 
required and may be calculated using Equation 7.43.

Where the support reaction is eccentric to the control perimeter and the 
control perimeter must carry a shear force VEd and a moment MEd, the 
maximum shear stress is given by:

	
v

V
u d

Ed
Ed

i eff

= β 	 (7.46)

where ui is the length of the control perimeter being considered; β accounts 
for the eccentricity of the support reaction and is given by:

	
β = +1 1

1

k
M
V

u
W

Ed

Ed

	 (7.47)

k is a coefficient that depends on the ratio of the plan dimensions of the 
column c1/c2 and is given in Table 7.2, where c1 is the column dimension 
parallel to the eccentricity of load, c2 is the column dimension perpen-
dicular to the eccentricity of load, and u1 is the length of the basic control 
perimeter.

W1 corresponds to the distribution of shear stress illustrated in Figure 7.21 
and is akin to the plastic modulus of the control perimeter about the axis of 
bending acting through the centroid of the control perimeter and is given by:

	
W e l

u

1

0

= ∫
i

d 	 (7.48)

where dl is the length increment around the shear perimeter and e is the 
distance of dl from the axis about which the moment MEd acts.

For an internal rectangular column:

	 W c c c c d d d c1 1
2

1 2 2
2

10 5 4 16 2= + + + +. eff eff effπ 	 (7.49)

For an internal rectangular column where the loading is eccentric about 
both axes, β may be approximated by:

	
β = + 







 +









1 1 8

2 2

.
e
b

e
b

y

z

z

y

	 (7.50)

Table 7.2  �Value of k for rectangular loaded areas [3]

c1/c2 ≤0.5 1.0 2.0 ≥3.0
k 0.45 0.6 0.7 0.8
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where ey = MEd,z/VEd and ez = MEd,y/VEd are the eccentricities along the y- and 
z-axes, respectively, and bz and by are the dimensions of the control perim-
eter (see Figure 7.17a).

For an internal circular column of diameter D, β may be approximated by:

	
β π= +

+
1 0 6

4
.

e
D deff

	 (7.51)

where e is the eccentricity MEd/VEd.
Figure 7.22a shows the control perimeter for an edge column, where 

the unbalanced moment acts about an axis parallel to the slab edge and 
the eccentricity is towards the interior in the direction of c1. For the rect-
angular column of Figure 7.22a:

	 W c c c c d d d c1 2
2

1 2 1
2

20 25 4 8= + + + +. eff eff effπ 	 (7.52)

When the eccentricity perpendicular to the slab edge is not towards the 
interior, β should be calculated using Equation 7.47.

Where there are eccentricities in both orthogonal directions, β may be 
calculated from:

	
β = +u

u
k

u
W

e1

1

1

1*
par	 (7.53)

where u1 is the perimeter of the basic control perimeter (see Figure 7.17b); 
u1* is the reduced basic control perimeter (see Figure 7.22a); k may be 

2deff

2deff

2deff

2deff

c1

c2

Figure 7.21 � Shear distribution due to an unbalanced moment at slab–internal column 
connection [3].
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obtained from Table 7.2 but replacing the ratio c1/c2 with c1/2c2; W1 is cal-
culated for the basic control perimeter u1 (see Figure 7.17b) and epar is the 
eccentricity parallel to the slab edge resulting from a moment about an axis 
perpendicular to the slab edge.

For corner columns, where the eccentricity is towards the interior of 
the slab, the punching shear may be assumed to be uniformly distributed 
along the reduced control perimeter u1* shown in Figure 7.22b. In this case, 
β may be taken as:

	
β = u

u
1

1*
	 (7.54)

If the eccentricity is towards the exterior, β should be calculated using 
Equation 7.47.

In structures that are laterally braced and do not rely on frame action 
between the slabs and the columns for lateral stability, the following 
approximate values of β may be used: β = 1.15 for internal columns; β = 1.4 
for edge columns and β = 1.5 for corner columns.

Control perimeters at a distance less than 2d from the loaded area 
should be considered where the concentrated force is opposed by high 
pressure, such as may occur under a column in a pad footing. For foot-
ings, the soil pressure within the control perimeter may be considered 
when determining the punching shear force VEd that must be resisted on 
any control perimeter.

(a) (b)

≤1.5deff
≤0.5c2

≤1.5deff
≤0.5c1

≤1.5deff
≤0.5c1

2deff

2deff

2deff

2deff

c1 c1

c2

c2

u1*

u1*

Figure 7.22 � Reduced basic control perimeter u1* [3]. (a) Edge column. (b) Corner column.
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EXAMPLE 7.3  INTERIOR COLUMN (CASE 1)

The interior columns of a prestressed concrete flat plate are 450 by 450 mm 
in cross-section and are located on a regular rectangular grid at 9 m centres 
in one direction and 6 m centres in the other. The adequacy of the punching 
shear resistance of the critical shear perimeter of a typical interior column is 
to be checked. The slab thickness is h = 250 mm and the average of the effec-
tive depths from the slab soffit up to the tensile reinforcement in the y and 
z directions is deff = 210 mm. The slab reinforcement ratios in each direction 
in the vicinity of the column are ρ1y = ρ1z = 0.008.

The slab supports a permanent dead load of wG = 7.0 kPa (that includes 
self-weight) and a variable live load of wQ = 3.0 kPa. From Equation 2.2, the 
design load for the strength limit state is 1.35 wG + 1.5 wQ = 13.95 kPa. From 
a frame analysis, the design load transferred from the slab to the column is 
800 kN and the moment transferred to the column is 60 kNm.

Assume σcp = (σcy + σcz)/2 = 2.5 MPa, fck = 30 MPa and fcd = 20 MPa.

The perimeter of the loaded area is u0 = 4 × 450 = 1800 mm. The basic 
control perimeter is u1 = 4 × 450 + 2π × 2deff = 1800 + 4π × 210 = 4439 mm. 
The area of the slab subjected to load inside the basic control perimeter is 
(4 × 450 × 420 + π × 4202) × 10–6 = 1.31 m2. Therefore, the design actions 
transmitted on the basic control perimeter are:

	 VEd = 800 − 1.31 × 13.95 = 782 kN  and  MEd = 60 kNm

The design value of the maximum punching shear resistance on any control 
section is obtained from Equation 7.45:

	
vRd,max

250
MPa= × −




× =0 3 1

30
20 5 28. .

The design punching shear resistance for a slab without shear reinforcement 
is obtained from Equation 7.42. With k = 1.976, ρ1 = 0.008 and vmin = 0.035 × 
k1.5 × fck

0.5 = 0.532, Equation 7.42 gives:

	� vRd,c �= 0.12 × 1.976 × (100 × 0.008 × 30)1/3 + 0.1 × 2.5 
= 0.934 MPa >(vmin + k1σcp)

From Equation 7.49:

	

W1
2 2

3

0 5 450 450 450 4 450 210 16 210 2 210 450

1981 10

= × + × + × × + × + × ×

= ×

. π

mmm2
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and from Equation 7.47 and Table 7.2:

	
β = + × ×

×
×

×
=1 0 6

60 10
782 10

4439
1981 10

1 103
6

3 3. .

The maximum shear stress at the face of the column, i.e. on the perimeter 
u0 of the loaded area, is given by Equation 7.46:

	
vEd 2 28 MPa= × ×

×
=1 103

782 10
1800 210

3

. .

which is less than vRd,max and, therefore, the section at the column perimeter 
is adequate.

From Equation 7.46, the maximum shear stress on the basic control perim-
eter is:

	
vEd 925 MPa= × ×

×
=1 103

782 10
4439 210

0
3

. .

which is just less than vRd,c and, therefore, shear reinforcement is not required. 
The punching shear resistance of the critical section of the slab is adequate.

EXAMPLE 7.4  INTERIOR COLUMN (CASE 2)

The slab–column connection analysed in Example 7.3 is to be rechecked for 
the case when VEd = 1200 kN and MEd = 80 kNm.

As in Example 7.3, u0 = 1800 mm, u1 = 4439 mm, vRd,max = 5.28 MPa, vRd,c = 
0.934 MPa and W1 = 1981 × 103 mm2. From Equation 7.47 and Table 7.2:

	
β = + × ×

×
×

×
=1 0 6

80 10
1200 10

4439
1981 10

1 090
6

3 3. .

The maximum shear stress at the face of the column, i.e. on the perimeter 
u0 of the loaded area, is given by Equation 7.46:

	
vEd 3 46 MPa= × ×

×
=1 090

1200 10
1800 210

3

. .

which is less than vRd,max and, therefore, the section at the column perimeter 
is adequate.
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From Equation 7.46, the maximum shear stress on the basic control perim-
eter is:

	
vEd 14  MPa= × ×

×
=1 090

1200 10
4439 210

0
3

. .

which is greater than vRd,c and, therefore, shear reinforcement is required. 
We will adopt a shear reinforcement layout similar to that shown in Figure 
7.20a and shown again in Figure 7.23.

It is first necessary to determine the outer perimeter uout at which shear 
reinforcement is no longer required. Let the radial distance from the centroid 
of the column to the outer perimeter be rout. The outer perimeter may be 
approximated by uout = 2πrout.

Assuming conservatively that the shear force VEd acting on the outer shear 
perimeter remains at 1200 kN, we have:

	
v

r
vEd

out
Rd,c= × ×

×
=1 090

1200 10
2 210

3

.
π

and solving gives rout = 1061 mm and therefore uout = 6669 mm.
From Figure 7.20a, the outermost perimeter of shear reinforcement must 

be located at a distance not greater than 1.5deff = 315 mm from uout, i.e. at a 
distance greater than 1061 – 315 – 225 = 521 mm from the face of the column.

Assume vertical shear reinforcement (i.e. α = 90°) and fywd.ef = 250 + 
0.25 × 210 = 302.5 MPa. From Table 4.7, the area of a 10 mm diameter bar is 
78.5 mm2 and with 12 radial lines of reinforcement, Asw = 12 × 78.5 = 942 mm2. 

(a) (b)

A A

110 90 90 110 110 110 110

450

Figure 7.23 � Shear reinforcement layout (Example 7.4). (a) Plan. (b) Section A–A.
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Successfully anchoring and locating stirrups within a 250 mm thick slab 
can be a difficult process. An alternative solution is to use fabricated steel 
shear heads to improve resistance to punching shear. Proprietary punching 
shear reinforcement consisting of headed bars and prefabricated units simi-
lar to those shown in Figure 7.24 are available. Usually the most economi-
cal and structurally efficient solution, however, is to increase the size of the 
critical section. The slab thickness can often be increased locally by the 
introduction of a drop panel, or alternatively the critical shear perimeter 
may be increased by introducing a column capital or simply by increasing 
the column dimensions. In general, provided such dimensional changes are 
architecturally acceptable, they represent the best structural solution.

The required radial spacing of the bars can be obtained from Equation 7.43. 
At the basic control perimeter 2deff from the face of the column:

v
sRd,cs
r

= × + × × × ×
×

≥0 75 0 934 1 5
210

942 302 5
1

4439 210
90 1 4. . . .

( )
sin . 00 MPa

and therefore sr ≤ 137  mm (which is less than 0.75deff and is therefore 
satisfactory).

In each radial line of shear reinforcement, the first vertical bar is located 
at about 0.5deff from the column face, the outermost bar must be at least 
521 mm from the loaded face and the spacing of the vertical bars must be less 
than 137 mm. The layout of the shear reinforcement shown in Figure 7.23 
meets these requirements. In addition, the circumferential spacing between 
bars in each bar perimeter does not exceed 1.5deff inside the basic control 
perimeter and 2deff outside the basic control perimeter.

Figure 7.24 � Typical prefabricated units used as punching shear reinforcement.
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EXAMPLE 7.5  EDGE COLUMN

Consider the edge column–slab connection with basic control perimeter u1 
as shown in Figure 7.25a. The factored design load on the slab is 14 kPa, the 
design reaction force in the column is 320 kN and the moment transferred 
from the slab to the column acting about the centroidal axis of the basic 
control perimeter parallel to the free edge of the slab is 160 kNm. The basic 
control area is Acont = 0.636 m2, and the reduced basic control perimeter u1* is 
shown in Figure 7.25b. The slab thickness is 220 mm, and the average effective 
depth for the top tensile steel in the slab is deff = 180 mm. Take fck = 40 MPa 
and fcd = 26.67 MPa.

When designing a slab for punching shear at an edge (or corner) column, the 
average prestress σcy perpendicular to the free edge across part of the critical 
section should be taken as zero, unless care is taken to ensure that the slab 
tendons are positioned so that this part of the critical section is subjected to 
prestress. Often this is not physically possible, as discussed in Section 12.2 and 
illustrated in Figure 12.6. In this example, however, it is assumed that σcy = σcz = 
2.0 MPa. It is also assumed that ρ1y = ρ1z = 0.008.

On the basic control perimeter, VEd = 320 − 0.636 × 14 = 311.1 kN and 
MEd = 160 kNm.

(b)(a)

300 360

36 0

600

360

u1 = 2 × 300 + 600 + π × 360
= 2331 mm

Acont = 0.636 m2

u1* = 2 × 300 + 600 + π × 360
= 2031 mm

150 360

36 0

600

360

Figure 7.25 � Edge column–slab connection (Example 7.5). (a) Basic control perimeter. 
(b) Reduced basic control perimeter.
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The design value of the maximum punching shear resistance on any control 
section is obtained from Equation 7.45:

	
vRd,max

250
MPa= × −




× =0 3 1

40
26 67 6 72. . .

The design punching shear resistance for a slab without shear reinforce-
ment is obtained from Equation 7.42. With k = 2.0, ρ1 = 0.008 and vmin = 0.035 × 
k1.5 × fck

0.5 = 0.626, Equation 7.42 gives:

vRd,c = 0.12 × 2.0 × (100 × 0.008 × 40)1/3 + 0.1 × 2.0 = 0.962 MPa  (>vmin + k1σcp)

From Equation 7.52:

	

W1
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and from Equation 7.47 and Table 7.2:

	
β = + × ×

×
×

×
=1 0 45

160 10
311 1 10

2331
1084 5 10

1 497
6

3 3.
. .

.

The maximum shear stress at the face of the column, i.e. on the perimeter 
u0 of the loaded area, is given by Equation 7.46:

	
vEd 2 16 MPa= × ×

×
=1 497

311 1 10
1200 180

3

.
.

.

which is less than vRd,max and, therefore, the section at the column perimeter 
is adequate.

From Equation 7.46, the maximum shear stress on the reduced basic con-
trol perimeter is:

	
vEd 1274 MPa= × ×

×
=1 497

311 1 10
2031 180

3

.
.

.

which is greater than vRd,c and, therefore, shear reinforcement is required. 
A shear layout similar to that shown in Figure 7.26 will be adopted here.

The effective outer perimeter uout,ef at which shear reinforcement is no longer 
required and the area inside the outer perimeter are calculated in Figure 7.26 
as uout,ef = 2468 mm and Aout = 2 571 1 582 0 324 2. . .r rlink

2
link m+ + , where rlink is 

in metres.
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The shear force V 
Ed acting on the outer shear perimeter (in kN) is 320 − 14.0 × 

Aout = 320 − 14.0 × (2 571 1 582 0 324. . .r rlink
2

link+ + ), and the corresponding shear 
stress is:

	
v

r r
Ed

link
2

link
2

= × − × + + ×
1 497

320 14 2 571 1 582 0 324 10
2468

3

.
[ ( . . . )]

××
=

180
vRd,c

and solving gives rlink = 0.656 m.
From Figure 7.26, the outermost perimeter of shear reinforcement must be 

located at a distance of not less than rlink = 656 mm from the face of the column.
Assume vertical shear reinforcement (i.e. α = 90°) and fywd.ef = 250 + 0.25 × 

180 = 295 MPa. From Table 4.7, the area of a 10 mm diameter bar is 78.5 mm2 
and with 8 lines of reinforcement perpendicular to the column faces, Asw = 
8 × 78.5 = 628 mm2 and the spacing of the bars in each line can be obtained 
from Equation 7.43. At the basic control perimeter 2deff from the face of the 
column:

v
sRd,cs
r

= × + × × × ×
×

≥0 75 0 962 1 5
180

628 295
1

2331 180
90 1 274. . .

( )
sin . MMPa

and therefore sr ≤ 217  mm. The maximum spacing of 0.75deff = 135  mm 
governs and is therefore adopted, as shown in Figure 7.27.

300 270

1.5deff = 270

deff = 180

deff = 180
1.5deff = 270

rlink

rlink

rlink

600

Aout = 2 × (270+rlink) × 300+r2
link+

√2 × rlink × 270 + 600 × (rlink + 270)
+0.5 × π × r2

link
= 2 .571r2

link + 1.582rlink + 0.324 m2

150

600

uout,ef = 4 × 180 + π × 1.5 × 180 + 600
+ 2 × 150 = 2468 mm

Figure 7.26 � Effective outer shear perimeter (Example 7.5).
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In each of the eight lines of shear reinforcement perpendicular to the col-
umn face (as shown in Figure 7.26), the first vertical bar is located at about 
0.5deff = 90 mm from the column face, the outermost bar must be at least 
656 mm from the column face. The shear reinforcement layout is shown in 
Figure 7.27.

135 135 135 135 135

90

10 mm shear links

300 600

(a) (b)

180

1

1

Figure 7.27 � Sections through slab–column connection (Example 7.5). (a) Section 
perpendicular to slab edge. (b) Section 1–1.
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Chapter 8

Anchorage zones

8.1  INTRODUCTION

In prestressed concrete structural members, the prestressing force is usually 
transferred from the prestressing steel to the concrete in one of two differ-
ent ways. In post-tensioned construction, relatively small anchorage plates 
transfer the force from the tendon to the concrete immediately behind the 
anchorage by bearing at each end of the tendon. For pretensioned members, 
the force is transferred by bond between the tendon and the concrete. In 
either case, the prestressing force is transferred in a relatively concentrated 
fashion, usually at the end of the member, and involves high local pressures 
and forces. A finite length of the member is required for the concentrated 
forces to disperse to form the linear compressive stress distribution usually 
assumed in design.

The length of member over which this dispersion of stress takes place 
is called the dispersion length (in the case of pretensioned members) and 
the anchorage length (for post-tensioned members). Within these so-called 
anchorage zones, a complex stress condition exists. Transverse tension is 
produced by the dispersion of the longitudinal compressive stress trajectories 
and may lead to longitudinal cracking within the anchorage zone. Similar 
zones of stress exist in the immediate vicinity of any concentrated force, 
including the concentrated reaction forces at the supports of a member.

The anchorage length in a post-tensioned member and the magnitude of 
the transverse forces (both tensile and compressive), which act perpendicular 
to the longitudinal prestressing force, depend on the magnitude of the pre-
stressing force and on the size and position of the anchorage plate or plates. 
Both single and multiple anchorages are commonly used in post-tensioned 
construction. A careful selection of the number, size and location of the 
anchorage plates can often minimise the transverse tension and hence mini-
mise the transverse reinforcement requirements within the anchorage zone.

The stress concentrations within the anchorage zone in a pretensioned 
member are not usually as severe as in a post-tensioned anchorage zone. 
There is a more gradual transfer of prestress. The full prestress is transmit-
ted to the concrete by bond over a significant length of the tendon (called the 
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transmission length lpt), and there are usually numerous individual tendons 
that are well distributed throughout the anchorage zone. In addition, the high 
concrete bearing stresses behind the anchorage plates in post-tensioned mem-
bers do not occur in pretensioned construction.

8.2 � PRETENSIONED CONCRETE: FORCE 
TRANSFER BY BOND

In pretensioned concrete, the tendons are usually tensioned within a cast-
ing bed. The concrete is cast around the tendons and, after the concrete has 
gained sufficient strength, the pretensioning force is released. The extent of 
the anchorage zone and the distribution of stresses within that zone depend 
on the quality of bond between the tendon and the concrete. The transfer 
of prestress usually occurs only at the end of the member, with the steel 
stress varying from zero at the end of the tendon, to the prescribed amount 
(full prestress Pm0) at some distance (the transmission length lpt) in from 
the end. Over the transmission length bond stresses are high. The better the 
quality of the steel–concrete bond, the more efficient is the force transfer 
and the shorter is the transmission length. Outside the transmission length, 
bond stresses at transfer are small and the prestressing force in the tendon 
is approximately constant. Bond stresses and localised bond failures may 
occur outside the transfer length after the development of flexural cracks 
and under overloads, but a bond failure of the entire member involves fail-
ure of the anchorage zone at the ends of the tendons.

The main mechanisms that contribute to the strength of the steel–
concrete bond are chemical adhesion of steel to concrete, friction at the 
steel–concrete interface and mechanical interlocking of concrete and steel 
(associated primarily with deformed or twisted strands). When the tendon 
is released from its anchorage within the casting bed and the force is trans-
ferred to the concrete, there is a small amount of tendon slip at the end of 
the member. This slippage destroys the bond for a short distance into the 
member at the released end, after which adhesion, friction and mechanical 
interlock combine to transfer the tendon force to the concrete.

During the stressing operation, there is a reduction in the diameter of the 
tendon due to Poisson’s ratio effect. The concrete is then cast around the 
highly tensioned tendon. When the tendon is released, the unstressed por-
tion of the tendon at the end of the member returns to its original diameter, 
whilst at some distance into the member, where the tensile stress in the 
tendon is still high, the tendon remains at its reduced diameter. Within the 
transmission length, the tendon diameter varies as shown in Figure 8.1 and 
there is a radial pressure exerted on the surrounding concrete. This pres-
sure produces a frictional component which assists in the transferring of 
force from the steel to the concrete. The wedging action due to this radial 
strain is known as the Hoyer effect [1].
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The transmission length and the rate of development of the steel stress 
along the tendon depend on many factors, including the size of the strand 
(i.e. the surface area in contact with the concrete), the surface conditions of 
the tendon, the type of tendon, the degree of concrete compaction within 
the anchorage zone, the degree of cracking in the concrete within the 
anchorage zone, the method of release of the prestressing force into the 
member and, to a minor degree, the compressive strength of the concrete.

The factors of size and surface condition of a tendon affect bond capac-
ity in the same way as they do for non-prestressed reinforcement. A light 
coating of rust on a tendon will provide greater bond than for steel that is 
clean and bright. The surface profile has a marked effect on transfer length. 
Stranded cables have a shorter transfer length than crimped, indented or 
plain steel wires of equivalent area owing to the interlocking between the 
helices forming the strand. The strength of concrete, within the range of 
strengths used in prestressed concrete members, does not greatly affect the 
transmission length. However, with increased concrete strength, there is 
greater shear strength of the concrete embedded between the individual 
wires in the strand.

An important factor in force transfer is the quality and degree of con-
crete compaction. The transmission length in poorly compacted concrete is 
significantly longer than in well-compacted concrete. A prestressing tendon 
anchored at the top of a member generally has a greater transmission length 
than a tendon located near the bottom of the member. This is because the 
concrete at the top of a member is subject to increased sedimentation and is 
generally less well compacted than the concrete at the bottom of a member. 
When the tendon is released suddenly and the force is transferred to the con-
crete with impact, the transmission length is greater than for the case when 
the force in the steel is gradually imparted to the concrete.

Depending on these factors, transmission lengths are generally within the 
range 50–150 times the tendon diameter. The force transfer is not linear, 
with about 50% of the force transferred in the first quarter of the transfer 

Radial pressure

Friction

σp = 0 σp

Figure 8.1 � The Hoyer effect [1].
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length and about 80% within the first half of the length. For design pur-
poses, however, it is reasonable and generally conservative to assume a lin-
ear variation of steel stress over the entire transmission length.

EN 1992-1-1 [2] states that, at release of the tendons, the prestress may 
be assumed to be transferred to the concrete by a constant bond stress fbpt 
given by:

	 f f tbpt p ctd= η η1 1 ( )	 (8.1)

where ηp1 is a coefficient that takes into account the type of tendon and 
equals 2.7 for indented wire and 3.2 for strand; η1 depends on the bond 
conditions and equals 1.0 for good bond conditions and 0.7 otherwise and 
fctd(t) is the design tensile strength of concrete at the time of release, i.e. the 
lower characteristic tensile strength (0.7fctm(t), see Equation 4.9) divided by 
the partial material factor γc = 1.5.

The basic value of the transmission length lpt is specified in EN 1992-
1-1 [2] as:

	 l fpt pm0 bpt/= α α φσ1 2 	 (8.2)

where α1 depends on the method of release of the tendon and equals 1.0 
for gradual release and 1.25 for sudden release; α2 depends on the type of 
tendon and equals 0.25 for round wire and 0.19 for seven-wire strand; 
ϕ is the nominal diameter of the tendon and σpm0 is the tendon stress (Pm0/Ap) 
just after release. The design value of the transmission length is taken as 
the least favourable of two alternative values lpt1 = 0.8 lpt or lpt2 = 1.2 lpt 
depending on the design situation. When local stresses are being checked at 
release, lpt1 is appropriate. When the ultimate limit state of the anchorage 
and the anchorage zone is being checked, lpt2 is appropriate.

More information about the transmission length may be obtained from 
specialist literature, including References [3] to [6].

Eurocode 2 [2] states that concrete stresses caused by prestress in a pre-
tensioned element may be assumed to be linear across any cross-section 
outside the dispersion length ldisp, where:

	 l l ddisp pt= +2 2 	 (8.3)

as shown in Figure 8.2.
The value of stress in the tendon, in regions outside the transmission 

length, remains approximately constant under service loads or whilst the 
member remains uncracked. After cracking in a flexural member, however, 
the behaviour becomes more like that of a reinforced concrete member and 
the stress in the tendon increases with increasing moment. If the critical 
moment location occurs at or near the end of a member, such as may occur 
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in a short-span beam or a cantilever, the required development length for 
the tendon is significantly greater than the transmission length. In such 
cases, the bond capacity of the tendons needs to be carefully considered.

EN 1992-1-1 [2] requires that anchorage of tendons should be checked 
in regions where cracking is likely, i.e. in regions where the concrete tensile 
stress exceeds fctk,0,05. For this check, the tendon force on a cracked section 
should be used. The bond strength of the tendon at the ultimate limit state 
is specified as:

	 f fbpd p2 1 ctd= η η 	 (8.4)

where ηp2 depends on the type of tendon (ηp2 = 1.4 for indented wires and 
ηp2 = 1.2 for seven-wire strand); η1 is as defined for Equation 8.1 and fctd is 
obtained from Equation 4.12, but due to the increasing brittleness of high-
strength concrete, fctk,0.05 should not be taken greater than the value for 
C60/75 concrete (i.e. 3.1 MPa from Table 4.2).

The anchorage length required to develop a stress of σpd at the ultimate 
limit state is given by:

	 l l fbpd pt2 pd pm bpd/= + − ∞α φ σ σ2 ( ) 	 (8.5)

where lpt2 = 1.2lpt; α2 is as defined for Equation 8.2 and σpm∞ is the tendon 
stress after all losses. The development length lbpd is illustrated in Figure 8.3 
and is the sum of the upper design value of the transmission length lpt2 
and the additional bonded length necessary to develop the increase of steel 
stress from σpm∞ to σpd.

Where debonding of a strand is specified near the end of a pretensioned 
member, and the design allows for tension at service loads within the devel-
opment length, a minimum development length of the debonded strand of 
2lbpd is recommended here.

h d

lpt

ldisp Linear stress distribution
in member cross-section

Figure 8.2 � Length parameters at transfer of prestress in a pretensioned member.
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Where a prestressing tendon is not initially stressed, i.e. it is used in 
a member as non-prestressed reinforcement, and the tendon is required 
to develop its full characteristic breaking strength fpk, the development 
length required on either side of the critical cross-section should be at 
least 2.5 times the transmission length specified in Equation 8.2. Care 
should be taken in situations where a sudden change in the effective 
depth of the tendon occurs due to an abrupt change in the member depth. 
In these locations, it may not be possible to develop the full strength of 
the initially untensioned tendon. Local bond failure may occur in the 
vicinity of the step, limiting the stress that can be developed in the ten-
don. Such a situation may develop if the calculated stress change in the 
strand required in the region of high local bond stresses exceeds about 
500 MPa [7].

From their test results, Marshall and Mattock [8] proposed the following 
simple equation for determining the amount of transverse reinforcement 
Asb (in the form of stirrups) in the end zone of a pretensioned member:

	
A

h
l

P
sb

pt

m0

sb

= 0 021.
σ

	 (8.6)

where h is the overall depth of the member, Pm0 is the prestressing force 
immediately after transfer and σsb is the permissible steel stress required 
for crack control. According to EN 1992-1-1 [2], no check on crack widths 
is necessary if the stress in the reinforcement is limited to 300 MPa. The 
transverse steel Asb should be equally spaced within 0.2h from the end face 
of the member.
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Figure 8.3 � Variation of steel stress near the free end of a pretensioned tendon [2].
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8.3 � POST-TENSIONED CONCRETE 
ANCHORAGE ZONES

8.3.1  Introduction

In post-tensioned concrete structures, failure of the anchorage zone is per-
haps the most common cause of problems arising during construction. Such 
failures are difficult and expensive to repair, and usually necessitate replace-
ment of the entire structural member. Anchorage zones may fail owing to 
uncontrolled cracking or splitting of the concrete resulting from insuffi-
cient well-anchored transverse reinforcement. Bearing failures immediately 
behind the anchorage plate are also relatively common and may be caused 
by inadequately dimensioned bearing plates or poor workmanship result-
ing in poorly compacted concrete in the heavily reinforced region behind 
the bearing plate. Great care should therefore be taken in both the design 
and construction of post-tensioned anchorage zones.

Consider the case of a single square anchorage plate (hp by hp) centrally 
positioned at the end of a prismatic member of depth h and width b, as 
shown in Figure 8.4. In the disturbed region of length la immediately 
behind the anchorage plate (i.e. the anchorage zone), plane sections do not 
remain plane and simple beam theory does not apply. High bearing stresses 
at the anchorage plate disperse throughout the anchorage zone, creating 
high transverse stresses, until at a distance la from the anchorage plate the 
linear stress and strain distributions predicted by simple beam theory are 
produced. The dispersion of stress that occurs within the anchorage zone is 
illustrated in Figure 8.4b.

The stress trajectories directly behind the anchorage are convex to the 
centre line of the member, as shown, and therefore produce a transverse 

hp

hph

b la

P

P/hp
2

P/bh

Stress trajectories

(a) (b)

Figure 8.4 � Stress trajectories for a centrally placed anchorage plate. (a) End elevation. 
(b) Side elevation.
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component of compressive stress normal to the member axis. Further 
from the anchorage, the compressive stress trajectories become concave to 
the member axis and, as a consequence, produce transverse tensile stress 
components. The stress trajectories are closely spaced directly behind the 
bearing plate where compressive stress is high, and become more widely 
spaced as the distance from the anchorage plate increases. St Venant’s 
principle suggests that the length of the disturbed region, for the single 
centrally located anchorage shown in Figure 8.4, is approximately equal 
to the depth of the member h. The variation of the transverse stresses 
along the centre line of the member, and normal to it, is represented in 
Figure 8.5.

The degree of curvature of the stress trajectories is dependent on the size 
of the bearing plate. The smaller the bearing plate, the larger are both the 
curvature and concentration of the stress trajectories, and hence the larger 
are the transverse tensile and compressive forces in the anchorage zone. The 
transverse tensile forces (often called bursting or splitting forces) need to be 
estimated accurately so that transverse reinforcement within the anchorage 
zone can be designed to resist them.

Elastic analysis can be used to analyse anchorage zones prior to the 
commencement of cracking. Early studies using photoelastic methods 
[9] demonstrated the distribution of stresses within the anchorage zone. 
Analytical models were also proposed by Iyengar [10], Iyengar and 
Yogananda [11], Sargious [12] and others. The results of these early stud-
ies have since been confirmed by Foster and Rogowsky [13] (and others) in 
non-linear finite element investigations. Figure 8.6a shows stress isobars of 
ǀσy/σxǀ in an anchorage zone with a single centrally placed anchorage plate. 
Results are presented for three different anchorage plate sizes: hp/h = 0, 
hp/h = 0.25 and hp/h = 0.5. These isobars are similar to those obtained in 
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Figure 8.5 � Distribution of transverse stress behind a single central anchorage.
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photoelastic studies reported by Guyon [9]. σy is the transverse stress and 
σx is the average longitudinal compressive stress P/(bh). The transverse com-
pressive stress region in Figure 8.6a is hatched.

The effect of varying the size of the anchor plate on both the magnitude 
and position of the transverse stress along the axis of the member can be 
more clearly seen in Figure 8.6b. As the plate size increases, the magnitude 
of the maximum transverse tensile stress on the member axis decreases and 
its position moves further along the member (i.e. away from the anchorage 
plate). Tensile stresses also exist at the end surface of the anchorage zone 
in the corners adjacent to the bearing plate. Although these stresses are 
relatively high, they act over a small area and the resulting tensile force is 
small. Guyon [9] suggested that a tensile force of about 3% of the longitu-
dinal prestressing force is located near the end surface of a centrally loaded 
anchorage zone when hp/h is greater than 0.10.

The position of the line of action of the prestressing force with respect to 
the member axis has a considerable influence on the magnitude and distri-
bution of stress within the anchorage zone. As the distance of the applied 
force from the axis of the member increases, the tensile stress at the loaded 
face adjacent to the anchorage also increases.
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Figure 8.6 � Transverse stress distributions for central anchorage [9]. (a) Stress isobars 
ǀσy/σxǀ. (b) Transverse stress along member axis.
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Figure 8.7a illustrates the stress trajectories in the anchorage zone of a 
prismatic member containing an eccentrically positioned anchorage plate. 
At a length la from the loaded face, the concentrated bearing stresses dis-
perse to the asymmetric stress distribution shown. The stress trajectories, 
which indicate the general flow of forces, are therefore unequally spaced 
but will produce transverse tension and compression along the anchorage 
axis in a manner similar to that for the single centrally placed anchorage. 
Isobars of ∣σy/σx∣ are shown in Figure 8.7b. High bursting forces exist along 
the axis of the anchorage plate and, away from the axis of the anchorage, 
tensile stresses are induced on the end surface. These end tensile stresses, 
or spalling stresses, are typical of an eccentrically loaded anchorage zone.

Transverse stress isobars in the anchorage zones of members contain-
ing multiple anchorage plates are shown in Figure 8.8. The length of the 
member over which significant transverse stress exists (la) reduces with the 
number of symmetrically placed anchorages. The zone directly behind each 
anchorage contains bursting stresses and the stress isobars that resemble 
those in a single anchorage centrally placed in a much smaller end zone, as 
indicated in Figure 8.8. Tension also exists at the end face between adjacent 
anchorage plates. Guyon [9] suggested that the tensile force near the end 
face between any two adjacent bearing plates is about 4% of the sum of the 
longitudinal prestressing forces at the two anchorages.

The isobars presented in this section are intended only as a means of 
visualising the structural behaviour. Concrete is not a linear-elastic mate-
rial, and a cracked prestressed concrete anchorage zone does not behave 
as depicted by the isobars in Figures 8.6 through 8.8. However, the 
linear-elastic analyses indicate the areas of high tension, both behind each 
anchorage plate and on the end face of the member, where cracking of the 
concrete can be expected during the stressing operation. The formation of 
such cracks reduces the stiffness in the transverse direction and leads to a 
significant redistribution of forces within the anchorage zone.
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Figure 8.7 � Diagrammatic stress trajectories and isobars for an eccentric anchorage [9]. 
(a) Stress trajectories. (b) Stress isobars.
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8.3.2  Methods of analysis

The design of the anchorage zone of a post-tensioned member involves both 
the arrangement of the anchorage plates to minimise transverse stresses and the 
determination of the amount and distribution of reinforcement to carry the 
transverse tension after cracking of the concrete. Relatively large amounts 
of transverse reinforcement, usually in the form of stirrups, are often required 
within the anchorage zone and careful detailing of the steel is essential to per-
mit the satisfactory placement and compaction of the concrete. In thin-webbed 
members, the anchorage zone is often enlarged to form an end block which is 
sufficient to accommodate the anchorage devices. This also facilitates the detail-
ing and fixing of the reinforcement and the subsequent placement of concrete.

The anchorages usually used in post-tensioned concrete are patented by 
the manufacturer and prestressing companies for each of the types and 
arrangements of tendons. Typical anchorages are shown in Figures 3.6e, 
3.8 and 3.9. The units are usually recessed into the end of the member and 
have bearing areas which are sufficient to prevent bearing problems in well-
compacted concrete. Often the anchorages are manufactured with fins that 
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are embedded in the concrete to assist in distributing the large concentrated 
force. Spiral reinforcement often forms part of the anchorage system and is 
located immediately behind the anchorage plate to confine the concrete and 
thus significantly improve its bearing capacity.

As discussed in Section 8.3.1, the curvature of the stress trajectories deter-
mines the magnitude of the transverse stresses. In general, the dispersal of 
the prestressing forces occurs through both the depth and the width of the 
anchorage zone and therefore transverse reinforcement must be provided 
within the end zone in two orthogonal directions (usually, vertically and 
horizontally on sections through the anchorage zone). The reinforcement 
quantities required in each direction are usually obtained from separate 
two-dimensional analyses, i.e. the vertical transverse tension is calculated 
by considering the vertical dispersion of forces and the horizontal tension is 
obtained by considering the horizontal dispersion of forces.

The internal flow of forces in each direction can be visualised in several 
ways. A simple model is to consider truss action within the anchorage zone. 
For the anchorage zone of the beam of rectangular cross-section shown in 
Figure 8.9, a simple strut-and-tie model shows that a transverse compressive 
force (Fbc) exists directly behind the bearing plate, with transverse tension, 
often called the bursting force (Fbt), at some distance along the member. 
Design using strut-and-tie modelling is outlined in more detail in Section 8.4.

Consider the anchorage zone of the T-beam shown in Figure 8.10. The 
strut-and-tie arrangement shown is suitable for calculating both the verti-
cal tension in the web and the horizontal tension across the flange.

An alternative model for estimating the internal tensile forces is to con-
sider the anchorage zone as a deep beam loaded on one side by the bearing 
stresses immediately under the anchorage plate and resisted on the other 
side by the statically equivalent, linearly distributed stresses in the beam. 
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Figure 8.9 � Strut-and-tie model of an anchorage zone.
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The  depth of the deep beam is taken as the anchorage length la. This 
approach was proposed by Magnel [14] and was further developed by 
Gergely and Sozen [15] and Warner and Faulkes [16].

8.3.2.1  Single central anchorage

The beam analogy model is illustrated in Figure 8.11 for a single central 
anchorage, together with the bending moment diagram for the idealised 
beam. Since the maximum moment tends to cause bursting along the axis of 
the anchorage, it is usually denoted by Mb and called the bursting moment.

By considering one half of the end block as a free-body diagram, as 
shown in Figure 8.12, the bursting moment Mb required for rotational 
equilibrium is obtained from statics. Taking moments about any point on 
the member axis gives:
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where Mb is resisted by the couple formed by the transverse forces Fbc and 
Fbt, as shown.

As has already been established, the position of the resulting transverse 
(vertical) tensile force Fbt in Figures 8.11 and 8.12 is located at some dis-
tance from the anchorage plate. For a linear-elastic anchorage zone, the 
exact position of Fbt is the centroid of the area under the appropriate trans-
verse tensile stress curve in Figure 8.6b. For the single, centrally placed 
anchorage of Figures 8.6, 8.11 and 8.12, the lever arm between Fbc and 
Fbt is approximately equal to h/2. This approximation also proves to be 
a reasonable one for a cracked concrete anchorage zone. Therefore, using 
Equation 8.7, we get:
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Expressions for the bursting moment and the horizontal transverse tension 
resulting from the lateral dispersion of bearing stresses across the width b 
of the section are obtained by replacing the depth h in Equations 8.7 and 
8.8 with the width b.

8.3.2.2  Two symmetrically placed anchorages

Consider the anchorage zone shown in Figure 8.13a containing two 
anchorages, each positioned equidistant from the member axis. The beam 
analogy of Figure 8.13b indicates bursting moments Mb on the axis of 
each anchorage and a spalling moment Ms (of opposite sign to Mb) on the 
member axis, as shown. Potential crack locations within the anchorage 
zone are also shown in Figure 8.13a. The bursting moments behind each 
anchorage plate produce tension at some distance into the member, whilst 
the spalling moments produce transverse tension at the end face of the 
member. This simple analysis is consistent with the stress isobars for the 
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Figure 8.12 � Free-body diagram of the top half of the anchorage zone in Figure 8.11.
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linear-elastic end block of Figure 8.8c. Consider the free-body diagram 
shown in Figure 8.13c. The maximum bursting moment behind the top 
anchorage occurs at the distance x below the top fibre, where the shear 
force at the bottom edge of the free-body is zero. That is:
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Summing moments about any point in Figure 8.13c gives:
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The maximum spalling moment Ms occurs at the member axis, where the 
shear is also zero, and may be obtained by taking moments about any point 
on the member axis in the free-body diagram of Figure 8.13d:
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After the maximum bursting and spalling moments have been determined, 
the resultant internal compressive and tensile forces can be estimated pro-
vided that the lever arm between them is known. The internal tension Fbt 

h

P/hP/(2hp)

Potential cracking

P/(2hp)

P/h
P/(2hp)

P/(2hp) −

−

+

Ms Mb

P/hMb

xa

P/(2hp)

(c) (d)

(a) (b)

P/h

Ms

P/(2hp)
h/2

hp

e
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produced by the maximum bursting moment Mb behind each anchorage 
may be calculated from:
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By examining the stress contours in Figure 8.8, the distance between the 
resultant transverse tensile and compressive forces behind each anchorage 
lb depends on the size of the anchorage plate and the distance between the 
plate and the nearest adjacent plate or free edge of the section. Guyon [9] 
suggested an approximate method which involves the use of an idealised 
symmetric prism for computing the transverse tension behind an eccentri-
cally positioned anchorage. The assumption is that the transverse stresses 
in the real anchorage zone are the same as those in a concentrically loaded 
idealised end block consisting of a prism that is symmetrical about the 
anchorage plate and with a depth he equal to twice the distance from the 
axis of the anchorage plate to the nearest concrete edge. If the internal lever 
arm lb is assumed to be half the depth of the symmetrical prism (i.e. he/2), 
then the resultant transverse tension induced along the line of action of the 
anchorage is obtained from an equation that is identical to Equation 8.8, 
except that the depth of the symmetric prism he replaces h:
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where hp and he are, respectively, the dimensions of the anchorage plate 
and the symmetric prism in the direction of the transverse tension Fbt. For 
a single concentrically located anchorage plate he = h (for vertical tension) 
and Equations 8.8 and 8.13 are identical.

Alternatively, the tension Fbt can be calculated from the bursting moment 
obtained from the statics of the real anchorage zone using a lever arm lb = 
he/2. It should be noted that Equation 8.13 is an approximation that under-
estimates the transverse tension. Guyon [9] suggested that a conservative esti-
mate of Fbt will always result if the bursting tension calculated by Equation 
8.13 is multiplied by h/he, but this may be very conservative.

For anchorage zones containing multiple bearing plates, the bursting ten-
sion behind each anchorage, for the case where all anchorages are stressed, 
may be calculated using Guyon’s symmetric prism. The depth of the sym-
metric prism he associated with a particular anchorage may be taken as the 
smaller of the following:

	 1.	the distance in the direction of the transverse tension from the centre 
of the anchorage to the centre of the nearest adjacent anchorage; and

	 2.	twice the distance in the direction of the transverse tension from the 
centre of the anchorage to the nearest edge of the anchorage zone.
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For each symmetric prism, the lever arm lb between the resultant transverse 
tension and compression may be taken as he/2.

The anchorage zone shown in Figure 8.14 contains two symmetrically 
placed anchorage plates located close together near the axis of the mem-
ber. The stress contours show the bulb of tension immediately behind each 
anchorage plate. Also shown in Figure 8.14 is the symmetric prism to be 
used to calculate the resultant tension and the transverse reinforcement 
required in this region. Tension also exists further along the axis of the 
member in a similar location to the tension that occurs behind a single con-
centrically placed anchorage. Where the distance between two anchorages 
is less than 0.3 times the total depth of a member, consideration must also 
be given to the effects of the pair of anchorages acting in a manner similar 
to a single anchorage subject to the combined forces.

The loading cases to be considered in the design of a post-tensioned 
anchorage zone with multiple anchorage plates are:

	 1.	all anchorages loaded; and
	 2.	critical loading cases during the stressing operation.

8.3.3  Reinforcement requirements

In general, reinforcement should be provided to carry all the transverse 
tension in an anchorage zone. It is unwise to assume that the concrete will 
be able to carry any tension or that the concrete in the anchorage zone will 
not crack. The quantity of transverse reinforcement Asb required to carry 
the transverse tension caused by bursting can be obtained by dividing the 

P/2

P/2

Compression

Tension

h

|σy/σx|

Figure 8.14 � Two closely spaced symmetric anchorage plates.
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appropriate tensile force, calculated using Equation 8.8 or 8.13, by the 
permissible steel stress σsb, as follows:

	
A

F
sb

bt

sb
= σ 	 (8.14)

EN 1992-1-1 [2] states that reinforcement should be detailed as appropri-
ate for the strength limit state and that, if the steel stress σsb is limited to 
300 MPa, no check of crack widths is necessary.

Equation 8.14 may be used to calculate the quantity of bursting rein-
forcement in both the vertical and horizontal directions. The transverse 
steel so determined must be distributed over that portion of the anchorage 
zone where the transverse tension is likely to cause cracking of the con-
crete. Therefore, the steel area Asb should be uniformly distributed over 
the portion of beam located from about 0.20he to 1.0he from the loaded 
end face. For the particular bursting moment being considered, he is the 
depth of the symmetric prism in the direction of the transverse tension 
and equals h for a single concentric anchorage. The size and spacing of the 
transverse reinforcement required in this region should also be provided 
in the portion of the beam from 0.20he to as near as practicable to the 
loaded face.

For spalling moments, the lever arm lsp between the resultant transverse 
tension Fspt and compression Fspc is usually larger than for bursting, as can 
be seen from the isobars in Figure 8.7. For a single eccentric anchorage, 
the transverse tension at the loaded face remote from the anchorage may 
be calculated by assuming that lsp is half the overall depth of the mem-
ber. Between two widely spaced anchorages, the transverse tension at the 
loaded face may be obtained by taking lsp equal to 0.6 times the spacing of 
the anchorages. The reinforcement required to resist the transverse tension 
at the loaded face Assp is obtained from:

	
A

F M
l

ssp
spt

ssp

s

ssp sp

= =
σ σ

	 (8.15)

According to EN 1992-1-1 [2], if σssp ≤ 300 MPa, it is not necessary to 
check for crack control. The steel area Assp should be located as close to the 
loaded face as is permitted by concrete cover and compaction requirements.

8.3.4  Bearing stresses behind anchorages

Local concrete bearing failures can occur in post-tensioned members 
immediately behind the anchorage plates if the bearing area is inadequate 
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or the concrete strength is too low. The design resistance FRdu that can be 
supported on a bearing area Ac0 is specified in EN 1992-1-1 [2] as:

	 F A f A A f ARdu c0 cd c1 c0 cd c0/= ≤ 3 0. 	 (8.16)

where fcd is the design compressive strength of the concrete at the time of 
first loading (i.e. Equation 4.11 at transfer), Ac0 is the bearing area, Ac1 is 
the largest area of the concrete supporting surface that is geometrically 
similar to and concentric with Ac0, with maximum dimensions as indicated 
in Figure 8.15 (taken from EN 1992-1-1). The centre of the design distri-
bution area Ac1 is on the line of action of the force P passing through the 
centre of the bearing area Ac0. If there is more than one bearing plate at the 
end of the member, the design distribution areas should not overlap.

In commercial post-tensioned anchorages, the concrete immediately 
behind the anchorage is confined by spiral reinforcement (see Figure 3.6e), 
in addition to the transverse bursting and spalling reinforcement (often 
in the form of closed stirrups). In addition, the transverse compression 
at the loaded face immediately behind the anchorage plate significantly 
improves the bearing capacity of such anchorages. Therefore, provided 
the concrete behind the anchorage is well compacted, the bearing stress 
given by Equation 8.16 is usually conservative. Commercial anchorages 
are typically designed for bearing stresses of about 40 MPa, and bearing 
strength is specified by the manufacturer and is usually based on satisfac-
tory test performance.

d1

b1Ac0

Ac1

P

b2 ≤ 3b1

d 2
≤ 3d 1

h

Figure 8.15 � Design distribution areas for determination of bearing resistance force [2].
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EXAMPLE 8.1  A SINGLE CONCENTRIC 
ANCHORAGE ON A RECTANGULAR SECTION

The anchorage zone of a flexural member with the dimensions shown in 
Figure 8.16 is to be designed. The size of the bearing plate is 315 mm square 
with a duct diameter of 106 mm, as shown. The jacking force is Pj = 3000 kN, 
and the concrete strength when the full jacking force is applied at time t is 
fck(t) = 40 MPa (and from Equation 4.11, fcd(t) = 26.67 MPa).

First consider the bearing stress immediately behind the anchorage plate. For 
bearing strength calculations, we use the partial safety factor for the prestress 
(P), γP = 1.0 (given in Equation 2.2), i.e. the design force on the anchorage 
plate is 1.0 Pj = 3000 kN. The net bearing area Ac0 is the area of the bearing 
plate minus the area of the hollow duct:

	 Ac0 / mm= × − × = ×315 315 106 4 90 4 102 3 2( ) .π

For this anchorage, the dimensions of the design distribution area Ac1 are 
b2 = d2 = 480 mm (since Ac1 must be geometrically similar to Ac0). Therefore:

	 Ac1 mm= × = ×480 480 230 4 103 2.

The design resistance force is obtained from Equation 8.16:

	 FRdu / kN= × × × × × =90 4 10 26 67 230 4 10 90 4 10 38493 3 3. . . ( . )

1000

480

342.5

342.5

315

315

106

3000 kN

End elevation Side elevation

Figure 8.16 � Details of anchorage zone (Example 8.1).
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which is greater than the design force, Pj = 3000 kN and therefore acceptable. 
In practice, confinement reinforcement included behind the anchorage will 
significantly increase the design bearing strength.

Consider moments in the vertical plane:

The forces and bursting moments in the vertical plane are illustrated in 
Figure 8.17a. From Equation 8.7:

	
Mb kNm= × − =3000 10

8
1000 315 256 9

3

( ) .

and the vertical bursting tension is obtained from Equation 8.8:

	
Fbt

/
kN= × × =−256 9 10

1000 2
10 513 8

6
3.

.

With σsb taken equal to 300 MPa, the amount of vertical transverse 
reinforcement required to resist bursting is calculated from Equation 8.14:

	
Asb mm= × =513 8 10

300
1713

3
2.

(a)

(b)

315 1000

3.0 kN/mm

Mb = 256.9 kNm

Fbt

Fbc

315

9.52 kN/mm

9.52 kN/mm

Mb = 61.9 kNm

480

6.25 kN/mm

Fbt

Fbc

Figure 8.17 � Bursting force and moment diagrams (Example 8.1). (a) Bursting in the 
vertical plane. (b) Bursting in the horizontal plane.
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This area of transverse steel must be provided within the length of beam 
located from 0.20h to 1.0h from the loaded end face, i.e. over a length 
of 0.8h  = 800 mm. Two 12 mm diameter stirrups (four vertical legs) are 
required every 200 mm along the 800 mm length (i.e. 4 sets of stirrups give 
Asb = 4 × 4 × 110 = 1760 mm2 within the 800 mm length). This size and spac-
ing of stirrups must be provided over the entire anchorage zone, i.e. for a 
distance of 1000 mm from the loaded face.

Consider moments in the horizontal plane:

The forces and bursting moments in the horizontal plane are illustrated in 
Figure 8.17b. With b = 480 mm replacing h in Equations 8.7 and 8.8, the burst-
ing moment and horizontal tension are:

	
Mb kNm= × − =3000 10

8
480 315 61 9

3

( ) .

	
Fbt

/
kN= × × =−61 9 10

480 2
10 257 8

6
3.

.

The amount of horizontal transverse steel is obtained from Equation 8.14 as:

	
Asb

2mm= × =257 8 10
300

860
3.

and this is required within the length of beam located between 96 mm (0.2b) 
and 480 mm (1.0b) from the loaded face. Four pairs of closed 12 mm stir-
rups (i.e. four horizontal legs per pair of stirrups) at 200 mm centres (Asb = 
880  mm2) satisfy this requirement. To satisfy horizontal bursting require-
ments, this size and spacing of stirrups should be provided from the loaded 
face for a length of at least 480 mm.

To accommodate a tensile force at the loaded face of 0.03Pj = 90 kN, 
an area of steel of 90 × 103/300 = 300 mm2 must be placed as close to the 
loaded face as possible. This is in accordance with Guyon’s [9] recommenda-
tion discussed in Section 8.3.1. The first pair of stirrups at about 40 mm from 
the loaded face supply 440 mm2 and, therefore, the existing reinforcement is 
considered to be adequate.

The transverse steel details shown in Figure 8.18 are adopted here.
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Within the first 480 mm, where horizontal transverse steel is required, 
the stirrups are closed at the top, as indicated, but for the remainder of the 
anchorage zone, between 480 and 1000 mm from the loaded face, open stir-
rups may be used to facilitate placement of the concrete. The first stirrup is 
placed as close as possible to the loaded face, as shown.

EXAMPLE 8.2  TWIN ECCENTRIC ANCHORAGES 
ON A RECTANGULAR SECTION

The anchorage shown in Figure 8.19 is to be designed. The jacking force at each 
of the two anchorage plates is Pj = 2000 kN, and the concrete strength at the 
time of transfer is fck(t) = 40 MPa (and from Equation 4.11, fcd(t) = 26.67 MPa).

Check bearing stresses behind each anchorage:

As in Example 8.1, the design resistance force in bearing FRdu is calculated 
using Equation 8.16:

	
A Ac0 c1mm mm= − × = × = = ×265

92
4

63 6 10 450 202 5 102
2

3 2 2 3 2π
. ; .

Closed
stirrups

Open
stirrups

6–12 mm dia. stirrups at
200 mm centres (4 vertical legs) 12 mm stirrups

at 200 mm centres

Elevation Section

40

4–20 mm longitudinal
bars top and bottom

Figure 8.18 � Reinforcement details (Example 8.1).
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FRdu kN= × × × ×

×
=63 6 10 26 67

202 5 10
63 6 10

30273
3

3. .
.
.

which is greater than the design force less Pj = 2000 kN and is therefore 
satisfactory.

Case (a) − Consider the lower cable only stressed:

It is necessary first to examine the anchorage zone after just one of the tendons 
has been stressed. The stresses, forces and corresponding moments acting on 
the eccentrically loaded anchorage zone are shown in Figure 8.20a through c.

The maximum bursting moment Mb occurs at a distance x from the bottom 
surface at the point of zero shear in the free-body diagram of Figure 8.20d. 
From statics:

	

7 55 92 5
5 3 5 3 0 0066

2

231 8 3 77

. ( . )
. ( . . )

. .

× − = + −

∴ = =

x
x

x

x wxmm and kN/mm

and

	

Mb = × − − × − × −


5 30

231 8
2

5 30 3 77
231 8

6
7 55

231 8 92 5
2

2 2 2

.
.

( . . )
.

.
( . . ) 


 ×

=

−10

55 5

3

. kNm

The maximum spalling moment Ms occurs at 394 mm below the top surface 
where the shear is also zero, as shown in Figure 8.20e, and from equilibrium:

	
Ms kNm= × × =−1 3

394
6

10 33 6
2

3. .

1000

2000 kN

Side elevation End elevation

2000 kN

275

275

480

265

92 mm
diameter

duct

225

225
265

265

Figure 8.19 � Twin anchorage arrangement (Example 8.2).
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Design for Mb:

The symmetric prism which is concentric with and directly behind the lower 
anchorage plate has a depth of he = 450 mm and is shown in Figure 8.21. From 
Equation 8.12:

	
F

M
l

bt
b

b /
kN= = × =55 5 10

450 2
246 5

3.
.

By contrast, Equation 8.13 gives:

	
Fbt kN= −






 =

2000
4

1
265
450

206

and this is considerably less conservative. Adopting the value of Fbt obtained 
from the actual bursting moment, Equation 8.14 gives:

	
Asb

2mm= × =246 5 10
300

822
3.

This area of steel must be distributed over a distance of 0.8he = 360 mm.

(d)  (e)  
Ms

Mb

5.30 kN/mm

wx = 5.30−0.0066x

7.55
kN/mm

x

1.30 kN/mm

1.30 kN/mm

394

P

(a) (b) (c)

P/h =
7.55 kN/mm

−

+

Ms Mb

275

225

642.5

11.04 MPa 5.30 kN/mm

1.30 kN/mm

265

92.5

2.71 MPa

I
Pey

A
P +−=

σb

σ

Figure 8.20 � Actions on anchorage zone when the lower cable only is stressed 
(Example 8.2). (a) Side elevation and stresses. (b) Forces. (c) Moments. 
(d) Free-body of analogous beam at Mb. (e) Free-body of analogous 
beam at Ms.
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For the steel arrangement illustrated in Figure 8.23, 12 mm diameter stir-
rups are used at the spacings indicated, i.e. a total of four vertical legs of 
area 440  mm2 per stirrup location are used behind each anchorage. The 
number of such stirrups required in the 360 mm length of the anchorage 
zone is 822/440 = 1.87 and therefore the maximum spacing of the stirrups is 
360/1.87 = 192 mm. This size and spacing of stirrups are required from the 
loaded face to 450 mm therefrom. The spacing of the stirrups in Figure 8.23 
is less than that calculated here because the horizontal bursting moment 
and spalling moment requirements are more severe. These are examined 
subsequently.

Design for Ms:

The lever arm ls between the resultant transverse compression and tension 
forces that resist Ms is taken as 0.5h = 500 mm. The area of transverse steel 
required within 0.2h = 200 mm from the front face is given by Equation 8.15:

	
Ass mm= ×

×
=33 6 10

300 500
224

6
2.

The equivalent of about two vertical 12 mm diameter steel legs is required 
close to the loaded face of the member to carry the resultant tension caused 
by spalling. This requirement is easily met by the three full depth 12  mm 

he

225 he/2

he/2

Symmetric prism

Figure 8.21 � Symmetric prism for one eccentric anchorage (Example 8.2).
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diameter stirrups (six vertical legs) located within 0.2h of the loaded face, as 
shown in Figure 8.23.

Case (b) − Consider both cables stressed:

Figure 8.22 shows the force and moment distribution for the end block when 
both cables are stressed.

Design for Mb:

The maximum bursting moment behind the anchorage occurs at the level of 
zero shear, x mm below the top surface and x mm above the bottom surface. 
From Equation 8.9:

	
x = ×

− ×
=92 5 1000

1000 2 265
196 8

.
( )

. mm

and Equation 8.10 gives:

	
Mb 36= ×

×
− × −

×








 × =−4000 196 8

2 1000
4000 196 8 92 5

4 265
10

2 2
6. ( . . )

..4 kNm

This is less than the value for Mb when only the single anchorage was 
stressed. Since the same symmetric prism is applicable here, the reinforcement 
requirements for bursting determined in case (a) are more than sufficient.

−

−

+

Ms Mb

265

7.55 kN/mm

265

285

92.5

92.5

4.0 kN/mm

Figure 8.22 � Forces and moments when both cables are stressed.
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Design for Ms:

The spalling moment at the mid-depth of the anchorage zone (on the member 
axis) is obtained from Equation 8.11:

	
Ms kNm= × −






 × =−4000 10

2
275

1000
4

10 50
3

6

With the lever arm ls taken as 0.6 times the spacing of the bearing plates, 
i.e.  ls = 0.6 × 550 = 330 mm, the area of transverse steel required within 
0.2h = 200 mm of the loaded face is given by Equation 8.15:

	
Ass mm= ×

×
=50 10

300 330
505

6
2

Use six vertical legs of 12 mm diameter (660 mm2) across the member axis 
within 200 mm of the loaded face, as shown in Figure 8.23.

Case (c) − Consider horizontal bursting:

Horizontal transverse steel must also be provided to carry the transverse 
tension caused by the horizontal dispersion of the total prestressing force 

Closed
stirrups

Open
stirrups

Full depth 12 mm dia. stirrups 
60 60 2 at 170 250 mm centres

Full depth
12 mm stirrups

throughout

Elevation Section

40

4–12 mm closed stirrups
at 170 mm centres

Figure 8.23 � Reinforcement details (Example 8.2).
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(P = 4000 kN) from a 265 mm wide anchorage plate into a 480 mm wide 
section. With b = 480 mm used instead of h, Equations 8.7 and 8.8 give:

	 M Fb btkNm and kN= =107 5 448.

and the amount of horizontal steel is obtained from Equation 8.14:

	 Asb
2mm= 1493

With the steel arrangement shown in Figure 8.23, six horizontal 12 mm 
diameter bars exist at each stirrup location, i.e. 660  mm2 at each stirrup 
location. The required stirrup spacing within the length 0.8b (= 384 mm) is 
170 mm. Therefore, within 480 mm from the end face of the beam, all avail-
able horizontal stirrup legs are required and therefore all stirrups in this 
region must be closed.

The reinforcement details shown in Figure 8.21 are adopted.

EXAMPLE 8.3  SINGLE CONCENTRIC 
ANCHORAGE IN A T-BEAM

The anchorage zone of the T-beam shown in Figure 8.24a is to be designed. 
The member is prestressed by strands located within a single 92 mm diame-
ter duct, with a 265 mm square anchorage plate located at the centroidal axis 
of the cross-section. The jacking force is Pj = 2000 kN, and the characteristic 
concrete strength at transfer is 40 MPa, i.e. fcd(t) = 26.67 MPa. The distribu-
tions of forces on the anchorage zone in elevation and in plan are shown in 
Figure 8.24b and c, respectively.

The bearing area and the design distribution area are Ac0 = 63.6 × 103 mm2 
and Ac1 = 122.5 × 103 mm2, respectively, and the design resistance force in 
bearing FRdu is calculated using Equation 8.16:

	
FRdu kN= × × × ×

×
=63 6 10 26 67

122 5 10
63 6 10

23543
3

3. .
.
.

which is greater than the design force less Pj = 2000 kN and is therefore 
satisfactory.
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Consider moments in the vertical plane:

The maximum bursting moment occurs at the level of zero shear at x mm 
above the bottom of the cross-section. From Figure 8.24d:

	 2.044 × x = 7.547 × (x − 295.8)  ∴ x = 405.7 mm

and

	
Mb 122 6 kN= × − × −







 × =−2 044 405 7

2
7 547 405 7 295 8

2
10

2 2
3. . . ( . . )

. mm

As indicated in Figure 8.24b, the depth of the symmetric prism associated 
with Mb is he = 2 × 139.2 + 265 = 543 mm and the vertical tension is:

	
F

M
h

bt
b

e /
kN= =

2
451

The vertical transverse reinforcement required in the web is obtained 
from Equation 8.14:

	
Asb mm= × =451 10

300
1503

3
2

1000

150

550

271.7

428.3

139.2

265

295.8265

350(a)

5.840
kN/mm

2.044
kN/mm

7.547
kN/mm

he = 543 mm

(b)

325

350

325

0.876
kN/mm

(c)

4.088
kN/mm

0.876
kN/mm

7.547
kN/mm

(d)

2.044
kN/mm

7.547
kN/mm

Fbc Mb Fbt

x

Figure 8.24 � Details of the anchorage zone of the T-beam (Example 8.3). (a) End 
elevation. (b) Side elevation. (c) Plan. (d) Part side elevation.
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This area of steel must be located within the length of the beam between 
0.2he = 109 mm and he = 543 mm from the loaded face.

By using 12 mm stirrups over the full depth of the web and additional 12 mm 
stirrups immediately behind the anchorage, as shown in Figure 8.25 (i.e. Asb = 
(4 × 110) = 440 mm2 per stirrup location), the number of double stirrups 
required is 1503/440 = 3.42 and the required spacing is (543 − 109)/3.42 = 
127  mm. With a full depth stirrup located 40  mm from the loaded face, 
Guyon’s recommendation that steel be provided near the loaded face to carry 
0.03Pj is satisfied.

Consider moments in the horizontal plane:

Significant lateral dispersion of prestress in plan occurs in the anchorage zone 
as the concentrated prestressing force finds its way out into the flange of the 
T-section. By taking moments of the forces shown in Figure 8.24c about a 
point on the axis of the anchorage, the horizontal bursting moment is:

	

Mb /

92

= × × + × × − × ×

=

−( . . . . . . )0 876 325 337 5 4 088 175 87 5 7 547 132 5 2 102 3

..4 kNm

Plan

8–12 mm bars at
140 mm centres

12 mm bars at 140 centres

12 mm open stirrups
at 120 mm centres

Elevation Cross-section

6 double stirrups
5 spaces at 120 mm

40

Figure 8.25 � Reinforcement details for anchorage zone of T-beam (Example 8.3).
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Much of this bursting moment must be resisted by horizontal transverse ten-
sion and compression in the flange. Taking he equal to the flange width, the 
lever arm between the transverse tension and compression is lb = he/2 = 
500 mm and the transverse tension is calculated using Equation 8.12:

	
Fbt kN= × =92 4 10

500
185

3.

The area of horizontal transverse reinforcement required in the flange is 
therefore:

	
Asb mm= × =185 10

300
617

3
2

and this quantity should be provided within the flange and located between 
200 and 1000  mm from the loaded face. Adopt 12  mm bars across them 
flange at 140 mm centres from the loaded face to 1000 mm therefrom, as 
shown in Figure 8.25. A similar check should be carried out to ensure suf-
ficient horizontal bursting reinforcement in the web. In this case, the horizon-
tal bottom legs of the 12 mm stirrups in the web (plus the horizontal 12 mm 
bars in the flange) are more than sufficient.

Alternative design using the strut-and-tie method:

An alternative approach to the design of the anchorage zone in a flanged 
member, and perhaps a more satisfactory approach, involves the use of strut-
and-tie modelling, as illustrated in Figure 8.26.

The vertical dispersion of the prestress in the anchorage zone of Example 
8.3 may be visualised using the simple strut-and-tie model illustrated in 
Figure 8.26a. The strut-and-tie model extends from the bearing plate into 
the beam for a length of about half the depth of the symmetric prism (i.e. 
he/2 = 272  mm in this case). The total prestressing force carried in the 
flange is 876 kN and this force is assumed to be applied to the analogous 
truss at A and B, as shown. The total prestressing force in the web of the 
beam is 1124 kN, and this is assumed to be applied to the analogous truss 
at the quarter points of the web depth, i.e. at D and F. From statics, the 
tension force in the vertical tie DF is 405 kN, which is in reasonable agree-
ment with the bursting tension (451 kN) calculated previously using the 
deep beam analogy.
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The area of steel required to carry the vertical tension in the analogous 
truss is:

	
Asb mm= × =405 10

300
1350

3
2

and this may be distributed over a length of the anchorage zone of about 
0.8he (= 435 mm) centred on the tie BF in Figure 8.26a. According to the truss 
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467 kN
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K

Figure 8.26 � Truss analogy of the anchorage zone of T-beam (Example 8.3). (a) 
Vertical dispersion of prestress. (b) Horizontal dispersion of prestress.
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8.4  STRUT-AND-TIE MODELLING

8.4.1  Introduction

Modelling the flow of forces in an anchorage zone using an idealised truss, 
such as we have seen in Figures 8.9, 8.10 and 8.26, is the basis of a power-
ful method of design known as strut-and-tie modelling. It is a lower bound 
plastic method of design that can be applied to all elements of a struc-
ture, but it is most often used to design disturbed regions (D-regions) such 
as occur at discontinuities in the structure, in non-flexural members and 
within supports and connections. Anchorage zones in prestressed concrete 
structures are such regions.

Strut-and-tie modelling became popular in the 1980s with Marti [17,18] 
and Schlaich et  al. [19] making important contributions. The designer 
selects a load path consisting of internal concrete struts and steel ties con-
nected at nodes. The internal forces carried by the struts and ties must be 
in equilibrium with the external loads. Each element of the strut-and-tie 
model (i.e. the concrete struts representing compressive stress fields, the 
steel ties representing the reinforcement and the nodes connecting them) 
must then be designed and detailed so that the load path is everywhere suf-
ficiently strong enough to carry the applied loads through the structure and 
into the supports. Care must be taken to ensure that strut-and-tie model 

analogy, therefore, the vertical steel spacing of 120 mm in Figure 8.25 may be 
increased to 140 mm.

The horizontal dispersion of prestress into the flange is illustrated using 
the truss analogy of Figure 8.26b. After the prestressing force has dispersed 
vertically to point B in Figure 8.26a (i.e. at 272 mm from the anchorage plate), 
the flange force then disperses horizontally. The total flange force (876 kN) 
is applied to the horizontal truss at the quarter points across the flange, i.e. 
at points H and K in Figure 8.26b. From statics, the horizontal tension in the 
tie HK is 161 kN (which is in reasonable agreement with the bursting tension 
of 185 kN calculated previously). The reinforcement required in the flange is:

	
Asb mm= × =161 10

300
537

3
2

This quantity of reinforcement may be distributed over a length of beam 
equal to about 0.8 times the flange width (800 mm) and centred at the position 
of the tie HK in Figure 8.26b. Reinforcement at the spacing thus calculated 
should be continued back to the free face of the anchorage zone. The 
reinforcement indicated in Figure 8.25 meets these requirements.
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selected is compatible with the applied loads and the supports and that 
both the struts and the ties possess sufficient ductility to accommodate the 
redistribution of internal forces necessary to achieve the desired load path.

EN 1992-1-1 [2] permits the use of strut-and-tie modelling as a basis 
for strength design (and for evaluating strength) in non-flexural regions of 
members. It may also be used for the design of members where linear distri-
bution of strain exists on the cross-section. The following requirements are 
generally applicable when designing using strut-and-tie modelling:

	 1.	loads are applied only at nodes with struts and ties carrying only axial 
force;

	 2.	the model must be in equilibrium;
	 3.	when determining the geometry of the model, the dimensions of the 

struts, ties and nodes must be accounted for;
	 4.	if required, ties may cross struts;
	 5.	struts are permitted to cross or intersect only at nodes; and
	 6.	the angle between the axis of any strut and any tie at a node point 

shall not be less than about 30° for a reinforced concrete tie or 20° in 
a prestressed concrete member when a tendon is acting as the tie.

8.4.2  Concrete struts

8.4.2.1  Types of struts

Depending on the geometry of the member and its supports and loading 
points, the struts in a strut-and-tie model can be fan shaped, bottle shaped 
or prismatic, as shown in Figure 8.27. If unimpeded by the edges of a 
member or any penetrations through the member, compressive stress fields 
diverge. A prismatic strut, such as shown in Figure 8.27c, can only develop 
if the stress field is physically unable to diverge because of the geometry of 

(a) (b) (c)

Bursting
forces

Figure 8.27 � Types of concrete struts. (a) Fan-shaped struts. (b) Bottle-shaped strut. 
(c) Prismatic strut.
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the structure. When the compressive stress field can diverge without inter-
ruption and is not constrained at its ends, so that the stress trajectories 
remain straight, a fan-shaped strut results, as shown in Figure 8.27a. When 
the compressive stress field is free to diverge laterally along its length, but is 
constrained at either end, a bottle-shaped strut develops with curved stress 
trajectories similar to that shown in Figure 8.27b. Such curved compressive 
stress trajectories create bursting forces Fbt at right angles to the strut axis.

8.4.2.2  Strength of struts

According to EN 1992-1-1 [2], the design strength of a strut in a region 
with transverse compressive stress (or no transverse stress) is the prod-
uct of the smallest cross-sectional area of the concrete strut at any point 
along its length and the design compressive stress fcd. For struts in cracked 
compressive zones, with transverse tension, the design strength may be 
calculated using a reduced design compressive stress σRd.max given by:

	
σRd.max

ck
cd= −






0 6 1

250
.

f
f 	 (8.17)

Properly detailed longitudinal reinforcement placed parallel to the axis of 
the strut and located within the strut may be used to increase the strength 
of a strut. The longitudinal reinforcement should be enclosed by suitably 
detailed ties or spiral reinforcement (see Section 14.6.2). The strength of 
a strut containing longitudinal reinforcement may be calculated as for a 
prismatic, pin-ended short column of cross-sectional area Ac and the same 
length as the strut (see Section 13.3).

8.4.2.3  Bursting reinforcement in bottle-shaped struts

The bursting tension in a bottle-shaped strut reduces the compressive 
strength of the strut and, if Fbt is significant, transverse reinforcement is 
required. Without adequate transverse reinforcement, splitting along the 
strut can initiate a sudden brittle failure of the strut.

The bursting force required to cause cracking parallel to the axis of the 
strut may be taken as:

	 Fbt.cr = 0.7bhfctd	 (8.18)

where b is the width of the member and h is the length of the bursting 
zone, i.e. the length h shown in Figure 8.28a and b where the compression 
trajectories are curved. If the internal tensile force Fbt is greater than 0.5Fbt.cr, 
it is recommended that adequate reinforcement be included to carry the 
entire bursting tension Fbt. EN 1992-1-1 [2] suggests that this should be 
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distributed over the length h shown in Figure 8.28a and b. The bursting 
force Fbt may be determined from either Equation 8.19 for a partially con-
strained strut (as shown in Figure 8.28a) or Equation 8.20 for an uncon-
strained bottle-shaped strut (as shown in Figure 8.28b):

	
F

b a
b

Fbt =
−1

4
	 (8.19)
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where F is the compressive force carried by the strut and caused by the 
factored design loads at the strength limit state.

For the control of cracking along the strut at service loads, the maxi-
mum stress in the transverse reinforcement σsb should be limited to 
300 MPa (perhaps even lower in regions where a strong degree of crack 
control is required for appearance or where cracks may reflect through 
finishes).

The transverse reinforcement requirements can be met by including rein-
forcement of areas Asb1 and Asb2 in two orthogonal directions γ1 and γ2 to 
the axis of the strut. Alternatively, transverse reinforcement of area Asb1 in 
one direction only can be used, provided the angle γ1 between the axis of 

F F

F F

aa

bef = b bef = 0.5H + 0.65a a ≤ h

h = b

H

Discontinuity
region

b

z = h/2
h = H/2

b

Discontinuity
region

Continuity
region

(a) (b) 

Figure 8.28 � Dimensions for the determination of transverse tensile forces in a compres-
sion field with smeared reinforcement [2]. (a) Partially constrained (b ≤ H/2). 
(b) Unconstrained (b > H/2).
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the strut and the reinforcement is not less than about 40°. In the latter case, 
if the direction of the transverse reinforcement is not perpendicular to 
the plane of cracking, the component of the bursting force orthogonal to the 
reinforcement must be resisted by dowel action and aggregate interlock on 
the crack surface and, for this reason, a minimum limit is placed on γ1. The 
area(s) of steel required must satisfy the following conditions:

	 Asb1σsb sin γ1 + Asb2σsb sin γ2 ≥ Fbt	 (8.21)

where Fbt is the bursting tension caused by the factored design loads at the 
strength limit state.

EN 1992-1-1 [2] requires that the transverse steel quantities determined 
from Equation 8.21 should be uniformly distributed along the length of the 
bursting zone h, as defined in Figure 8.28.

8.4.3  Steel ties

The ties in a strut-and-tie model consist of reinforcement, prestressing ten-
dons or any combination thereof running uninterruptedly along the full 
length of the tie and adequately anchored within (or beyond) the node at 
each end of the tie. The reinforcement and/or tendons should be evenly dis-
tributed across the end nodes and arranged so that the resultant tension in 
the steel coincides with the axis of the tie in the strut-and-tie model.

The design strength of the tie is given by:

	 T A f Aud s yd p pm,t p= + +( )σ σ∆ 	 (8.22)

where σpm,t is the effective prestress in the tendons after all the losses (see 
Equation 6.12) and Δσp is the incremental force in the tendons due to the 
design external loads. The sum σpm,t + Δσp should not be taken to be greater 
than the design strength of the tendons fpd.

EN 1992-1-1 [2] requires that for adequate anchorage at each end of the 
tie, all reinforcement shall be fully anchored in accordance with the proce-
dures outlined in Section 14.3.2. Alternatively, anchorage can be provided 
by a welded or mechanical anchorage entirely located beyond the node.

8.4.4  Nodes

At a node connecting struts and ties, at least three forces must be acting to 
satisfy equilibrium. The strength of the concrete within a node must also be 
checked. EN 1992-1-1 [2] identifies three types of nodes depending on the 
arrangement of the struts and ties entering the node.

	 1.	A compression node or a CCC node is one with only struts (or com-
pressive loading points or reactions) entering the node, as shown in 
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Figure 8.29a. The maximum compressive stress that can be applied 
on the bearing surfaces at the edges of the node is:
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	 2.	A CCT node is one with two or more struts and single tension tie 
entering the node, e.g. the node in Figure 8.29b. The maximum com-
pressive stress that can be applied at the bearing surfaces of the node 
by either of the two struts is:
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Figure 8.29 � Node types in strut-and-tie models. (a) CCC (compression) node with-
out ties. (b) CCT (compression–tension) node. (c) CTT (compression–
tension) node.
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	 3.	A CTT node is one with two or more tension ties entering the node, 
e.g. the node in Figure 8.29c. The maximum compressive stress that 
can be applied at the edges of the node by the strut is:

	
σRd.max
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When the strut-and-tie model is constructed so that all the strut forces enter-
ing a compressive CCC node are perpendicular to the node faces, the node 
is hydrostatic. The lengths of the node faces are proportional to the strut 
forces. For in-plane compression nodes, the node faces are subjected to nor-
mal stress, without any shear component, and the compressive stress on each 
node face is identical (i.e. σcd,1 = σcd,2 = σcd,3 = σcd,0 in Figure 8.29a). Although 
the design of hydrostatic nodes is straightforward, the forces entering the 
node may not be concurrent and hydrostatic nodes are often not possible. 
Non-hydrostatic nodes are commonly adopted when truss analysis software 
is used to determine member forces. The design of non-hydrostatic nodes, 
where the face of the node is not perpendicular to the strut force, involves 
the determination of the principal compressive stress from the normal and 
shear stresses acting on the node face. However, EN 1992-1-1 [2] suggests 
that in-plane compressive nodes (Figure 8.29a) may normally be assumed to 
be hydrostatic.

For triaxially compressed nodes, where the node is confined, the strength 
increases. EN 1992-1-1 [2] suggests that, if the distribution of loads is 
known in all three directions, the maximum compressive stress that can be 
applied at the bearing surfaces of the node by any strut σRd,max may be taken 
as 3 times the value given by Equation 8.23.

In the compression–tension nodes, the anchorage length of the reinforce-
ment starts at the beginning of the node and should extend through the 
entire node and if necessary beyond the node (as shown in Figure 8.29b). 
The anchorage and bending requirements for reinforcement are discussed 
in Section 14.3.2.
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Chapter 9

Composite members

9.1 � TYPES AND ADVANTAGES OF 
COMPOSITE CONSTRUCTION

Composite construction in prestressed concrete usually consists of precast 
prestressed members acting in combination with a cast in-situ concrete 
component. The composite member is formed in at least two separate stages 
with some or all of the prestressing normally applied before the completion 
of the final stage. The precast and the cast in-situ elements are mechanically 
bonded to each other to ensure that the separate components act together 
as a single composite member.

Composite members can take a variety of forms. In building construc-
tion, the precast elements are often pretensioned slabs (which may be either 
solid or voided), or single- or double-tee beams. The cast in-situ element is a 
thin, lightly reinforced topping slab placed on top of the precast units after 
the units have been erected to their final position in the structure. Single- or 
double-tee precast units are used extensively in building and bridge struc-
tures because of the economies afforded by this type of construction.

Composite prestressed concrete beams are widely used in the construc-
tion of highway bridges. For short- and medium-span bridges, standardised 
I-shaped or trough-shaped girders (which may be either pretensioned or 
post-tensioned) are erected between the piers and a reinforced concrete slab 
is cast onto and across the top flange of the girders. The precast girders and 
the in-situ slab are bonded together to form a stiff and strong composite 
bridge deck.

The two concrete elements, which together form the composite structure, 
may have different concrete strengths, different elastic moduli and differ-
ent creep and shrinkage characteristics. The concrete in the precast element 
is generally of better quality than the concrete in the cast in-situ element 
because it usually has a higher specified target strength and experiences 
better quality control during construction and better curing conditions. 
With the concrete in the precast element being older and of better quality 
than the in-situ concrete, restraining actions will develop in the composite 
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structure with time owing to differential creep and shrinkage movements. 
These effects should be carefully considered in design.

Prestressed concrete composite construction has many advantages over 
non-composite construction. In many situations, a significant reduction in 
construction costs can be achieved. The use of precast elements can greatly 
speed up construction time. When the precast elements are standardised 
and factory produced, the cost of long-line pretensioning may be consid-
erably less than the cost of post-tensioning on site. Of course, the cost of 
transporting precast elements to the site must be included in these com-
parisons and it is often transportation difficulties that limit the size of the 
precast elements and the range of application of this type of construction. 
In addition, it is easier and more economical to manufacture concrete ele-
ments with high mechanical properties in a controlled prestressing plant 
rather than on a building or bridge site.

During construction, the precast elements can support the formwork 
for the cast in-situ concrete, thereby reducing falsework and shoring costs. 
The elimination of scaffolding and falsework is often a major advantage 
over other forms of construction, and permits the construction to proceed 
without interruption to the work or traffic beneath. Apart from providing 
significant increases to both the strength and stiffness of the precast gird-
ers, the in-situ concrete can perform other useful structural functions. It 
can provide continuity at the ends of precast elements over adjacent spans. 
In addition, it provides lateral stability to the girders and also provides a 
means for carrying lateral loads back to the supports. Stage stressing can 
be used to advantage in some composite structures. A composite member 
consisting of a pretensioned, precast element and an in-situ slab may be 
subsequently post-tensioned to achieve additional economies of section. 
This situation may arise, for example, when a relatively large load is to be 
applied at some time after composite action has been achieved.

Cross-sections of some typical composite prestressed concrete members 
commonly used in buildings and bridges are shown in Figure 9.1.

9.2  BEHAVIOUR OF COMPOSITE MEMBERS

The essential requirement for a composite member is that the precast and 
cast in-situ elements act together as one unit. To achieve this, it is necessary 
to have good bond between the two elements.

When a composite member is subjected to bending, a horizontal shear 
force develops at the interface between the precast and the in-situ elements. 
This results in a tendency for horizontal slip on the mating surfaces, if the 
bond is inadequate. Resistance to slip is provided by the naturally achieved 
adhesion and friction that occurs between the two elements. Often the top 
surface of the precast element is deliberately roughened during manufac-
ture to improve its bonding characteristics and facilitate the transfer of 
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horizontal shear through mechanical interlock. Where the contact surface 
between the two elements is broad (such as in Figure 9.1b through d), natu-
ral adhesion and friction are usually sufficient to resist the horizontal shear. 
Where the contact area is small (such as between the slab and girders in 
Figure 9.1a and e), other provisions are necessary. Frequently, the web rein-
forcement in the precast girder is continued through the contact surface 
and anchored in the cast in-situ slab. This reinforcement resists horizontal 
shear primarily by dowel action, but assistance is also gained by clamping 
the mating surfaces together and increasing the frictional resistance.

If the horizontal shear on the element interface is resisted without slip (or 
with small slip only), the response of the composite member can be deter-
mined in a similar manner to that of a monolithic member. Stresses and 
strains on the composite cross-section due to service loads applied after the 
in-situ slab has been placed (and has hardened) may be calculated using the 
properties of the combined cross-section calculated using the transformed 
area method. If the elastic modulus of the concrete in the in-situ part of the 
cross-section Ecm2 is different from that in the precast element Ecm1, it is 
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(e)

Cast in-situ topping

Precast pretensioned plank

(b)

Cast in-situ slab

Precast
girders

(a)

Figure 9.1 � Typical composite prestressed concrete cross-sections. (a) Slab and girder. 
(b) Pretensioned plank plus topping. (c) Single-T-sections. (d) Double-T-
sections. (e) Trough girder.
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convenient to transform the cross-sectional area of the in-situ element to an 
equivalent area of the precast concrete. This is achieved in much the same 
way as the areas of the bonded reinforcement are transformed into equiva-
lent concrete areas in the analysis of a non-composite member. For a cross-
section such as those shown in Figures 9.1a or e, for example, if the in-situ 
concrete slab has an effective width beff and depth hs, it is transformed into 
an equivalent area of precast concrete of depth hs and width btr, where:

	
b

E
E

b btr
cm2

cm1
eff c ef= = α 	 (9.1)

If the bonded steel areas are also replaced by equivalent areas of precast 
concrete (by multiplying by Es/Ecm1 or Ep/Ecm1), the properties of the com-
posite cross-section can be calculated by considering the fictitious trans-
formed cross-section made up entirely of the precast concrete.

The width of the in-situ slab that can be considered to be an effective part 
of the composite cross-section (beff) depends on the span of the member and 
the distance between the adjacent precast elements. Maximum effective 
widths for flanged sections are generally specified in building codes, with 
the provisions of EN 1992-1-1 [1] previously outlined in Section 6.5. For 
composite members such as those shown in Figure 9.1a and e, the effective 
flange widths recommended by EN 1992-1-1 [1] are given in Equations 
6.33 through 6.35, except that the term bw now refers to the width of the 
slab–girder interface.

The design of prestressed concrete composite members is essentially 
the same as that of non-composite members, provided that certain behav-
ioural differences are recognised and taken into account. It is important to 
appreciate that part of the applied load is resisted by the precast element(s) 
prior to the establishment of composite action. Care must be taken, there-
fore, when designing for serviceability to ensure that behaviour of the 
cross-section and its response to various load stages are accurately mod-
elled. It is also necessary in design to ensure adequate horizontal shear 
capacity at the element interface. With these issues taken into account, the 
design procedures for flexural, shear and torsional strengths are similar 
to that of a non-composite member.

9.3  STAGES OF LOADING

As mentioned in the previous section, the precast part of a composite member 
may be required to carry loads prior to the establishment of composite action. 
When loads are applied during construction, before the cast in-situ slab has set, 
flexural stresses are produced on the precast element. After the in-situ concrete 
has been placed and cured, the properties of the cross-section are altered for all 
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subsequent loadings. Moments due to service live loads, for example, modify 
the stress distribution in the precast element and introduce stresses into the 
cast in-situ slab. Creep and shrinkage of the concrete also cause a substantial 
redistribution of stress with time between the precast and the in-situ elements, 
and between the concrete and the bonded reinforcement in each element.

In the design of a prestressed concrete composite member, the following 
load stages usually need to be considered.

	 1.	Initial prestress at transfer in the precast element: This normally 
involves calculation of elastic stresses due to both the initial prestress 
Pm0 and the self-weight of the precast member. This load stage fre-
quently occurs off-site in a precast plant.

	 2.	Period before casting the in-situ slab: This involves a time analysis 
to determine the stress redistribution and change in curvature caused 
by creep and shrinkage of the concrete in the precast element during 
the period after the precast element is prestressed and prior to cast-
ing the in-situ concrete. The only loads acting are the prestress (after 
initial losses) and the self-weight of the precast element. A reasonably 
accurate time analysis can be performed using the analysis described 
in Section 5.7.3. Typical concrete stresses at load stages 1 and 2 at the 
mid-span of the precast element are illustrated in Figure 9.2a.

	 3.	Immediately after casting the in-situ concrete and before composite 
action: This load stage involves a short-term analysis of the precast 
element to calculate the instantaneous effects of the additional super-
imposed dead loads prior to composite action. If the precast element 
is unshored (i.e. not temporarily supported by props during construc-
tion), the superimposed dead load mentioned here includes the weight 
of the wet in-situ concrete. The additional increments of stress and 
instantaneous strain in the precast element are added to the stresses 
and strains obtained at the end of load stage 2. Typical concrete 
stresses at the critical section of an unshored member at load stage 3 
are shown in Figure 9.2b.
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Figure 9.2 � Concrete stresses at the various load stages. (a) Load stages 1 and 2. (b) Load 
stages 2 and 3. (c) Load stages 3 and 4.
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		    If the precast member is shored prior to placement of the cast 
in-situ slab, the applied loads do not produce internal actions or 
deformations in the member and the imposed loads are carried by the 
shoring. Therefore, no additional stresses or strains occur in a fully 
shored precast element at this load stage. When curing of the cast in-situ 
component has been completed, the shoring is removed and the self-
weight of the cast in-situ concrete, together with any other loading 
applied at this time, produce deformations and flexural stresses and 
are considered in load stage 4.

	 4.	Immediately after the establishment of composite action: This 
involves a short-term analysis of the composite cross-section (see 
Section 9.5.2) to determine the change of stresses and deformations 
on the composite cross-section as all the remaining loads are applied. 
The instantaneous effect of any dead load or service live load and 
any additional prestressing not previously considered (i.e. not applied 
previously to the non-composite precast element) are considered here. 
If cracking occurs, a cracked section analysis is required. Additional 
prestress may be applied to the composite member by re-stressing 
existing post-tensioned tendons or tensioning previously unstressed 
tendons. If the composite section remains uncracked, the increments 
of stress and strain calculated at this load stage on the precast part 
of the composite cross-section are added to the stresses and strains 
calculated in stage 3 prior to the establishment of composite action. 
Typical concrete stresses at the end of load stage 4 are shown in 
Figure 9.2c.

	 5.	Period after the establishment of composite action: A time analysis 
of the composite cross-section is required (see Section 9.5.3) for the 
period beginning at the time the sustained load is first applied (usually 
soon after the in-situ concrete is poured) and ending after all creep 
and shrinkage deformations have taken place. The long-term effects 
of creep and shrinkage of concrete and relaxation of the prestressing 
steel on the behaviour of the composite section subjected to the sus-
tained service loads are determined.

	 6.	The ultimate limit state condition for the composite section: Ultimate 
strength checks are required for flexure, shear and torsion (if appli-
cable) to ensure an adequate factor of safety at each of load stages 1 
to 5. Under ultimate limit state conditions, the flexural strength of the 
composite section can be assumed to equal the strength of a monolithic 
cross-section of the same shape, with the same material properties, 
and containing the same amount and distribution of reinforcement, 
provided that slip at the interface between the precast and in-situ ele-
ments is small and full shear transfer is obtained. The stress disconti-
nuity at the interface at service loads and the inelastic effects of creep 
and shrinkage have an insignificant effect on the design strength and 
can be ignored at the ultimate limit state condition.
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9.4  DETERMINATION OF PRESTRESS

In practice, the initial prestress and the eccentricity of prestress at the criti-
cal section in the precast element (Pm0 and epc, respectively) are calculated 
to satisfy preselected stress limits at transfer. In general, cracking is avoided 
at transfer by limiting the tensile stress to about fct,0 = 0.15 × [fcm(t0)]2/3. In 
addition, in order to avoid unnecessarily large creep deformations, it is 
prudent to ensure that the initial compressive stresses do not exceed fcc,0 = 
−0.45fcm(t0). In the case of trough girders, as shown in Figure 9.1e, the cen-
troidal axis of the precast element is often not far above the bottom flange, 
so that loads applied to the precast element prior to or during placement 
of the in-situ slab may cause unacceptably large compressive stresses in the 
top fibres of the precast girder.

Satisfaction of stress limits in the precast element at transfer and immedi-
ately prior to the establishment of composite action (at the end of load stage 3) 
can be achieved using the procedure discussed in Section 5.4.1. For the case of 
a precast girder, Equations 5.3 through 5.6 become:
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where epc is the eccentricity of prestress from the centroidal axis of the pre-
cast section; αtop.pc = Apc/Ztop.pc; αbtm.pc = Apc/Zbtm.pc; Apc is the cross-sectional 
area of the precast member and Ztop.pc and Zbtm.pc are the top and bottom 
section moduli of the precast element, respectively. The moment M1 is the 
moment applied at load stage 1 (usually resulting from the self-weight of 
the precast member); M3 is the maximum in-service moment applied to the 
precast element prior to composite action (in load stage 3) and Ω3Pm,0 is 
the prestressing force at load stage 3. An estimate of the losses of prestress 
between the transfer and the placement of the in-situ slab deck is required 
for the determination of Ω3.

Equations 9.2 and 9.3 provide an upper limit to Pm,0, and Equations 9.4 
and 9.5 establish a minimum level of prestress in the precast element.

After the in-situ slab has set, the composite cross-section resists all sub-
sequent loading. There is a change both in the size and the properties of 
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the cross-section, and a stress discontinuity exists at the element inter-
face. If cracking is to be avoided under the service loads, a limit fct,t (say 
0.5fctm) is placed on the magnitude of the extreme fibre tensile stress at 
the end of load stage 5, i.e. after all prestress losses and under full service 
loads. This requirement places another, perhaps more severe limit on the 
minimum amount of prestress compared to that imposed by Equation 9.4. 
Alternatively, this requirement may suggest that an additional prestress-
ing force is required on the composite member, i.e. the member may need 
to be further post-tensioned after the in-situ slab has developed its target 
strength.

The bottom fibre tensile stress immediately before the establishment of 
composite action may be approximated by:
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If the maximum additional moment applied to the composite cross-section 
in load stage 4 is M4 and the prestressing force reduces to ΩPm,0 with time, 
then the final maximum bottom fibre stress at the end of load stage 5 may 
be approximated by:
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where Zbtm,comp is the section modulus for the bottom fibre of the composite 
cross-section. If the bottom fibre stress in load stage 5 is to remain less than 
the stress limit fct,t, then Equation 9.7 can be rearranged to give:
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Equation 9.8, together with Equations 9.2, 9.3 and 9.5, can be used to 
establish a suitable combination of Pm,0 and epc. In some cases, the precast 
section may be proportioned so that the prestress and eccentricity satisfy 
all stress limits prior to composite action (i.e. Equations 9.2 through 9.5). 
However, if when the additional requirement of Equation 9.8 is included, 
no combination of Pm,0 and epc can be found to satisfy all the stress lim-
its, additional prestress may be applied to the composite member after the 
in-situ slab is in place.

If cracking can be tolerated in the composite member under full service 
loads, a cracked section analysis may be required to check for crack con-
trol and to determine the reduction of stiffness and its effect on deflection. 
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Care must be taken in such an analysis to accurately model stresses in the 
various parts of the cross-section and the stress discontinuity at the slab–
girder interface.

In many situations, cracking may be permitted under the full live load 
but not under the permanent sustained load. In such a case, M4 in Equation 
9.8 can be replaced by the sustained part of the moment applied at load 
stage 4 (M4.sus) and the so-modified Equation 9.8 can be used to determine 
the minimum level of prestress on a partially-prestressed composite section.

9.5  METHODS OF ANALYSIS AT SERVICE LOADS

9.5.1  Introductory remarks

After the size of the concrete elements and the quantity and disposition of 
prestressing steel have been determined, the behaviour of the composite 
member at service loads should be investigated to determine the deflection 
(and shortening) at the various load stages (and times) and also to check 
for the possibility of cracking. The short-term and time-dependent analy-
ses of uncracked composite cross-sections can be carried out conveniently 
using procedures similar to those described in Sections 5.6.2 and 5.7.3 for 
non-composite cross-sections. The approaches described here were also 
presented by Gilbert and Ranzi [2].

Consider a cross-section made up of a precast, pretensioned girder (ele-
ment 1) and a cast in-situ reinforced concrete slab (element 2), as shown 
in Figure 9.3. The concrete in each element has different deformation 
characteristics. This particular cross-section contains four layers of non-
prestressed reinforcement and two layers of prestressing steel, although 
any number of steel layers can be handled without added difficulty. As 
was demonstrated in Tables 5.1 and 5.2, the presence of non-prestressed 

ds(2)

ds(4)

dref
dc(1)

Ap(1)
Ap(2)
Ap(4)

As(3)

As(2)

As(1) dc(2)

ds(1)

ds(3)

dp(2)
dp(1) x

y

Centroidal axis of in-situ
concrete deck (element 2),

Ac(2), Ic(2), Ecm(2)

Centroidal axis of precast
concrete girder (element 1),

Ac(1), Ic(1) Ecm(1)

Figure 9.3 � Typical prestressed concrete composite cross-section.
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reinforcement may affect the time-dependent deformation of the section 
significantly and cause a reduction of the compressive stresses in the con-
crete. In the following analyses, no slip is assumed to occur between the 
two concrete elements or between the steel reinforcement and the concrete.

9.5.2  Short-term analysis

As outlined in Section 5.6.2, the constitutive relationships for each material 
for use in the instantaneous analysis are (Equations 5.23 through 5.26):

	 σ εc cmi iE( ) ( )=, ,0 0 0	 (9.9)

	 σ εs s s( ),0i i iE( ) ( )=,0 	 (9.10)
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	 σ εp p p init pif is unbondedi i i iE A( ) ( ) ( ) ( )=, ,0 	 (9.12)

Similar to Equation 5.29, the internal actions carried by the i-th concrete 
element (for inclusion in the equilibrium equations) can be expressed as:
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and, as in Equation 5.40, the governing system of equilibrium equations is:
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Solving for the unknown strain variables gives (Equation 5.45):
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The cross-sectional rigidities forming the D0 and F0 matrices are:
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where for convenience the following notation has been introduced for the 
rigidities of the reinforcement and tendons:
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The stress distribution is calculated from Equations 9.9 through 9.12:
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where ε0 = εr,0−yκ0 = [1 − y]ε0.

9.5.3  Time-dependent analysis

For the analysis of stresses and deformations on a composite concrete–
concrete cross-section at time tk after a period of sustained loading, 
the age-adjusted effective modulus method may be used, as outlined in 
Sections 5.7.2 and 5.7.3. The stress–strain relationships for each con-
crete element and for each layer of reinforcement and tendons at tk are as 
follows (Equations 5.68 through 5.72 renumbered here for convenience):
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Pretensioned tendons or post-tensioned tendons bonded at t0:
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Post-tensioned tendons unbonded at t0:
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In this case, the contribution of the i-th concrete component to the internal 
axial force and moment can be determined as (similar to Equation 5.78):
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The equilibrium equations are (Equation 5.93):
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and fcp,0 is given by either Equation 9.46 or 9.47:
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As discussed in Section 5.7.3, for post-tensioned tendons that were unbonded 
at t0 and then bonded (grouted) soon after, Equation 9.46 applies, while 
for pretensioned tendons or post-tensioned tendons that were bonded at 
the time of the short-term analysis (t0), Equation 9.47 applies. For a post-
tensioned member with all tendons unbonded throughout the time period 
t0 to tk, Equation 9.47 also applies.

Solving Equation 9.38 gives the strain at time tk:
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and the cross-sectional rigidities at tk are:
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The stress distribution at time tk in each concrete element is given by 
(Equation 5.103):
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kk k cs ,k e c1 0 0−[ ] −{ } +( ) ( ) ( )y Fi i iε ε σ, , 	 (9.53)

where ε ε κ εk r,k k k= − = −[ ]y y1 . The stress in the non-prestressed rein-
forcement at time tk is given by (Equation 5.104):

	
σ ε εs k s s k s s ki i i i iE E y( ) ( ) ( ) ( ) ( )= = − , , 1 	 (9.54)

and the stress in any pretensioned tendons, or any post-tensioned tendons 
that were bonded to the concrete at the time of the short-term analysis (t0), is:

	

σ ε ε εp ,k p p( ),k p init p.rel ,k

p p

i i i i i

i i

E

E y

( ) ( ) ( ) ( )

( )

= + −( )
= −

,

( )1  + −( ) ( ) ( ) ( )ε ε εk p p ,init p p.rel ,kE Ei i i i 	 (9.55)

For bonded post-tensioned tendons (initially unbonded at t0), the stress at 
time tk is:

	

σ ε ε ε εp k p cp( ,k cp( ),0 p init p.rel k

p

i i i) i i iE

E

( ) ( )= − + −( )

=

, ( ), ( ),

ii p i i p i i i iy E y E E( ) ( ) ( ) ( ) ( )−  − −  + −1 1( ) ( )ε ε εk p 0 p p ,init p εεp.rel ,ki( ) 	 (9.56)

while for unbonded tendons:

	
σ ε εp ,k p p init p.rel ,ki i i iE( ) ( ) ( ) ( )= −( ), 	 (9.57)
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EXAMPLE 9.1

The cross-section of a composite footbridge consists of a precast, pre-
tensioned trough girder and a cast in-situ slab, as shown in Figure 9.4. The 
precast section is cast and moist cured for 4 days prior to transfer. The cross-
section is subjected to the following load history.

At t = 4 days: The total prestressing force of 2000 kN is transferred 
to the trough girder. The centroid of all the pretensioned strands is 
located 100 mm above the bottom fibre, as shown. The moment on 
the section caused by the self-weight of the girder M4 = 320 kNm is 
introduced at transfer. Shrinkage of the concrete also begins to develop 
at this time.

At t = 40 days: The in-situ slab deck is cast and cured, and the moment 
caused by the weight of the deck is applied to the precast section, 
M40 = 300 kNm.

At t = 60 days: A wearing surface is placed, and all other superimposed 
dead loads are applied to the bridge, thereby introducing an additional 
moment M60 = 150 kNm.

At t > 60 days: The moment remains constant from 60  days to time 
infinity.

Composite action gradually begins to develop as soon as the concrete in 
the deck sets. Full composite action may not be achieved for several days. 
However, it is assumed here that the in-situ deck and the precast section act 

2400

150150As(1) = 3000 mm2

Ap = 1500 mm2

637.5

262.5

Centroidal axis of precast element (A(1) = 360,000 mm2; I(1) = 18.39 × 109 mm4)

100

1200

150

150

600

75

Figure 9.4 � Details of composite cross-section of Example 9.1.
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compositely at all times after t = 40 days. The stress and strain distributions 
on the composite cross-section are to be calculated:

	 (i)	 immediately after the application of the prestress at t = 4 days;
	 (ii)	 just before the slab deck is cast at t = 40 days;
	 (iii)	 immediately after the slab deck is cast at t = 40 days;
	 (iv)	 just before the road surface is placed at t = 60 days;
	 (v)	 immediately after the road surface is placed at t = 60 days; and
	 (vi)	 at time infinity after all creep and shrinkage strains have developed.

For the precast section (element 1): fck = 40 MPa

	 Ecm(1),4 = Ecm(1)(4) = 25,000 MPa;  Ecm(1),40 = 31,500 MPa;

	 Ecm(1),60 = 33,000 MPa

	 εcs(1),40 = εcs(1)(40) = −150 × 10−6;   εcs(1),60 = −200 × 10−6; 

	 εcs(1),∞ = −500 × 10−6

	 φ(1)(40, 4) = 0.9;  φ (1)(60, 4) = 1.2;  φ(1)(∞, 4) = 2.4

	 χ(1)(40, 4) = 0.8;  χ(1)(60, 4) = 0.7;   χ(1)(∞, 4) = 0.65

	 φ(1)(60, 40) = 0.5;  φ(1)(∞, 40) = 1.6;  φ(1)(∞, 60) = 1.2

	 χ(1)(60, 40) = 0.8;  χ(1)(∞, 40) = 0.65;  χ(1)(∞, 60) = 0.65

For the in-situ slab (element 2): fck = 25 MPa

	 Ecm(2),40 = 18,000 MPa;  Ecm(2),60 = 25,000 MPa

	 εcs(2),60 = −120 × 10−6;  εcs(2),∞ = −600 × 10−6

	 φ(2)(60, 40) = 0.8;  φ(2)(∞, 40) = 3.0;  φ(2)(∞, 60) = 2.0

	 χ(2)(60, 40) = 0.8;  χ(2)(∞, 40) = 0.65;  χ(2)(∞, 60) = 0.65

To account for relaxation in the prestressing tendons, we take the creep 
coefficient to be:

	 φp(40) = 0.01;  φp(60) = 0.015;  φp(∞) = 0.025

and the elastic moduli for the reinforcement and tendons are Es = Ep = 
200,000 MPa.
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(i) At t = 4 days

The reference x-axis is here taken as the centroidal axis of the precast cross-
section. The properties of the concrete part of the cross-section (with 
respect to the x-axis) are:

	 Ac(1) = A(1) − Ap = 360,000 − 1,500 = 358,500 mm2

	 Bc(1) = A(1)yc − Apyp = 360,000 × 0 − 1,500 × (−162.5) = 243,750 mm3

	 Ic(1) = I(1)− Ap
yp

2
 = 18.39 × 109 − 1500 × (−162.5)2 = 18.35 × 109 mm4

For this member with bonded prestressing tendons, Equations 9.22 through 
9.24 give the rigidities of the cross-section at first loading (age 4 days):

	

R A E A EA,4 c(1) c(1),4 p p= +

= × + × = ×358 500 25 000 1 500 200 000 9 263, , , , , 1106 N

	

R B E y A EB c(1) c(1),4 p p p, , , , ( . )4 243 750 25 000 1 500 162 5 200= + = × + × − × ,,

,

000

42 660 106= − × Nmm

	

R I E y A EI,4 c(1) c(1),4 p p p= +

= × × + − ×

2

9 218 35 10 25 000 162 5 1 500. , ( . ) , ××

= ×

200 000

466 8 1012 2

,

. Nmm

and from Equation 9.21:
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The vector of internal actions at first loading is (Equation 9.16):
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


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









N

M M
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and the initial strain in the prestressing steel due to the initial prestressing 
force is obtained as follows (Equation 5.27):

	
εp init

init

p p
,

,
, ,

.= = ×
×

=P
A E

2 000 10
1 500 200 000

0 00667
3

The vector of internal actions caused by the initial prestress fp,init is given by 
Equation 9.19:
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
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×
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3
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N
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and the strain vector at first loading ε4 containing the unknown strain vari-
ables is determined from Equation 9.20:
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.

The strain at the reference axis and the curvature at first loading are therefore :

	 εr(1),4 = −216.0 × 10–6  and  κ(1),4 = +0.00902 × 10–6 mm−1

and the strains at the top fibre of the precast section (at y = +487.5 mm) and 
at the bottom fibre (at y = −262.5 mm) are:

	� ε(1),4(top) = εr,4 − 487.5 × κ4 = (−216.0 − 487.5 × 0.00902) × 10–6

	 = −220.4 × 10–6

	� ε(1),4(btm) = εr,4 − (−262.5) × κ4 = (−216.0 + 262.5 × 0.00902) × 10–6 

	 = −213.6 × 10–6

The strain in the bonded prestressing steel is:

	

ε ε ε κp,4 p,init r,4 p= + − =

+ − − − ×

( ) .

( . ( . ) . )

y 4 0 00667

216 0 162 5 0 00902 ×× =−10 0 006 . 645
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The top and bottom fibre stresses in the concrete and the stress in the pre-
stressing steel are obtained from Equations 9.9 and 9.11, respectively:

	 σ εc(1) (top) c(1),4 (1),4(top), , ( . ) .4
625 000 220 4 10 5 51= = × − × = −−E MMPa

	 σ εc(1) (btm) c(1),4 (1),4(btm), , ( . ) .4
625 000 213 6 10 5 34= = × − × = −−E MMPa

	 σ εp p p MPa, , , . ,4 4 200 000 0 00645 1 290= = × = +E

The stress and strain distributions immediately after transfer at time t = 
4 days are shown in Figure 9.5b.

(ii) At t = 40 days: (prior to casting the in-situ slab)

The age-adjusted effective modulus at this time is (Equation 5.57):
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and from Equation 5.60:
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With the properties of the concrete part of the section determined in part (i) 
as Ac = 358,500 mm2, Bc = 243,750 mm3 and Ic = 18.35 × 109 mm4, the cross-
sectional rigidities are obtained from Equations 9.50 through 9.52:
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With εr,4 = −216.0 × 10–6 and κ4 = +0.00902 × 10–6 mm−1, Equation 9.42 gives:
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and from Equation 9.43:
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The vectors of initial prestressing actions and relaxation actions are given by 
Equations 9.44 and 9.45, respectively:
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and Equation 9.49 gives:
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The vector of internal actions at 40 days before the casting of the slab is the 
same as at age 4 days. That is:
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and the strain ε40 at time tk = 40 days is determined using Equation 9.48:
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The strain at the reference axis and the curvature at time tk = 40 days are 
therefore εr(1),40 = −538.7 × 10–6 and κ(1),40 = +0.0859 × 10–6 mm–1, respectively, 
and the strains at the top fibre of the precast section (at y = +487.5 mm) and 
at the bottom fibre (at y = −262.5 mm) are:

	� ε(1)40−(top) = εr(1),40 − 487.5 × κ(1),40 = (−538.7 – (487.5 × 0.0859)) × 10–6 

	 = −580.6 × 10–6

	� ε(1)40−(btm) = εr,(1)40 − (−262.5) × κ(1),40 = (−536.7 + 262.5 × 0.0859) × 10–6

	 = −516.2 × 10–6

The concrete stress distribution at time tk = 40  days is calculated using 
Equation 9.53:

	

σ ε εc(1),40 (top) c,eff(1),40 (1)40 (top) cs(1),40 e(1),− −= −( ) +E F 440 c(1),4(top)σ

= × − − − × + − × −−14 535 580 6 150 10 0 1047 56, [ . ( )] ( . ) ( .551

5 68

)

.= − MPa

	

σ ε εc(1),40 (btm) c,eff(1),40 (1)40 (btm) cs(1),40 e(1),− −= −( ) +E F 440 c(1),4(top)σ

= × − − − × + − × −−14 535 516 2 150 10 0 1047 56, [ . ( )] ( . ) ( .334

4 76

)

.= − MPa
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The final stress in the prestressing steel at time tk = 40 days is obtained from 
Equation 9.55:

	

σ ε κ ε εp,40- p r,40 p p,init p.rel,40= − + − 

=

× −

E y( )

,

(

40

200 000

538.. ( . ) . ) . .

,
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1 216

6− − × + − ×

=

−

MPa

where the relaxation strain εp.rel,40 is calculated as εp.rel,40 = σp4φp(40)/Ep.
The stress and strain distributions at t = 40 days before the in-situ slab is 

cast are shown in Figure 9.5c. The increments of strain and stress that have 
developed in the precast girder during the sustained load period from 4 to 
40 days are therefore:

	 Δεr(1),(40−4) = εr(1),40 − εr(1),4 = (−538.7 − (−216.0)) × 10–6 = −322.7 × 10–6

	� Δκ(1),(40−4) = κ(1),40 − κ(1),4 = (0.0859 − 0.00902) × 10–6 mm−1 

	 = 0.0769 × 10–6 mm−1

	� Δε(1),(40−4)(top) = ε(1),40(top) − ε(1),4(top) = (−580.6 −(−220.4)) × 10–6

	 = −360.2 × 10–6

	� Δε(1),(40−4)(btm) = ε(1),40(btm) − ε(1),4(btm) = (−516.2 −(−213.6)) × 10–6 

	 = −302.6 × 10–6

	 Δεp,(40−4) = εp,40 − εp,4 = 0.00608 − 0.00645 = −0.00037

	 Δσc(1),(40−4)(top) = σc(1),40(top) − σc(1),4(top) = −5.68 − (−5.51) = −0.17 MPa

	 Δσc(1),(40−4)(btm) = σc(1),40(btm) − σc(1),4(btm) = −4.76 − (−5.34) = +0.58 MPa

	 Δσp,(40−4) = σp,40 − σp,4 = 1216 − 1290 = −74 MPa.

(iii) At t = 40 days (after casting the in-situ slab)

The increments of stress and strain caused by M40 = 300 kNm applied to the 
precast section at age 40 days are calculated using the same procedure as 
was outlined in part (i) of this example, except that the elastic modulus of the 
precast concrete has now increased.

The short-term rigidities of the cross-section at age 40 days are:

	

R A E A EA,40 c(1) c(1),40 p p= +

= × + × =358 500 31500 1 500 200 000 11 5, , , , , 993 106× N
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and from Equation 9.21:
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For the load increment applied at 40 days, the vector of internal actions is:
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and the vector of instantaneous strain caused by the application of M40 at age 
40 days is:
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The increment of instantaneous strain at the reference axis and the incre-
ment of curvature caused by the application of M40 at age 40  days are 
therefore:

	 Δεr,40 = −1.8 × 10–6  and  Δκ40 = +0.512 × 10–6 mm−1

and the increments of instantaneous strain at the top fibre of the precast 
section (at y = +487.5 mm) and at the bottom fibre (at y = −262.5 mm) are:

	 Δε(1),40(top) �= Δεr,40 – 487.5 × Δκ40 = (−1.8 – 487.5 × 0.512) × 10–6

	 = −251.4 × 10–6
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	 Δε (1),40(btm) �= Δεr,40 – (–262.5) × Δκ40 = (−1.8 + 262.5 × 0.512) × 10–6 

	 = +132.6 × 10–6

The increment of top and bottom fibre stresses in the concrete and the 
increment of stress in the prestressing steel are obtained from Equations 9.9 
and 9.11, respectively:

	 ∆ ∆σ εc(1) (top) c(1),40 (1),40(top), , ( . )40
631 500 251 4 10= = × − × =−E −−7 92. MPa

	 ∆ ∆σ εc(1) (btm) c(1),40 (1),40(btm), , ( . )40
631 500 132 6 10= = × + × =−E ++4 18. MPa

	

∆ ∆ ∆ ∆σ ε ε κp p p p r p, , ,( )

, . ( . ) .

40 40 40 40

200 000 1 8 162 5 0

= = −

= × − − − ×

E E y

5512 10 6 ×

= +

−

16 MPa  

The extreme fibre concrete strains and stresses and the strain and stress in 
the tendons in the precast girder immediately after placing the in-situ slab at 
t = 40 days are obtained by summing the respective increments calculated in 
parts (i), (ii) and (iii):

	 ε(1),40+(top) = ε(1),4,(top) + Δε(1),(40−4)(top) + Δε(1),40(top) 

	 = (−220.4 – 360.2 – 251.4) × 10–6 = −832.0 × 10–6

	 ε(1),40+(btm) = ε(1),4,(btm) + Δε(1),(40−4)(btm) + Δε(1),40(btm) 

	 = (−213.6 – 302.6 + 132.6) × 10–6 = −383.6 × 10–6

	 σc(1),40+(top) = σc(1),4(top) + Δσc(1),(40−4)(top) + Δσc(1),40(top) 

	 = −5.51 − 0.17 − 7.92 = −13.60 MPa

	 σc(1),40+(btm) = σc(1),4(btm) + Δσc(1),(40−4)(btm) + Δσc(1),40(btm) 

	 = −5.34 + 0.58 + 4.18 = −0.58 MPa

	 σp,40+ = σp,4 + Δσp,(40−4) + Δσp,40 = 1290 − 74 + 16 = 1232 MPa

The stress and strain distributions at age 40 days immediately after the in-situ 
slab is cast are shown in Figure 9.5d. Stress levels in the precast girder are 
satisfactory at all stages prior to and immediately after placing the in-situ slab. 
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Cracking will not occur and compressive stress in the top fibre is not exces-
sive. However, with a sustained compressive stress of −13.60 MPa in the top 
fibre, a relatively large subsequent creep differential will exist between the 
precast and the in-situ elements.

 (iv) At t = 60 days (prior to placement of the wearing surface)

The change of stress and strain during the time interval from t = 40 to 60 days 
is to be calculated here. During this period, the precast section and the in-situ 
slab are assumed to act compositely. The concrete stress increments in the 
precast section, calculated in parts (i), (ii) and (iii) earlier, are applied at dif-
ferent times and are therefore associated with different creep coefficients.

For the stresses applied at t = 4 days in part (i), the creep coefficient for 
this time interval is Δφ(1)(60–40,4) = φ(1)(60,4) − φ(1)(40,4) = 0.30, and from 
Equations 5.57 and 5.60:

	
E

E
c,eff(1),60

c(1)=
+ −

=
+

,

( ) ( )( , ) ( , )
,

.
4

1 11 60 40 60 40 4
25 000

1 0χ ϕ∆ 88 0 30
20 161

×
=

.
, MPa

	
Fe(1),60 =

− ( ) − 
+ ( )

∆

∆

ϕ χ

χ ϕ
( ) ( )

( ) ( )

( , ) ,

,

1 1

1 1

60 40 4 60 40 1

1 60 40 (( , )
. ( . . )
. . .

.
60 40 4

0 30 0 8 1 0
1 0 0 8 0 30

0 0484
−

= × −
+ ×

= −

The stress increment calculated in part (ii), which is in fact gradually applied 
between t = 4 and 40 days, may be accounted for by assuming that it is sud-
denly applied at t = 4 days and using the reduced creep coefficient given by 
χ(1)(40,4)[φ(1)(60,4) − φ(1)(40,4)] = 0.24, and from Equations 5.57 and 5.60:

	

E

F

c,eff(1),60

e(1),60

MPa and=
+ ×

=

= ×

25 000
1 0 8 0 24

20 973

0 24 0

,
. .

,

. ( .. . )
. . .

.
8 1 0

1 0 0 8 0 24
0 0403

−
+ ×

= −

For the stress increment calculated in part (iii) (and caused by M40), the 
appropriate creep coefficient for the precast girder is φ(1)(60,40) = 0.5, and 
from Equations 5.57 and 5.60:

	

E

F

c,eff(1),60

e(1),60

MPa and=
+ ×

=

= ×

31 500
1 0 8 0 5

22 500

0 5 0 8

,
. .

,

. ( . −−
+ ×

= −1 0
1 0 0 8 0 5

0 0714
. )

. . .
.
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For the in-situ slab, the creep coefficient used in this time interval is 
φ(2)(60,40) = 0.8, and from Equations 5.57 and 5.60:

	

E

F

c,eff(2),60

e(2),60

MPa and=
+ ×

=

= ×

18 000
1 0 8 0 8

10 976

0 8 0 8

,
. .

,

. ( . −−
+ ×

= −1 0
1 0 0 8 0 8

0 0976
. )

. . .
.

The shrinkage strains that develop in the precast section and the in-situ slab 
during this time interval are, respectively, εcs(1),60 − εcs(1),40 = −50 × 10−6 and 
εcs(2),60 = −120 × 10−6.

The creep coefficient associated with this time interval for the prestressing 
steel is φp,60 − φ p,40 = 0.005.

The section properties of the concrete part of the precast girder 
(element 1) and the in-situ slab (element 2) with respect to the centroidal 
axis of the precast girder are:

	 Ac(1) = 358,500 mm2;  Bc(1) = 243,750 mm3;  Ic(1) = 18.35 × 109 mm4

	 Ac(2) = 357,000 mm2;  Bc(2) = 200.8 × 106 mm3;  Ic(2) = 113.6 × 109 mm4

To determine the internal actions required to restrain creep, shrinkage 
and relaxation, the initial elastic strain distribution caused by each of the 
previously calculated stress increments in each concrete element must be 
determined.

In the in-situ slab:

	 εi,r(2),40 = 0  and  κi,(2),40 = 0  since the slab at t = 40 days is unloaded.

In the precast section:
For the stresses applied at 4 days, calculated in part (i): εr(1),4 = −216.0 × 10–6; 

κ(1),4 = +0.00902 × 10–6 mm–1. For the stress increment calculated in part (ii) 
and assumed to be applied at 4 days, the increments of instantaneous elastic 
strain at the top and bottom of the precast section are Δεi,(1),4(top) = Δσc(1),(40−4)(top)/
Ec(1),4 = −0.17/25,000 = −6.92 × 10–6 and Δεi,(1),4(btm) = Δσc(1),(40−4)(btm)/Ec(1),4 = 
+0.58/25,000 = 23.1 × 10–6. Therefore, the increment of elastic curvature 
is Δκi,(1) = [−(−6.92 × 10–6) + 23.1 × 10–6]/750 = +0.040 × 10–6 mm−1 and the 
instantaneous strain at the reference axis is Δεi,r,(1) = +12.6 × 10–6. For the 
stress increment applied to the precast element at 40 days [part (iii)], Δεr(1),40 
= −1.8 × 10–6 and Δκ(1),40 = +0.512 × 10–6 mm−1.
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The actions required to restrain creep due to these initial stresses are 
obtained from Equation 9.42:

fcr,60 = − × ×
× − × − ×−

0 0484 25 000
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and the actions required to restrain shrinkage in each concrete element and 
relaxation of the tendons during this time period are obtained from Equations 
9.43 and 9.45, respectively:
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The cross-sectional rigidities of the composite cross-section for the period  
40 to 60 days are obtained from Equations 9.50 through 9.52:

	

RA,60 = × + × + ×

+ ×
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, , , , , ,
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+
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(( . ) , ,

.
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RI,60 = × × + × × + ×
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and from Equation 9.49:
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The vector of the change in strain that occurs between 40 and 60 days on the 
composite section is obtained from Equation 9.48:
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The increment of strain at the reference axis and the increment of curvature 
that occur between tk = 40 and 60 days are therefore Δεr,(60−40) = −59.5 × 
10–6 and Δκ(60−40) = +0.0753 × 10–6 mm−1, respectively, and the increments of 
strains at the top fibre of the precast section (at y = +487.5 mm) and at the 
bottom fibre (at y = −262.5 mm) are:

	 Δε(1)60−(top) = [−59.5 – (487.5 × 0.0753)] × 10–6 = −96.2 × 10–6

	 Δε(1)60−(btm) = [−59.5 + 262.5 × 0.0753] × 10–6 = −39.7 × 10–6

The increments of strain at the top fibre of the in-situ slab (at y = +637.5 mm) 
and at the bottom fibre (at y = +487.5 mm) are:

	 Δε(2)60−(top) = [−59.5 – (637.5 × 0.0753)] × 10–6 = −107.5 × 10–6

	 Δε(2)60−(btm) = [−59.5 – (487.5 × 0.0753)] × 10–6 = −96.2 × 10–6
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The increments of concrete stress that develop between tk = 40 and 60 days 
are calculated using Equation 9.53. In the precast element:

	

∆ ∆ ∆σ ε εc(1),60 (top) c,eff(1),60 (1),60 (top) cs(1),60 40− − −= −( )E ++

= × − − − × + −

+

−

Fe(1),60 c(1),40 (top)σ

22 500 96 2 50 10 0 0716, [ . ( )] ( . 44 13 60

0 07

) ( . )

.

× −

= − MPa
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= × − − − × + −

+

−

Fe(1),60 c(1),40 (btm)σ

22 500 39 7 50 10 0 0716, [ . ( )] ( . 44 0 58

0 27

) ( . )

.

× −

= + MPa

and in the in-situ slab:

	

∆ ∆ ∆σ ε εc(2),60 (top) c,eff(2),60 (2),60 (top) cs(2),60 e− −= −( ) +E F ((2),60 c(2),40 (top)σ +

−= × − − − × − ×10 976 107 5 120 10 0 0976 06, [ . ( )] . == +0 14. MPa

	

∆ ∆ ∆σ ε εc(2),60 (btm) c,eff(2),60 (2),60 (btm) cs(2),60 e− −= −( ) +E F ((2),60 c(2),40 (btm)σ +

−= × − − − × − × =10 976 96 2 120 10 0 0976 06, [ . ( )] . ++0 26. MPa

The increment of stress in the bonded prestressing steel that develops 
between 40 and 60 days is:

	 ∆ ∆ ∆ ∆σ ε κ εp,60 p r,(60 40) p p,rel 15 9 MPa− − −= − − = −E y( ) .( )60 40

and in the reinforcing steel in the in-situ slab:

	 ∆ ∆ ∆σ ε κs,60 s r,(60 40) s 2 4 MPa− − −= − = −E y( ) .( )60 40 0

The total stresses and strains at age 60 days before the application of the 
wearing surface are as follows.

In the precast girder:

	 ε(1),60−(top) �= ε(1),40+(top) + Δε(1)60−(top) = −832.0 × 10–6 − 96.2 × 10–6 

	 = −928.2 × 10–6

	 ε(1),60−(btm) = ε(1),40+(btm) + Δε(1)60−(btm) = −423.3 × 10–6
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	 σc(1),60−(top) = σc(1),40+(top) + Δσc(1),60−(top) = −13.60 − 0.07 = −13.67 MPa

	 σc(1),60−(btm) = σc(1),40+(btm) + Δσc(1),60−(btm) = −0.31 MPa

	 σp,60− = σp,40+ + Δσp,60− = 1216 MPa

In the in-situ slab:

	 ε(2),60−(top) = Δε(2)60−(top) = −107.5 × 10–6

	 ε(2),60−(btm) = Δε(2)60−(btm) = −96.2 × 10–6

	 σc(2),60−(top) = Δσc(2),60−(top) = +0.14 MPa

	 σc(2),60−(btm) = Δσc(2),60−(btm) = +0.26 MPa

	 σs,60− = Δσs,60− = −20.4 MPa

The stress and strain distributions at age 60  days immediately before the 
wearing surface is placed are shown in Figure 9.5e.

There is a complex interaction taking place between the two concrete 
elements. The in-situ slab is shrinking at a faster rate than the precast ele-
ment and, if this were the only effect, the in-situ slab would suffer a ten-
sile restraining force and an equal and opposite compressive force would 
be imposed on the precast girder. Because of the high initial compressive 
stresses in the top fibres of the precast section, however, the precast con-
crete at the element interface is creeping more than the in-situ concrete 
and, as a result, the in-situ slab is being compressed by the creep deforma-
tions in the precast girder, resulting in a decrease in the tension caused by 
restrained shrinkage. In this example, the magnitude of the tensile force on 
the in-situ slab as a result of restrained shrinkage is a little larger than the 
magnitude of the compressive force due to the creep differential. The result 
is that relatively small tensile stresses develop in the in-situ slab with time 
and the magnitude of the compressive stress in the top fibre of the precast 
girder increases slightly.

(v) At t = 60 days (immediately after placement of the wearing surface)

The instantaneous increments of stress and strain caused by M60 = 150 kNm 
applied to the composite section at age 60 days are calculated here. The short-term 
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rigidities of the composite cross-section at age 60 days (with respect to the refer-
ence axis at the centroid of the precast element) are:
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For the load increment applied at 60 days, the vector of internal actions is:
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and the vector of instantaneous strain caused by the application of M60 at age 
60 days is:
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The increment of instantaneous strain at the reference axis and the increment 
of curvature caused by the application of M60 at age 60 days are therefore:

	 Δεr,60 = +15.7 × 10–6  and  Δκ60 = +0.0641 × 10–6 mm−1

and the increment of strains at the top fibre of the precast section (at y = 
+487.5 mm) and at the bottom fibre (at y = −262.5 mm) are:

	 Δε(1)60+(top) = (+15.7 – (487.5 × 0.0641)) × 10–6 = −15.5 × 10–6
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and

	 Δε(1)60+(btm) = (+15.7 + 262.5 × 0.0641) × 10–6 = +32.6 × 10–6

The increment of strains at the top fibre of the in-situ slab (at y = +637.5 mm) 
and at the bottom fibre (at y = +487.5 mm) are:

	 Δε(2)60+(top) = (+15.7 – (637.5 × 0.0641)) × 10–6 = −25.1 × 10–6

and

	 Δε(2)60+(btm) = (+15.7 – (487.5 × 0.0641) × 10–6 = −15.5 × 10–6

The increments of concrete stress that develop at tk = 60 days due to the 
wearing surface are as follows.

In the precast girder:

	

∆ ∆

∆

σ ε

σ

c(1),60 (top) c(1),60 (1)60 (top)

c(1),60 (

51 MPa+ +

+

= = −E 0.

bbtm) c(1),60 (1)60 (btm) 1 8 MPa= = ++E ∆ε .0

In the in-situ slab:

	

∆ ∆

∆
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63 MPa+ +

+

= = −E 0.

bbtm) c(2),60 (2)60 (btm) 39 MPa= = −+E ∆ε 0.

The increment of stress in the bonded prestressing steel at tk = 60 days due 
to the wearing surface is:

	 ∆ ∆ ∆σ ε κp,60 p r,60 p 5 2 MPa+ = − =E y( ) .60

and in the reinforcing steel in the in-situ slab:

	 ∆ ∆ ∆σ ε κs,60 s r,60 s 4 1 MPa+ = − = −E y( ) .60

The total stresses and strains at age 60 days after the application of the wear-
ing surface are as follows.

In the precast girder:

	 ε(1),60+(top) = ε(1),60−(top) + Δε(1)60+(top) = −943.7 × 10–6

	 ε(1),60+(btm) = ε(1),60−(btm) + Δε(1)60+(btm) = −390.7 × 10–6
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	 σc(1),60+(top) = σc(1),60−(top) + Δσc(1),60+(top) = −14.18 MPa

	 σc(1),60+(btm) = σc(1),60−(btm) + Δσc(1),60+(btm) = +0.77 MPa

	 σp,60+ = σp,60− + Δσp,60+ = 1241 MPa

In the in-situ slab:

	 ε(2),60+(top) = ε(2),60−(top) + Δε(2)60+(top) = −132.6 × 10–6

	 ε(2),60+(btm) = ε(2),60−(btm) + Δε(2)60+(btm) = −111.7 × 10–6

	 σc(2),60−(top) = σc(2),60−(top) + Δσc(2),60−(top) = −0.49 MPa

	 σc(2),60+(btm) =σc(2),60−(btm) + Δσc(2),60+(btm) = −0.13 MPa

	 σs,60+ = σs,60− + Δσs,60+ = −24.5 MPa

and the stress and strain distributions at age 60 days immediately after the 
wearing surface has been placed are shown in Figure 9.5f.

(vi) At t = ∞

The change of stress and strain on the composite cross-section during the 
time interval from t = 60 days to t = ∞ is to be calculated here.

The relevant creep coefficients for each of the previously calculated stress 
increments determined in parts (i) to (v), together with the corresponding 
age-adjusted effective moduli and creep factors (from Equations 5.57 and 
5.60) are as follows.

For the precast girder:
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Note that the stress increments calculated in parts (ii) and (iv) are accounted 
for by assuming that they are suddenly applied at t = 40 and 60 days, respec-
tively, using the appropriate reduced creep coefficients.

The shrinkage strains that develop during the time period after 
t = 60 days are:

	 εcs(1),∞ − εcs(1),40 = −300 × 10−6  and  εcs(2),∞ − εcs(2),40 = −480 × 10−6

and the creep coefficient associated with this time interval for the prestress-
ing steel is φp,∞ − φp,60 = 0.01.

To determine the internal actions required to restrain creep, shrinkage 
and relaxation, the initial elastic strain distribution caused by each of the 
previously calculated stress increments in each concrete element must be 
determined. The elastic strains due to the stress increments applied in parts (i) 
to (v) are:

	 Part i mmi,r i( ) = − × = + ×( ) ( )
− − −: . ; ., ,ε κ1 4
6

1 4
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The actions required to restrain creep due to these initial stresses during the 
period after t = 60 days are obtained from Equation 9.42:
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The actions required to restrain shrinkage in each concrete element and 
relaxation of the tendons during this time period are obtained from Equations 
9.43 and 9.45, respectively:
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The cross-sectional rigidities of the composite cross-section for the period 
tk = 60 days to time infinity are obtained from Equations 9.50 through 9.52:
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and from Equation 9.49:
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The vector of the change in strain that occurs after 60 days on the composite 
section due to creep, shrinkage and relaxation is obtained from Equation 9.48:
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The increment of strain at the reference axis and the increment of curvature 
that occur between tk = 60 days and time infinity are Δεr,∞−60 = −331.8 × 10–6 
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and Δκ∞−60 = +0.1879 × 10–6 mm–1, respectively, and the increment of strains 
at the top fibre of the precast section (at y = +487.5 mm) and at the bottom 
fibre (at y = −262.5 mm) are:

	 Δε(1),∞(top) = [−331.8 – (487.5 × 0.1879)] × 10–6 = −423.4 × 10–6

	 Δε(1),∞(btm) = [−331.8 + 262.5 × 0.1879] × 10–6 = −282.4 × 10–6

The increments of strains at the top fibre of the in-situ slab (at y = +637.5 mm) 
and at the bottom fibre (at y = +487.5 mm) are:

	 Δε(2),∞(top) = [−331.8 – (637.5 × 0.1879)] × 10–6 = −451.5 × 10–6

	 Δε(2),∞(btm) = [−331.8 – (487.5 × 0.1879] × 10–6 = −423.4 × 10–6

The increments of concrete stress that develop between tk = 60 days and 
time infinity are calculated using Equation 9.53. In the precast element:
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−= × − − − × + − × −
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1 06

. )
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∆ ∆ ∆σ ε εc(1), (btm) c,eff(1), (1), (btm) cs(1), 60 e(1)∞ ∞ ∞ ∞−= −( ) +E F ,, c(1),60 (btm)∞ +
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and in the in-situ slab:

	

∆ ∆ ∆σ ε εc(2), (top) c,eff(2), (2), (top) cs(2), 60 e(2)∞ ∞ ∞ ∞−= −( ) +E F ,, c(2),60 (top)∞ +

−= × − − − × − × −

σ

10 870 451 5 480 10 0 3043 0 46, [ . ( )] . ( . 99

0 46

)

.= + MPa

	

∆ ∆ ∆σ ε εc(2), (btm) c,eff(2), (2), (btm) cs(2), 60 e(2)∞ ∞ ∞ ∞−= −( ) +E F ,, c(2),60 (btm)∞ +

−= × − − − × − × −

σ

10870 423 4 480 10 0 3043 0 136[ . ( )] . ( . ))

.= +0 65 MPa



390  Design of Prestressed Concrete to Eurocode 2

The increment of stress in the bonded prestressing steel that develops 
between 60 days and time infinity is:

	 ∆ ∆ ∆ ∆σ ε κ εp, p r,( 60) p 60 p.rel,( 60)  MPa∞ ∞− ∞− ∞−= − − = −E y( ) .( ) 73 2

and in the reinforcing steel in the in-situ slab:

	 ∆ ∆ ∆σ ε κs, s r,( 60) s 60  MPa∞ ∞− ∞−= − = −E y( ) .( ) 87 5

The total stresses and strains at time infinity are summarised as follows.
In the precast girder:

	 ε(1),∞(top) = ε(1),60+(top) + Δε(1),∞(top) = −1367.1 × 10–6

	 ε(1),∞(btm) = ε(1),60+(btm) + Δε(1),∞(btm) = −672.9 × 10–6

	 σc(1),∞(top) = σc(1),60+(top) + Δσc(1),∞(top) = −13.12 MPa

	 σc(1),∞(btm) = σc(1),60+(btm) + Δσc(1),∞(btm) = +0.91 MPa

	 σp,∞ = σp,60+ + Δσp,∞ = 1147 MPa

In the in-situ slab:

	 ε(2),∞(top) = ε(2),60+(top) + Δε(2),∞(top) = −584.2 × 10–6

	 ε(2),∞(btm) = ε(2),60+(btm) + Δε(2), ∞(btm) = −535.1 × 10–6

	 σc(2),∞(top) = σc(2),60+(top) + Δσc(2),∞(top) = +0.03 MPa

	 σc(2),∞(btm) = σc(2),60+(btm) + Δσc(2),∞(btm) = +0.53 MPa

	 σs,∞ = σs,60+ + Δσs,∞ = 111.9 MPa

The stress and strain distributions at time infinity are shown in Figure 9.5g.
Note that the compressive stresses at the top of the precast member at 

age 60 days after the wearing surface is placed are reduced with time, much 
of the compression finding its way into the non-prestressed reinforcement 
in the in-situ slab.
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Figure 9.5 � Stresses and strains on the composite cross-section of Example 9.1. 
(a) Cross-section. (b) At t = 4 days. (c) At t = 40 days (before casting 
in-situ slab). (d) At t = 40 days (after casting in-situ slab). (e) At t = 
60  days (before wearing surface). (f) At t = 60  days (after wearing 
surface). (g) At t = ∞.
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9.6  FLEXURAL RESISTANCE

The flexural resistance of a composite cross-section may be determined 
in accordance with the flexural strength theory outlined in Chapter 6. 
If adequate provision is made to transfer the horizontal shear forces 
that exist on the interface between the in-situ and precast components, 
the design strength of a cross-section such as that shown in Figure 9.4 
may be calculated in the same way as for an identical monolithic cross-
section with the same reinforcement quantities and material properties 
(see Section 6.5). The calculations are based on the full effective flange 
width and, in general, it is not necessary to account for variations in 
concrete strengths between the two components. In practice, owing to 
the typically wide effective compressive flange, the depth to the natural 
axis at ultimate is relatively small, usually less than the thickness of the 
in-situ slab. It is therefore appropriate to consider an idealised rectangu-
lar stress block based on the properties of the in-situ concrete rather than 
the precast concrete. Even in situations where the depth of the compres-
sive zone exceeds the thickness of the slab, more complicated expressions 
for strength based on more accurate modelling of concrete compressive 
stresses are not generally necessary. As seen in Chapter 6, the flexural 
resistance of any ductile section is primarily dependent on the quantity 
and strength of the steel in the tensile zone and does not depend signifi-
cantly on the concrete strength.

The strain discontinuity that exists at the element interface at service 
loads due to the construction sequence becomes less and less significant as 
the moment level increases, and the discontinuity may be ignored in flex-
ural resistance calculations.

9.7  HORIZONTAL SHEAR TRANSFER

9.7.1  Discussion

The design procedures for composite members in shear and torsion are sim-
ilar to those outlined in Chapter 7 for non-composite members. As has been 
emphasised in the previous sections, the ability of a composite member to 
resist load depends on its ability to carry horizontal shear at the interface 
between the two components. If the components are not effectively bonded 
together, slip occurs at the interface, as shown in Figure 9.6a, and the two 
components act as separate beams, each carrying its share of the external 
loads by bending about its own centroidal axis. To ensure full composite 
action, slip at the interface must be prevented, and for this, there must be 
an effective means for transferring horizontal shear across the interface. If 
slip is prevented, full composite action is assured (as shown in Figure 9.6b) 
and the advantages of composite construction can be realised.
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In Section 9.2, various mechanisms for shear transfer were discussed. 
Natural adhesion and friction are usually sufficient to prevent slip in com-
posite members with a wide interface between the components (such as the 
cross-sections shown in Figure 9.1b through d). The contact surface of the 
precast member is often roughened during manufacture to improve bond. 
Where the contact area is smaller (as on the cross-section of Figures 9.1a, e 
and 9.4), web reinforcement in the precast girder is often carried through 
the interface and anchored in the in-situ slab, thus providing increased fric-
tional resistance (by clamping the contact surfaces together) and additional 
shear resistance through dowel action.

The theorem of complementary shear stress indicates that on the cross-
section of an uncracked elastic composite member, the horizontal shear 
stress vh at the interface between the two components is equal to the verti-
cal shear stress at that point and is given by the well-known expression:

	
v

VS
Ibi

h = 	 (9.58)

where V is that part of the shear force caused by loads applied after the 
establishment of composite action; S is the first moment of the area of the 
in-situ element about the centroidal axis of the composite cross-section; 
I is the moment of inertia of the gross composite cross-section and bi is the 
width of the contact surface (usually equal to the width of the top surface 
of the precast member)

The distribution of shear stress and the direction of the horizontal shear 
at the interface are shown in Figure 9.7.

In-situ slab

In-situ slab

Precast girder

Precast girder

Slip

No slip

Strain

Strain

(a)

(b)

Figure 9.6 � Composite and non-composite action. (a) Non-composite action. 
(b) Composite action.
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9.7.2  Design provisions for horizontal shear

At overloads, concrete members crack and material behaviour becomes 
non-linear and inelastic. In design, a simple average or nominal shear stress 
is usually used for design strength calculations. According to EN 1992-1-1 
[1], the design value of the shear stress at the interface in a composite sec-
tion is given by:

	
v

V
zbi

Edi
Ed= β 	 (9.59)

where z is the lever arm between the compressive and tensile force resul-
tants (as shown in Figure 9.7c) and VEd is the total transverse (vertical) 
shear force obtained using the appropriate factored load combination 
for the strength limit state (see Section 2.3.2). VEd is calculated from the 
total loads and not just the loads applied after the in-situ slab has hard-
ened, because at ultimate loads, flexural cracking can cross the interface 
and horizontal shear resulting from all the applied load must be carried. 
The term β in Equation 9.59 is the ratio of the longitudinal force in the 
in-situ slab at the strength limit state and the total longitudinal force in 
either the compressive or tensile zone of the section under consideration. 
When the interface is located in the compression zone, β is the ratio of 

bi
Centroidal axis of

composite cross-section

(a) (b)

vh =V S
I bi

Fc

Ft

M z
v

(c)

Figure 9.7 � Shear stresses and actions in an elastic, uncracked, composite beam. 
(a) Composite cross-section. (b) Shear stresses on an uncracked, elastic sec-
tion. (c) Shear on element interface.
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the compressive force in the in-situ slab, Fc.slab (i.e. the compressive force 
between the extreme compressive fibre and the interface) and the total 
compressive force on the cross-section Fc, i.e. β = Fc.slab/Fc. When the inter-
face is located in the tensile zone, β is the ratio of the sum of the tensile 
forces in the longitudinal reinforcement and tendons in the precast mem-
ber (Ft.s + Ft.p) and the total tensile force on the cross-section Ft.

The design requirement in EN 1992-1-1 [1] is:

	 v vEdi Rdi≤ 	 (9.60)

The design shear resistance at the interface vRdi depends on the clamping 
effects produced by the shear reinforcement crossing the interface, dowel 
action, aggregate interlock and the effects of any transverse pressure across 
the interface and is given by:

	 v cf f vfRdi ctd n yd cd= + + + ≤µσ ρ µ α α( sin cos ) .0 5 	 (9.61)

where:
c and μ are factors that depend on the roughness of the interface (clas-

sified in EN 1992-1-1 [1] as either very smooth, smooth, rough or 
indented). For very smooth interfaces (such as concrete cast against 
steel, plastic or specially prepared wooden moulds), c = 0.25 and 
μ = 0.5. For smooth interfaces (such as slip formed or extruded sur-
faces or a free surface left without further treatment after vibration), 
c = 0.35 and μ = 0.6. For rough interfaces (such as a concrete surface 
roughened by exposing the aggregate, raking or other methods giv-
ing an equivalent behaviour), c = 0.45 and μ = 0.7. For an indented 
surface (complying with Figure 9.8), c = 0.5 and μ = 0.9. The values 
for c specified earlier apply to static load conditions. Under dynamic 
or fatigue loading, the values of c should be halved. 

fctd is the design tensile strength of the in-situ concrete (see Equation 4.12).
σn is the minimum normal stress on the interface caused by the mini-

mum normal force that can act simultaneously with the shear force 
(positive for compression such that σn < 0.6 fcd and negative for ten-
sion). Note that when σn is tensile, the term c fctd in Equation 9.61 
should be taken as zero.

ρ is the reinforcement ratio As/Ai.
As is the area of reinforcement crossing the interface that is adequately 

anchored on each side of the interface.
Ai is the area of the interface.
α is the angle between the plane of the interface and the reinforcement 

crossing the interface, as shown in Figure 9.8.
v is the strength reduction factor equal to v1 given in Equation 7.9.

If shear reinforcement (As in Equation 9.61) is required (i.e. the concrete and 
friction components in Equation 9.61 (cfctd + μσn) are insufficient on their own 
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to satisfy Equation 9.60), the shear and torsional reinforcement that is already 
provided, and which crosses the shear plane, may be taken into account for 
this purpose, provided it is anchored so that it can develop its full strength at 
the interface. The centre-to-centre spacing of this shear reinforcement should 
not exceed about 3.5 times the thickness of the in-situ slab anchored by the 
shear reinforcement. In addition, the average thickness of the structural com-
ponents on either side of the interface should not be less than about 50 mm.

EXAMPLE 9.2

The horizontal shear transfer requirements for a beam with cross-section 
shown in Figure 9.4 are to be determined. The beam is simply-supported over 
a span of 17.2 m and is subjected to the following loads:

Self-weight of precast trough girder: 8.64 kN/m
Self-weight of in-situ slab: 8.10 kN/m
Superimposed dead load: 4.05 kN/m
Transient live load: 9.60 kN/m

The behaviour of the cross-section at mid-span at service loads is calculated 
in Example 9.1. The effective prestressing force calculated in Example 9.1 is 
Pm,t = Apσp,∞ = 1720.5 kN and is assumed here to be constant along the beam. 
Take fpk = 1860 MPa.

The factored load combination for the strength limit state (Equation 2.1) is:

	 1.35 × (8.64 + 8.10 + 4.05) + 1.5 × 9.6 = 42.5 kN/m.

The maximum shear force adjacent to each support is:

	 VEd = (42.5 × 17.2)/2 = 365 kN.

New concrete Normal force

Anchorage

Reinforcement

Shear force

d ≥ 5 mm

h1 ≤ 10d

h2 ≤ 10d
α

30°

Old concrete

Interface

Figure 9.8 � Indented interface between new and old concrete [1].
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At the ultimate limit state in bending, using the idealised rectangular com-
pressive stress block (see Section 6.3.2), we determine that the depth to 
the neutral axis at the ultimate limit state is 81.2 mm, the tensile force in 
the tendons is Fptd = Apσpud = 2760 kN, the compressive force in the in-situ 
concrete Fcd = 2599 kN and, with the non-prestressed reinforcement (As(1)) 
in the in-situ slab just above the neutral axis, the compressive force in As(1) is 
Fsd(1) = 161 kN. The internal lever arm between the resultant compressive and 
tensile forces on the cross-section is z = 765 mm.

The neutral axis lies in the in-situ slab, just below the non-prestressed 
reinforcement, and so the interface between the in-situ slab and the precast 
girder is in the tensile zone below the neutral axis and β = 1.0.

From Equation 9.59, the design shear stress acting on the interface is:

	
vEdi MPa= × ×

×
=1 0 365 10

765 300
1 59

3.
.

where the width of the interface bi = 2 × 150 = 300 mm.
The design shear strength at the interface vRdi is obtained from Equation 

9.61. If the top surface of the precast trough has been deliberately rough-
ened to facilitate shear transfer, EN 1992-1-1 [1] specifies c = 0.45 and 
μ = 0.7. The permanent normal stress across the interface σn is caused by 
the self-weight of the in-situ slab and the superimposed dead load and is 
equal to (8.10 + 4.05)/bi = 0.0405 MPa. Any required shear reinforcement 
will be at right angles to the interface, and so α = 90°. With fck = 25 MPa and 
fctd = 1.2 MPa for the in-situ slab, and taking fyd = 435 MPa, Equation 9.61 
gives the design resistance of the interface in terms of the area of shear 
reinforcement per metre:

	

v ARdi s= × + × + × × × + ×

=

0 45 1 2 0 7 0 0405 435 0 7 1 0 0 300 1000

0 5

. . . . ( . . ) / ( )

. 77 1 015 10 3+ × ×−. As

and from Equation 9.60:

	
As

2mm /m.≥ −
×

=−
1 59 0 57
1 015 10

10053

. .
.

If 2–12 mm bars (226 mm2) cross the shear interface, one in each web, the 
required spacing s near each support is:

	
s ≤ × =1000 226

1005
225 mm
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The spacing can be increased further into the span, as the shear force VEd 
decreases. It is important to ensure that these bars are fully anchored on 
each side of the shear plane.

If the contact surface were not deliberately roughened, but screeded and 
trowelled, c = 0.25 and μ = 0.5, and Equation 9.61 gives:

	

v ARdi s= × + × + × × × + ×

=

0 25 1 2 0 5 0 0405 435 0 5 1 0 0 300 1000

0 3

. . . . ( . . ) / ( )

. 22 0 725 10 3+ × ×−. As

From Equation 9.60:

	
As

2mm /m≥ −
×

=−
1 59 0 32
0 725 10

17523

. .

.

and with 2–12 mm bars (226 mm2) cross the shear interface, one in each web, 
the required spacing s near each support is:

	
s ≤ × =1000 226

1752
129 mm
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Chapter 10

Design procedures 
for determinate beams

10.1  INTRODUCTION

The variables that must be established in the design of a prestressed con-
crete beam are material properties and specifications, the shape and size 
of the section, the amount and location of both the prestressed steel and 
the non-prestressed reinforcement, and the magnitude of the prestressing 
force. The designer is constrained by the various design requirements for 
the strength, serviceability, stability and durability limit states.

The optimal design is a particular combination of design variables that 
satisfy all the design constraints at a minimum cost. The cost of a particu-
lar design depends on local conditions at the time of construction, and vari-
ations in the costs of materials, formwork, construction expertise, labour, 
plant hire, transportation, etc., can change the optimal design from one site 
to another and also from one time to another.

It is difficult, therefore, to fix hard and fast rules to achieve the opti-
mal design. It is difficult even to determine confidently when prestressed 
concrete becomes more economic than reinforced concrete or when pre-
stressed concrete that is cracked at service loads is a better solution than 
uncracked prestressed concrete. However, it is possible to give some 
broad guidelines to achieve feasible design solutions for both fully and 
partially-prestressed members, i.e. for members that are either uncracked 
or cracked at service loads. In this chapter, such guidelines are presented 
and illustrated by examples.

10.2  TYPES OF SECTIONS

Many types of cross-sections are commonly used for prestressed girders. 
The choice depends on the nature of the applied loads, the function or 
usage of the member, the availability and cost of formwork, aesthetic con-
siderations and ease of construction. Some commonly used cross-sections 
are shown in Figure 10.1.
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Most in-situ prestressed concrete beam sections are rectangular (or tee-
sections with solid slab flanges and rectangular webs). Rectangular sections 
are not particularly efficient in bending. The self-weight of a rectangular 
section is larger than for an I- or T-section of equivalent stiffness, and the 
prestress required to resist an external moment also tends to be larger. The 
formwork costs for a rectangular section, however, are generally lower and 
steel fixing is usually easier.

For precast prestressed concrete, where reusable formwork is available, 
the more efficient flanged sections are commonly used. T-sections and dou-
ble T-sections are ideal for simply-supported members in situations where 
the self-weight of the beam is a significant part of the total load. If the 
moment at transfer due to self-weight (plus any other external load) is not 
significant, care must be taken to avoid excessive compressive stresses in the 
bottom fibres at transfer in T-shaped sections.

Rectangular Hollow plank

Solid 

Single tees                                                Double tee

I-section Inverted tees Trough

Box sections

Figure 10.1 � Some common prestressed concrete beam cross-sections.
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Inverted T-sections can accommodate large initial compressive forces in 
the lower fibres at transfer and, while being inefficient by themselves for 
resisting positive moment, they are usually used with a cast in-situ com-
posite concrete deck. The resulting composite section is very efficient in 
positive bending.

For continuous members, where both positive and negative moments 
exist in different regions of the beam, I-sections and closed-box sections 
are efficient. Box-shaped sections are laterally stable and have found wide 
applications as medium- and long-span bridge girders. In addition, box 
sections can carry efficiently the torsional moments caused by eccentric 
traffic loading.

10.3  INITIAL TRIAL SECTION

10.3.1  Based on serviceability requirements

A reliable initial trial cross-section is required at the beginning of a design 
in order to estimate self-weight accurately and to avoid too many design 
iterations.

For a fully-prestressed member, i.e. a member in which tensile stress limits 
are set in order to eliminate cracking at service loads, Equations 5.7 and 5.8 
provide estimates of the minimum section moduli required to satisfy the 
selected stress limits at the critical section both at transfer and under the 
full service loads. If the time-dependent loss of prestress is assumed (usually 
conservatively) to be 25%, Equation 5.7 simplifies to:

	
Z

M M
f f

btm
T o

ct,t cc,0

≥ −
−

0 75
0 75

.
.

	 (10.1)

Recall that the compressive stress limit at transfer fcc,0 in this expression is 
a negative number.

For a member containing a parabolic cable profile, a further guide to the 
selection of an initial trial section may be obtained by considering deflec-
tion requirements for the member. The mid-span deflection of an uncracked 
prestressed beam under a uniformly distributed unbalanced load wunbal may 
be approximated by:

	
v

w l
E I

w l
E I

= +β λβunbal

cm

unbal.sus

cm

4 4

	 (10.2)

where wunbal.sus is the sustained part of the unbalanced load, β is a deflection 
coefficient, l is the effective span of the beam, Ecm is the elastic modulus 
of concrete, I is the moment of inertia of the gross cross-section about its 
centroidal axis and λ is a long-term deflection multiplication factor, which 
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should not be taken to be less than 3.0 for an uncracked prestressed mem-
ber. The deflection coefficient β is equal to 5/384 for a uniformly loaded 
simply-supported member. For a continuous member, β depends on the 
support conditions, the relative lengths of the adjacent spans and the load 
pattern. When the variable part of the unbalanced load is not greater than 
the sustained part, the deflection coefficients for a continuous beam with 
equal adjacent spans may be taken as β = 2.75/384 for an end span and 
β = 1.8/384 for an interior span.

Equation 10.2 can be re-expressed as:

	
v

w l
E I

= β tot

cm

4

	 (10.3)

where:

	 wtot = wunbal + λwunbal.sus	 (10.4)

If vmax is the maximum permissible total deflection, then from Equation 10.3, 
the initial gross moment of inertia must satisfy the following:

	
I

w l
E v

≥ β tot

cm

4

max

	 (10.5)

All the terms in Equation 10.5 are generally known at the start of a 
design, except for an estimate of λ (in Equation 10.4), which may be 
taken initially to equal 3 for an uncracked member. Since self-weight 
is usually part of the load being balanced by prestress, it does not form 
part of wtot.

For a cracked partially-prestressed member, λ should be taken as not 
more than 2, for the reasons discussed in Section 5.11.4. After cracking, 
the effective moment of inertia Ief depends on the quantity of tensile steel 
and the level of maximum moment. If Ief is taken to be 0.5I, which is usu-
ally conservative, an initial estimate of the gross moment of inertia of the 
partially-prestressed section can be obtained from:

	
I

w l
E v

≥ 2
4

β tot

cm max

	 (10.6)

10.3.2  Based on strength requirements

An estimate of the section size for a prestressed member can be obtained 
from the flexural strength requirements of the critical section. The ultimate 
moment of a ductile rectangular section containing both non-prestressed 
and prestressed tensile steel may be found using Equation 6.21. By taking 
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moments of the internal tensile forces in the steel about the level of the resul-
tant compressive force in the concrete, the moment may be expressed as:

	
M A d

x
f A d

x
Rd pud p p yd s s= −






 + −






σ λ λ

2 2
	 (10.7)

For preliminary design purposes, this expression can be simplified if the 
design stress in the prestressing steel σpud is assumed (say σpud = 0.9fpk/γs) 
and the internal lever arm between the resultant tension and compression 
forces is estimated (say 0.9d, where d is the effective depth to the resul-
tant tensile force at the ultimate limit state). With these simplifications, 
Equation 10.7 becomes:

	 M d f A f ARd pk p s yd s/= +( )0 9 0 9. . γ  

Dividing both sides by fcdbd2 gives:
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and therefore:
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where:
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Knowing that the design resistance MRd must exceed the factored design 
moment MEd, Equation 10.8 becomes:
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The quantity qp + qs is the combined steel index, and a value of qp + qs 
of about 0.3 will usually provide a ductile section. With this assumption, 
Equation 10.11 may be simplified to:
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	 (10.12)
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Equation 10.12 can be used to obtain preliminary dimensions for an ini-
tial trial section. The design moment MEd in Equation 10.12 must include 
an initial estimate of self-weight.

With the cross-sectional dimensions so determined, the initial prestress 
and the area of prestressing steel can then be selected based on serviceability 
requirements. Various criteria can be adopted. For example, the prestress 
required to cause decompression (i.e. zero bottom fibre stress) at the section 
of maximum moment under full dead load could be selected. Alternatively, 
load balancing could be used to calculate the prestress required to produce 
zero deflection under a selected portion of the external load. With the level 
of prestress determined and the serviceability requirements for the mem-
ber satisfied, the amount of non-prestressed steel required for strength is 
calculated.

The size of the web of a beam is frequently determined from shear strength 
calculations. In arriving at a preliminary cross-section for a thin-webbed 
member, preliminary checks in accordance with the procedures outlined in 
Chapter 7 should be carried out to ensure that adequate shear strength can 
be provided. In addition, the arrangement of the tendon anchorages at the 
ends of the beam often determines the shape of the section in these regions. 
Consideration must be given therefore to the anchorage zone requirements 
(in accordance with the principles discussed in Chapter 8) even in the initial 
stages of design.

10.4 � DESIGN PROCEDURES: FULLY-PRESTRESSED 
BEAMS

For the design of a fully-prestressed member, stress limits both at transfer 
and under full loads must be selected to ensure that cracking under in-
service conditions does not occur at any stage. There are relatively few 
situations that specifically require no cracking as a design requirement. 
Depending on the span and load combinations, however, a fully-prestressed 
design may well prove to be the most economical solution.

For long-span members, where self-weight is a major part of the design 
load, relatively large prestressing forces are required to produce an economic 
design and fully-prestressed members frequently result. Fully-prestressed 
construction is also desirable if a crack-free or water-tight structure is 
required or if the structure needs to possess high fatigue strength. In build-
ing structures, however, where the spans are generally small to medium, 
full prestressing may lead to excessive camber, and partial prestressing, 
where cracking may occur at service loads, is often a better solution.

When the critical sections have been proportioned so that the selected 
stress limits are satisfied at all stages of loading, checks must be made on the 
magnitude of the losses of prestress, the deflection and the flexural, shear 
and torsional strengths. In addition, the anchorage zone must be designed.
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10.4.1  Beams with varying eccentricity

The following steps will usually lead to the satisfactory design of a stati-
cally determinate, fully-prestressed beam with a draped tendon profile.

	 1.	Determine the loads on the beam both at transfer and under the 
most severe load combination for the serviceability limit states. Next, 
determine the moments at the critical section(s) both at transfer and 
under the full service loads (Mo and MT, respectively). An initial esti-
mate of self-weight is required here.

	 2.	Make an initial selection of concrete strength and establish material 
properties. Using Equation 10.1, choose an initial trial cross-section.

	 3.	Select the maximum permissible total deflection vmax caused by the 
estimated unbalanced loads wunbal. This is a second serviceability 
requirement in addition to the no cracking requirement that prompted 
the fully-prestressed design. Next use Equation 10.5 to check that the 
gross moment of inertia of the section selected in Step 2 is adequate.

	 4.	Estimate the time-dependent losses of prestress (see Section 5.10.3), 
and, using the procedure outlined in Section 5.4.1, determine the 
prestressing force and eccentricity at the critical section(s). With due 
consideration of the anchorage zone and other construction require-
ments, select the size and number of prestressing tendons.

	 5.	Establish suitable cable profile(s) by assuming the friction losses and 
by obtaining bounds to the cable eccentricity using Equations 5.14 
through 5.17.

	 6.	Calculate both the immediate and time-dependent losses of prestress. 
Ensure that the calculated losses are less than those assumed in steps 4 
and 5. Repeat steps 4 and 5, if necessary.

	 7.	Check the deflection at transfer and the final long-term deflection 
under maximum and minimum loads. If necessary, consider the inclu-
sion of non-prestressed steel to reduce time-dependent deformations 
(top steel in the span regions to reduce downward deflection, bot-
tom steel to reduce time-dependent camber). Adjust the section size 
or the prestress level (or both), if the calculated deflection is excessive. 
Where an accurate estimate of time-dependent deflection is required, 
the time analysis described in Section 5.7 is recommended.

	 8.	Check the ultimate strength in bending at each critical section (in 
accordance with the discussion in Chapter 6). If necessary, addi-
tional non-prestressed tensile reinforcement may be used to increase 
strength. Add compressive reinforcement to improve ductility, as 
required.

	 9.	Check the shear strength of the beam (and torsional strength if appli-
cable) in accordance with the provisions outlined in Chapter 7. Design 
suitable shear reinforcement where required.

	 10.	Design the anchorage zone using the procedures presented in Chapter 8.
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Note: Durability and fire protection requirements are usually satisfied by 
an appropriate choice of concrete strength and cover to the tendons made 
very early in the design procedure (usually at Step 2).

EXAMPLE 10.1  FULLY-PRESTRESSED 
POST-TENSIONED DESIGN (DRAPED TENDON)

A slab and beam floor system consists of post-tensioned, simply-supported 
T-beams spanning 18.5 m and spaced 4 m apart. A 140 mm thick, continuous 
reinforced concrete, one-way slab spans from beam to beam. An elevation 
and a cross-section of a typical T-beam are shown in Figure 10.2. The beam is 
to be designed as a fully-prestressed member. The floor supports a superim-
posed permanent dead load of 2 kPa and a live load of 3 kPa (of which 1 kPa 
is considered permanent). Material properties are fck = 35 MPa at 28 days and 
25 MPa at transfer, fpk = 1,860 MPa, Ecm = 34,000 MPa at 28 days and Ecm = 
31,000 MPa at transfer and Ep = 195,000 MPa. The maximum deflection of the 
beam at mid-span is to be limited to span/500.

For this fully-prestressed design, the following stress limits have been 
selected:

At transfer: fct,0 = 1.25 MPa  and  fcc,0 = −12.5 MPa
After all losses: fct,t = 1.5 MPa  and  fcc,t = −16.0 MPa

18.5 m
Parabolic cable

(a)

4000 mm

300

140 h

(b)

Figure 10.2 � Beam details for Example 10.1. (a) Elevation. (b) Cross-section.



Design procedures for determinate beams  407

(1) Mid-span moments:

Due to self-weight: To estimate the self-weight of the floor wsw, an initial trial 
depth h = 1100 mm is assumed (about span/17). If the concrete floor weighs 
24 kN/m3:

	 wsw = 24 × [4 × 0.14 + 0.3 × (1.1 − 0.14)] = 20.4 kN/m

and the mid-span moment due to self-weight is:

	
Msw kNm= × =20 4 18 5

8
871

2. .

Due to 2.0 kPa superimposed dead load:

	
w MG G2 4 8 kN/m and kNm= × = = × =8 18 5

8
342

2.

Due to 3.0 kPa live load:

	
w MQ Q3 4 12 kN/m and kNm= × = = × =12 18 5

8
513

2.

At transfer:

	 M0 = Msw = 871 kNm

Under full loads:

	 MT = Msw + MG + MQ = 1726 kNm

(2) Trial section size:

From Equation 10.1:

	
Zbtm mm≥ − × ×

− × −
= ×( . )

. . ( . )
.

1726 0 75 871 10
1 5 0 75 12 5

98 6 10
6

6 3

Choose the trial cross-section shown in Figure 10.3.
The revised self-weight is 20.7 kN/m and therefore the revised design 

moments are M0 = 886 kN m and MT = 1741 kN m.

Note: This section just satisfies the requirement for the effective width of 
T-beam flanges in EN 1992-1-1 [1], namely that the overhanging part of the 
effective flange width does not exceed the value given by Equation 6.33 or 
half the clear distance to the next parallel beam.
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(3) Check deflection requirements:

For this particular floor, the maximum deflection vmax is limited to span/500 = 
37 mm. If it is assumed that only the self-weight of the floor is balanced by 
prestress, the unbalanced load is:

	 wunbal = wG + wQ = 20 kN/m

With one-third of the live load specified as permanent, the sustained unbal-
anced load is taken to be (refer Section 2.3.4):

	 wub.sus = wG + ψ2 wQ = 8 + 0.333 × 12 = 12 kN/m

With the long-term deflection multiplier taken as λ = 3, Equation 10.4 gives:

	 wtot = 20 + 3 × 12 = 56 kN/m

and from Equation 10.5:

	
I ≥ ×

×
= ×5

384
56 18 500
34 000 37

0 0
4,

,
67,89 1 mm6 4

The trial cross-section satisfies this requirement and excessive deflection is 
unlikely.

(4) Determine the prestressing force and eccentricity required 
at mid-span:

The procedure outlined in Section 5.4.1 is used for the satisfaction of the 
selected stress limits. The section properties αtop and αbtm are given by:

	 α αtop top btm btm/ and /= = = =A Z A Z0 00256 0 00827. .

4000 

300

140

A = 863,000 mm2

I = 91,680 × 106 mm4

Zbtm = 104.4 × 106 mm3

Ztop = 337.2 × 106 mm3

Centroidal
axis 1150

y

y = 878.1 mm

Figure 10.3 � Trial cross-section (Example 10.1).
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and Equations 5.3 and 5.4 provide upper limits on the magnitude of prestress 
at transfer:

	
P
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Equations 5.5 and 5.6 provide lower limits on the prestress under full service 
loads. If the time-dependent loss of prestress is assumed to be 20% (i.e. Ω = 0.80), 
then:
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	 (10.1.4)

Two cables are assumed with duct diameters of 80 mm and with a 40 mm 
minimum cover to the ducts. The position of the ducts at mid-span and the 
location of the resultant prestressing force P are illustrated in Figure 10.4. 
The resultant force in each tendon is assumed to be located at one quarter 
of the duct diameter below the top of the duct.

The maximum eccentricity to the resultant prestressing force is therefore:

	 emax = 878 − 155 = 723 mm

80
30
80

40

110

100155 P/2

P/2
P

Figure 10.4 � Cable locations and relevant dimensions at mid-span.
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With this eccentricity at mid-span, Equations 10.1.1 through 10.1.4 give, 
respectively:

	 P P P Pm0 m0 m0 m0kN kN kN kN≤ ≤ ≥ ≥ −3 935 2 596 2 347 13 743, , , ,

and the minimum required prestressing force at mid-span that satisfies all 
four equations is obtained from Equation 10.1.3:

	 Pm0 = 2347 kN

If the immediate losses at mid-span are assumed to be 10%, then the required 
jacking force is

	 Pj = Pm0/0.9 = 2608 kN

From Table 4.8, the cross-sectional area of a 12.5 mm diameter seven-wire 
strand is 93.0 mm2, fpk = 1860 MPa and fp0.1k = 1600 MPa. The maximum stress 
in the tendon at jacking is the smaller of 0.8 fpk = 1488 MPa or 0.9 fp0.1k = 
1440 MPa (see Section 5.3). Therefore, the maximum jacking force per strand 
is 1440 × 93 × 10–3 = 133.9 kN. The minimum number of seven-wire strands is 
therefore 2608/133.9 = 19.5.

Try two cables each containing 10 strands, i.e. Ap = 1860 mm2 (or Ap = 930 mm2/
cable) with a jacking force of 2608/20 = 130.4 kN/strand.

(5) Establish cable profiles:

Since the member is simply-supported and uniformly loaded, and because 
the friction losses are only small, parabolic cable profiles with a sufficiently 
small resultant eccentricity at each end and an eccentricity of 723 mm at mid-
span will satisfy the stress limits at every section along the beam. In order to 
determine the zone in which the resultant prestressing force must be located 
(see Figure 5.3), it is first necessary to estimate the prestress losses. The 
cables are to be stressed from one end only. From preliminary calculations 
(involving the determination of losses for a trial cable profile), the friction 
losses between the jack and mid-span are assumed to be 6% (i.e. 12% from 
the jack at one end of the beam to the dead end anchorage at the other), the 
anchorage losses resulting from slip at the anchorages are assumed to be 14% 
at the jack and 3% at mid-span, and the elastic deformation losses are taken 
to be 1% along the beam. These assumptions will be checked subsequently.

If the time-dependent losses are assumed to be 20%, the prestressing 
forces Pm0 and Pm,t at the ends, quarter-span and mid-span are as shown in 
Table 10.1. Also tabulated are the moments at each section at transfer and 
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under full loads, the maximum eccentricity (determined in this case from 
Equation 5.15) and the minimum eccentricity (determined from Equation 5.16 
in this example).

The permissible zone, in which the resultant force in the prestressing steel 
must be located, is shown in Figure 10.5. The individual cable profiles are also 
shown. The cables are separated sufficiently at the ends of the beam to easily 
accommodate the anchorages for the two cables.

(6) Check losses of prestress:

Immediate losses:

Elastic deformation: At mid-span, the initial prestress in each cable is Pm0 = 
2347/2 = 1174 kN. The upper cable is the first to be stressed and therefore 
suffers elastic deformation losses when the second (lower) cable is subse-
quently stressed. The prestressing force in the lower cable causes an axial 
compressive strain at the centroidal axis of cross-section at transfer of εa = 
Pm0/(AEcm), and with the average value of Pm0 in the bottom cable taken to be 

Table 10.1  �Bounds on the eccentricity of prestress (Example 10.1)

Distance from jack (mm) 0 4625 9250 13,875 18,500
Estimated short-term losses (%) 15 13 10 10 13
Pm0 (kN) 2217 2269 2347 2,347 2,269
Pm,t (kN) 1774 1815 1878 1,878 1,815
Mo (kNm) 0 664 886 664 0
MT (kNm) 0 1306 1741 1,306 0
emax (mm) 468 747 813 718 454
emin (mm) −209 512 723 491 −207

Permissible zone

Cable 1 (upper)

Cable 2 (lower)

110

100

272

878

272
532

Figure 10.5 � Parabolic cable profiles (Example 10.1).
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1174 kN, εa = 43.9 × 10–6. The overall shortening of the member due to this 
elastic strain causes a shortening of the unbonded top cable and an elastic 
deformation loss of about:

	 ΔσpAp = εaEpAp = 43.9 × 10–6 × 195,000 × 930 × 10–3 = 8.0 kN

This is about 0.31% of the total jacking force. The loss of force in the lower 
cable due to elastic shortening is zero.

Friction losses: The change in the slope of the tendon between the support 
and mid-span is obtained using Equation 1.6. For the upper cable, the drape is 
668 mm and therefore the angular change between the support and mid-span is

	
θ = × =4 668

18 500
0 144

,
. rad

With μ = 0.19 and k = 0.013 (see Section 5.10.2.3), the friction loss at mid-
span is calculated using Equation 5.148:

	 ∆P P e Pµ = − =− + ×
max( ) .. ( . . . )

max1 0 0490 19 0 144 0 013 9 25

Therefore, the friction loss at mid-span in the upper cable is therefore 4.9%.
In the lower cable, where the drape is only 518 mm, the friction loss at 

mid-span is 4.3%. The average loss of the prestressing force at mid-span due 
to friction is therefore 0.046 x 2608 = 120 kN. This loss is less than that 
assumed in step 5.

Anchorage losses: The loss of prestress caused by Δslip = 6 mm at the wedges 
at the jacking end is calculated in accordance with the discussion in Section 
5.10.2.4. With the average friction loss at mid-span of 4.6%, the slope of the 
prestressing line (see Figure 5.25) is:

	
β = = × × =

0 046 0 046 2608 10
9250

13 0
3. .

.
P

l
j

/2
N/mm

The length of beam Ldi over which the anchorage slip affects the prestress is 
found using Equation 5.150:

	
Ldi 12,94  mm= × × × =195 000 2 930 6

13 0
0

,
.
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Equation 5.151 gives the immediate loss of prestress at the anchorage caused 
by Δslip:

	 ( )∆P Ldi di = 2 13 0 12 940 10 3× × × = =−. , . ( . %336 4 kN 12 9  loss)

and the anchorage loss at mid-span is:

	

( ) ( ) . ( , , )

. (

∆P L ldi mid di /

95 9 kN 

= − = × × − ×

=

−2 2 2 13 0 12 940 9 250 10 3β

== 3 7. %)

The anchorage losses are compatible with the assumptions made in step 5.

Jacking force: From step 4 and as listed in Table 10.1, the required prestress at 
mid-span immediately after transfer is Pm0 = 2347 kN. Adding the elastic short-
ening, friction and anchorage losses, the minimum force required at the jack is:

	 Pj = 2347 + 8.0 + 120 + 95.9 = 2571 kN = 1286 kN/cable

and this is close to the value assumed in steps 4 and 5. The minimum tendon 
stress at the jack is:

	
σpj

j

p
pk p 1k1383 MPa 743 864= = × = = =

P
A

f f
1286 10

930
0 0

3

0. . .

which satisfies the maximum jacking stress requirements of EN 1992-1-1 [1].

Time-dependent losses:

An accurate time analysis of the cross-section at mid-span can be carried out 
using the procedure outlined in Section 5.7.3 (and illustrated in Example 5.5). 
In this example, the more approximate procedures discussed in Section 5.10.3 
are used to check time-dependent losses. First, we need to estimate the 
creep and shrinkage characteristics of the concrete, and to do this, we will 
use the procedures specified in Sections 4.2.5.3 and 4.2.5.4.

The hypothetical thickness of the web of this beam is defined in Section 
4.2.5.3 and is taken as:

	
h

A
u0

c mm= = × ×
× + −

=2 2 300 1150
2 300 1150 140

263
( )
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Assuming cement class N, strength class C35/45, inside conditions (RH = 50%) 
and the age at first loading (transfer) t0 = 10 days, Figure 4.7 gives the final 
creep coefficient φ(∞, t0) = 2.4. The autogenous shrinkage and drying shrink-
age strains at time infinity are εca(∞) = −63 × 10–6 and εcd(∞) = −355 × 10–6 
(given by Equations 4.31 and 4.32, respectively), and, from Equation 4.29, the 
final design shrinkage strain εcs(∞) = −418 × 10–6.

With σpi = σpm0 = Pm0/Ap = 1262 MPa for these post-tensioned low-
relaxation strands (Class 2), μ = σpi/fpk = 0.68 and ρ1000 = 0.025, from Equation 
4.35, after 30 years:

	

∆σp,r = − × × 





 ××

−

0 66 2 5
263 000
1 000

109 1 0 68
0 75 1 0 68

. .
,

,
. .

. ( . )

e −−












× = −

5

1 262 38 6, . MPa

The concrete stress at the level of the prestressing steel at mid-span (i.e. 
at e = 723 mm) immediately after the application of the full sustained load 
(32.7 kN/m) is:

σc.QP
m0 m0 sus= − − +

= − × − × ×

P
A

P e
I

M e
I

2

3 3 22 347 10
863 000

2 347 10 723,
,

,
991 680 10

1399 10 723
91 680 10

5 076

6

6,
,

,
.

×
+ × ×

×
= − MPa

The total time-dependent loss of steel stress at mid-span is approximated 
using Equation 5.152:

	

∆σp,c s r+ +

−

=
− × × + × − + × × −418 10 195 000 0 8 38 6

195 000
34 000

2 4 56 , . .
,
,

. ..

, ,
, ,

,
,

07

195 000 1 860
34 000 863 000

1
863 000

91 680 10
7236

21+ ×
×

+
×

×





 + × 

= −

1 0 8 2 4

0

. .

15  MPa

which is 11.9% of the prestress immediately after transfer. This is smaller than 
the time-dependent losses of 20% assumed in Steps 3, 4 and 5, and a slightly 
smaller value of Pm0, and hence Pj, could be selected. However, given the 
approximate nature of these serviceability calculations, the original estimate 
of Pj is considered satisfactory. Should a more accurate estimate of the time-
dependent losses of prestress be required, the analysis procedure outlined in 
Section 5.7.3 is recommended.
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(7) Deflection check:

At transfer: The average drape for the two cables is 593 mm, and the trans-
verse force exerted on the beam by the draped tendons at transfer is obtained 
using Equation 1.7:

	

8 8 2 347 10 593
18 5002

3

2

P e
l
m0 32 5 N/mm kN/m= × × × = ( ) ↑,

,
.

Note that the prestressing force at mid-span is taken as an average for the span.
The self-weight of the floor was calculated in Step 2 as wsw = 20.7 kN/m ↓. 

Immediately after transfer, fck = 25 MPa, and the elastic modulus of concrete at 
this time is Ecm = 31,000 MPa. The mid-span deflection at transfer is therefore:

	
v0

4

6

5
384

32 5 20 7 18 500
31 000 91 680 10

= − ×
× ×

= ↑( . . ) ,
, ,

. ( )6 3 mm

For most structures, an upward deflection of this magnitude at transfer will 
be satisfactory.

Under full loads: The effective prestress at mid-span after all losses is Pm,t = 
2040 kN. The transverse load exerted on the beam by the tendons is 
therefore:

	

8 2 040 10 593
18 500

3

2

× × × = ( ) ↑,
,

.28 3 N/mm kN/m

The sustained gravity loads are wsus = wsw + wG + ψℓ wQ = 32.7 kN/m (↓), and 
the short-term curvature and deflection at mid-span caused by all the sus-
tained loads are:

	
κsus,0

sus p,t

cm

=
−

= − ×
× ×

( ) ( . . ) ,
, ,

w w l
E I

2 2

8
32 7 28 3 18 500

8 34 000 91 6880 10
0 0 0 06×

= × − −. 6 4 1 mm6 1

	
v

w w l
E I

sus,0
sus p,t

cm

=
−

= − ×5
384

5
384

32 7 28 3 18 500
34 000

4 4( ) ( . . ) ,
, ×× ×

= ↓
91 680 106,

. ( )2 2 mm

Under the sustained loads, the initial curvature is small on all sections, and 
the short-term and long-term deflections will also be small.
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The creep-induced curvature may be approximated using Equation 5.183. 
The member is uncracked, and with ρ = Ap/(bwdp) = 0.0062, the factor α (= α2) 
in Equation 5.185 is taken as 1.24:

	
κcc

6 1117 1 mm= × × = ×− − −2 4
1 24

0 0604 10 0 06.
.

. .

With the creep-induced curvature at each end of the member equal to zero, 
the creep deflection is obtained from Equation 5.165:

	
vcc 4 2 mm = × + × × + = ↓−18 500

96
0 10 0 117 10 0

2
6,

( . ) . ( )

From Equation 5.189, the shrinkage coefficient kr = 0.38 and an estimate 
of the average shrinkage-induced curvature at mid-span is obtained from 
Equation 5.187:

	
κcs mm= − × − × = ×

−
− −0 38 418 10

1150
0 138 10

6
6 1. ( )

.

At each support, the prestressing steel is located at or near the cen-
troidal axis and the shrinkage-induced curvature is zero. This positive 
load-independent curvature at mid-span causes a downward deflection of 
(Equation 5.165):

	
vcs 4 9 mm = × + × × + = ↓−18 500

96
0 10 0 138 10 0

2
6,

( . ) . ( )

The final deflection due to the sustained load and shrinkage is therefore:

	 v v vsus,0 cc cs 113 mm + + = ↓. ( )

The deflection that occurs on application of the 2.0 kPa variable live load 
(= 8 kN/m) is:

	
vvar,0 3 9 mm = ×

× ×
= ↓5

384
8 18 500

34 000 91 680 10

4

6

,
, ,

. ( )

It is evident that the beam performs satisfactorily at service loads with a 
maximum final deflection of vmax = 11.3 + 3.9 = 15.2 mm (↓) = span/1217. This 
conclusion was foreshadowed in the preliminary deflection check in step 3.



Design procedures for determinate beams  417

(8) Check resistance in bending at mid-span:

Using the load factors specified in Section 2.3.2 (Equation 2.1), the design 
load is:

	 wEd = 1.35(wsw + wG) + 1.5wQ = 56.75 kN/m

and the design moment at mid-span is:

	
MEd 24  kNm= × =56 75 18 5

8
28

2. .

The cross-section at mid-span contains a total area of prestressing steel Ap = 
1860  mm2 at an effective depth dp = 995  mm. The design moment resis-
tance is calculated using the procedure outlined in Section 6.3. With fck = 
35 MPa, Equations 6.2 and 6.4 give, respectively, λ = 0.8 and η = 1.0. Adopting 
the conservative (Line 2) for the idealised design stress–strain diagram (see 
Figure 4.12), we will initially assume σpud = fpd = fp0.1k/γs = 1391 MPa. If the neu-
tral axis lies within the slab flange, the depth to the neutral axis is:

	
x

f A
f b

= = ×
× × ×

=pd p

cd

34 7 mm
η λ

1391 1860
1 0 23 33 4000 0 8. . .

.

which is in fact within the flange. For this section, the quantity of tensile steel 
is only small and the member is very ductile. The strain in the prestress-
ing steel εpud is much greater than fpd/Ep and therefore the assumption that 
σpud = fpd is reasonable.

By taking moments of the internal forces about any point on the cross-
section (for example, the level of the resultant compressive force located 
λx/2 below the top surface), the design resistance is:

	
M MRd Ed2538 kNm= × × − ×






 = >1860 1391 995

0 8 34 7
2

. .

Therefore, the cross-section at mid-span has adequate flexural strength 
and no non-prestressed longitudinal steel is required. At least two non-
prestressed longitudinal reinforcement bars will be located at the top and 
bottom of the web of the beam in the corners of the transverse stirrups that 
are required for shear.

(9) Check shear strength:

As in step 8, wEd = 56.75 kN/m. The design shear resistance is here checked 
at the cross-sections 1 m and 2 m from the support (at the end with the live-
end anchorage).
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At x = 1.0 m,

	 VEd = 468.2 kN  and  MEd = 496.6 kNm

The average depth of the prestressing steel below the centroidal axis of the 
cross-section is y = e = 251 mm, the effective depth to the resultant tension 
in the tendon is dp = 523 mm and the average slope of the tendons is y′ = 
0.114 rad (refer to Figure 10.5). The prestress immediately after transfer at this 
cross-section is Pm0 = 2228 kN (see Table 10.1), and the total time-dependent 
loss at this section (calculated using Equation 5.182) is 299.8 kN. The effective 
prestress is therefore Pm,t = 1928 kN, and the vertical component of prestress 
is Pv = Pm,t y′ = 220 kN.

Check whether the section has cracked in bending under the full design 
bending moment:

	
σbtm

m,t m,t b Ed b 2 23 4 64 4 75 2 12 MPa= − − + = − − + = −P
A

P ey
I

M y
I

. . . .

and therefore the cross-section has not cracked. From Equation 7.4:

	

VRd,c =
× × − ×

×
+ × ×91 680 10 300 0 5 80

115 7 10
1 47 1 0 2 23 1 4

6

6
2, ( . )

.
( . ) . . . 77

0= >48 5 kN Ed. V

Therefore, no calculated shear reinforcement is required at this cross-section.

At x = 2.0 m:

	 VEd = 411.5 kN  and  MEd = 936.4 kNm

	� y = e = 359 mm,  dp = 631 mm,  y′ = 0.101 rad,  Pm0 = 2239 kN

	 Pm,t = 1938 kN  and  Pv = Pm,ty′ = 220 kN

Now σbtm = −0.01 MPa and therefore the cross-section has not cracked. 
With VRd.c = 481.8 kN > VEd, no calculated shear reinforcement is required at 
this cross-section.
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Equation 7.17 gives the minimum shear reinforcement requirements. If 
10 mm closed stirrups are used (two vertical legs with Asv = 157 mm2 and 
fyd = 435 MPa):

	

A
s

sw.min 326= × × × =0 08 300 90 35
435

0
. sin

.

The stirrup spacing must satisfy the following: s ≤ 157/0.326 = 482 mm.
Use 10 mm closed stirrups at 480 mm maximum centres throughout.

(10) Design anchorage zone:

The bearing plates at the end of each cable are 220 mm square as shown in 
Figure 10.6. The centroid of each plate lies on the vertical axis of symmetry, 
the upper plate being located on the centroidal axis of the cross-section and 
the lower plate centred 260 mm below the centroidal axis, as shown.

The distribution of forces on the anchorage zone after the upper cable is 
stressed is shown in Figure 10.7a, together with the bursting moments induced 
within the anchorage zone. The depth of the symmetrical prism behind the 
upper anchorage plate is 544 mm as shown. The transverse tension within 
the symmetrical prism caused by the bursting moment behind the anchorage 
plate (Mb = 142.6 kNm) is:

	
F

M
h

bt
b

e / /
525  kN= = × × =−

2
142 8 10

544 2
10 0

6
3.

.

80 mm duct

40 220 40

162

220

40

220

272

260

c a

Figure 10.6 � End elevation showing size and location of bearing plates.
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and the area of transverse steel required within a length of beam equal to 
0.8he = 435 mm is obtained from Equation 8.14:

	
Asb

2175  mm= × =525 0 10
300

0
3.

Using 4–12 mm diameter vertical stirrup legs at each stirrup location (452 mm2), 
the required spacing is (435 × 452)/1750 = 112 mm.

(a)

Side elevation Bursting moments(b)

162

220

40

220

508

1286 kN
0.750

kN/mm

1.855
kN/mm

285.0 kNm

7.955 kN/mm

9.998 kN/mm

469.4
1286 kN

1286 kN
142.8 kNmhe = 544 mm

he = 804 mm

162

220

768

5.960

0.447
kN/mm

318.4

Side elevation Bursting moments

Figure 10.7 � Forces and moments in anchorage zone. (a) Upper cable only stressed. 
(b) Both cables stressed.
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The distribution of forces on the anchorage zone when both cables are 
stressed is shown in Figure 10.7b. The maximum bursting moment is 285.0 kNm, 
and the depth of the symmetrical prism behind the combined anchorage plates is 
804 mm. The vertical tension and the required area of transverse steel (needed 
within a length of beam equal to 0.8he = 643 mm) are:

	
T Ab sb

2

/
7 9 kN and 2363 mm= × × = = × =−285 0 10

804 2
10 0

709 10
300

6
3

3.

The maximum spacing of the vertical stirrups (452 mm2/stirrup location) is 
(643 × 452)/2363 = 123 mm.

Use two 12 mm diameter stirrups every 100 mm from the end face of the 
beam to 800 mm therefrom.

The horizontal dispersion of prestress into the slab flange creates trans-
verse tension in the slab, as indicated in the plan in Figure 10.8. From Figure 
10.7b, the total force in the flange is 1257 kN when both cables are stressed. 
From the truss analogy shown, the transverse tension is 314.3 kN and the 
required area of steel is:

	 As = (314.3 × 103)/300 = 1048 mm2

Plan 1000

2000

1000804/2 2000

1257 kN

−702.7 kN 

−702.7 kN 

628.5 kN

628.5 kN

314.3 kN

Figure 10.8 � Idealised horizontal truss within slab flange.
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10.4.2  Beams with constant eccentricity

The procedure described in Section 5.4.1 is a convenient technique for the 
satisfaction of concrete stress limits at any section at any stage of loading. 
However, the satisfaction of stress limits at one section does not guarantee 
satisfaction at other sections. If Pm0 and e are determined at the section of 
maximum moment M0, and if e is constant over the full length of the beam, 
the stress limits fcc,0 and fct,0 may be exceeded in regions where the moment 
is less than the maximum value.

In pretensioned construction, where it is most convenient to use straight 
tendons at a constant eccentricity throughout the length of the member, 
the eccentricity is usually determined from conditions at the support of 
a simply-supported member where the moment is zero. In a simple pre-
tensioned beam of constant cross-section, the stress distributions at the 
support and the section of maximum moment (M0 at transfer and MT 
under the maximum in-service loads) are shown in Figure 10.10. At trans-
fer, the maximum concrete tensile and compressive stresses both occur at 

This steel must be placed horizontally in the slab within a length of 0.8 × 
4000 = 3200 mm. Use 12 mm diameter bars at (3200 × 113/1048) = 345 mm 
centres within 4 m of the free edge of the slab.

The reinforcement details within the anchorage zone are shown in the 
elevation and cross-section in Figure 10.9.

9–12 mm stirrups (4 legs)
at 100 mm centres

10 mm stirrups (2 legs)
at 480 mm centres

12 mm bars at 300 mm centres

12 mm stirrups

2–20 mm bars
Elevation Cross-section

Figure 10.9 � Reinforcement details in the anchorage zone.
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the support. To guard against unwanted cracking at the support, the top 
fibre tensile stress must be less than the tensile stress limit fct,0 and the com-
pressive bottom fibre stress should also be limited by the compressive stress 
limit fcc,0. Remembering that fcc,0 is negative:

	
σc,top,0

m0 m0

top
ct,0= − + ≤P

A
P e
Z

f 	 (10.13)

	
σc,btm,0

m0 m0
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A
P e
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By rearranging Equations 10.13 and 10.14 to express Pm0 as a linear 
function of e, the following design equations similar to Equations 5.3 
and 5.4 (but with M0 = 0) are obtained:
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+Pm,t e/Ztop

–Pm,t e/Zbtm
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σc,top,t = –Pm,t/A+Pm,t e/Ztop
              –MT/Ztop

σc,btm,t = –Pm,t/A–Pm,t e/Zbtm + MT/Zbtm+MT/Zbtm

Figure 10.10 � Concrete stresses in members with constant eccentricity of prestress. 
(a)  At the support, immediately after transfer. (b) At mid-span after all 
losses and under full loads (Pm,t = ΩPm0).
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P

Af
e

m0
cc,0

btm

≤
−

+α 1
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where αtop = A/Ztop and αbtm = A/Zbtm.
After all the time-dependent losses have taken place, the maximum 

tensile stress occurs in the bottom concrete fibre at mid-span (σc,btm,t in 
Figure 10.10b) and, if cracking is to be avoided, must be limited to the 
tensile stress limit fct,t:
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This may be rearranged to give the design equation (identical to Equation 5.5):
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By selecting a value of Pm0 that satisfies Equations 10.15, 10.16 and 10.18, 
the selected stress limits will be satisfied both at the support at transfer and 
at the critical section of maximum moment under the full service loads. 
The compressive stress limit fcc,t at the critical section is rarely of concern in 
a pretensioned member of constant cross-section.

To find the minimum sized cross-section required to satisfy the selected 
stress limits both at the support and at mid-span at all stages of loading, 
Equation 10.14 may be substituted into Equation 10.17 to give:
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and therefore:
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Equation 10.19 can be used to select an initial trial cross-section, and 
then the required prestressing force and the maximum permissible eccen-
tricity can be determined using Equations 10.15, 10.16 and 10.18.

Note the difference between Equation 10.1 (where Ω = 0.75) and Equation 
10.19. The minimum section modulus obtained from Equation  10.1 is 
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controlled by the incremental moment (MT − ΩM0) since the satisfac-
tion of stress limits is considered only at the critical section. The stress 
limits on all other sections are automatically satisfied by suitably varying 
the eccentricity along the span. If the eccentricity varies such that Pm0e is 
numerically equal to the moment at transfer M0 at all sections, then only 
the change in moment (MT − ΩM0) places demands on the flexural rigid-
ity of the member. The moment ΩM0 is balanced by the eccentricity of 
prestress. However, for a beam with constant eccentricity, e is controlled 
by the stress limits at the support (where M0 is zero). It is therefore the 
total moment at the critical section MT that controls the minimum section 
modulus, as indicated in Equation 10.19.

In order to avoid excessive concrete stresses at the supports at transfer, 
tendons are often debonded near the ends of pretensioned members. In 
this way, a constant eccentricity greater than the limit obtained from either 
Equation 10.13 or 10.14 is possible.

For a simply-supported member containing straight tendons at a con-
stant eccentricity, the following design steps are appropriate:

	 1.	Determine the loads on the beam both at transfer and under the most 
severe load combination for the serviceability limit states. Hence, 
determine the moments M0 and MT at the critical section (an initial 
estimate of self-weight is required here).

	 2.	Make an initial selection of concrete strength and establish mate-
rial properties. Using Equation 10.19, choose an initial trial 
cross-section.

	 3.	Estimate the time-dependent losses and use Equations 10.15, 10.16 
and 10.18 to determine the prestressing force and eccentricity at the 
critical section.

	 4.	Calculate both the immediate and time-dependent losses. Ensure that 
the calculated losses are less than those assumed in step 3. Repeat 
step 3, if necessary.

	 5.	Check the deflection at transfer and the final long-term deflection 
under maximum and minimum loads. Consider the inclusion of non-
prestressed steel to reduce the long-term deformation, if necessary. 
Adjust section size and/or prestress level, if necessary.

	 6.	Check the design flexural resistance at the critical sections. Calculate 
the quantities of non-prestressed reinforcement required for strength 
and ductility.

	 7.	Check the design shear resistance of the beam (and the design tor-
sional resistance, if applicable) in accordance with the provisions out-
lined in Chapter 7. Design suitable stirrups where required.

	 8.	Design the anchorage zone using the procedures presented in 
Chapter 8.
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EXAMPLE 10.2  FULLY-PRESTRESSED 
PRETENSIONED DESIGN (STRAIGHT TENDONS)

Simply-supported, fully-prestressed planks, with a typical cross-section 
shown in Figure 10.11, are to be designed to span 6.5 m. The planks are to 
be placed side by side to form a precast floor and are to be pretensioned 
with straight tendons at a constant eccentricity. The planks are assumed to 
be long enough for the full prestress to develop at each support (although 
this is frequently not the case in practice). The floor is to be subjected to 
a superimposed dead load of 1.2 kPa and a live load of 3.0 kPa (of which 
0.7 kPa may be considered to be permanent and the remainder transitory). 
As in Example 10.1, material properties are fck = 35 MPa at 28 days and 
25 MPa at transfer, fpk = 1,860 MPa, Ecm = 34,000 MPa at 28 days and Ecm = 
31,000 MPa at transfer and Ep = 195,000 MPa, and the selected stress limits 
are fct,0 = 1.25 MPa, fcc,0 = −12.5 MPa, fct,t = 1.5 MPa and fcc,t = −16.0 MPa.

(1) Mid-span moments

Due to self-weight: If the initial depth of the plank is assumed to be h = span/40 = 
160 mm, and the plank is assumed to weigh 24 kN/m3, then wsw = 24 × 0.16 × 
1.05 = 4.03 kN/m and at mid-span:

	
Msw 2128 kNm= × =4 03 6 5

8

2. .
.

Due to superimposed dead and live load:

	
w MG G12 1 5 126 kN/m and 6 65 kNm= × = = × =. . .

. .
.0

1 26 6 5
8

2

	
w MQ Q3 1 5 3 15 kN/m and 16 64 kNm= × = = × =. .

. .
.0

3 15 6 5
8

2

1050

eh

12.5 mm diameter strands

Figure 10.11 � Cross-section of pretension plank (Example 10.2).
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At transfer:

	 M0 = Msw = 21.28 kNm

Under full loads:

	 MT = Msw + MG + MQ = 44.57 kNm

(2) Trial section size

From Equation 10.19:

	
Zbtm

6 34 98 1 mm≥ ×
− × −

= ×44 57 10
1 5 0 75 12 5

0 0
6.

. . ( . )
.

and therefore:

	
h

Z
b

≥ × = × × =btm 153 mm
6 4 098 10 6

1050

6.

Try h = 160 mm as originally assumed.

(3) Determine the prestressing force and the eccentricity

With h = 160 mm, the section properties are A = 168 × 103 mm2, I = 358.4 × 
106 mm4, Ztop = Zbtm = 4.48 × 106 mm3 and αtop = αbtm = 0.0375. Substituting 
into Equations 10.15 and 10.16 gives the upper limits to Pm0:

	

P
e e

P

m0

m0

≤ ×
−

= ×
−

≤ − × −

168 000 1 25
0 0375 1

210 10
0 0375 1

168 000 1

3, .
. .

, ( 22 5
0 0375 1

2 100 10
0 0375 1

3. )
.

,
.e e+

= ×
+

and substituting into Equation 10.18 gives the lower limit to Pm0:

	
P

e
m0 ≥

− × + × ×
× +

= ×168 000 1 5 0 0375 44 57 10
0 75 0 0375 1

1 893 106, . . .
. ( . )

, 33

0 0375 1( . )e + 	

By equating the maximum value of Pim0 from Equation 10.15 with the minimum 
value from Equation 10.18, we obtain the maximum eccentricity:

	

210 10
0 0375 1

1893 10
0 0375 1

3 3×
−

= ×
+. ( . )max maxe e

and solving gives emax = 33.4 mm.
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Taking e = 33 mm, the corresponding minimum prestress Pm0 is obtained 
from Equation 5.18:

	
Pm0 846 kN≥ ×

× +
=1893 10

0 0375 33 1

3

( . )

Assuming 5% immediate losses at mid-span, the minimum jacking force is 
P j = Pm0/0.95 = 891 kN. Using 12.5 mm diameter seven-wire strands each with 
an area of 93.0 mm2 (see Table 4.8), fpk = 1860 MPa and fp0.1k = 1600 MPa. The 
maximum stress in the tendon at jacking is the smaller of 0.8fpk = 1488 MPa or 
0.9fp0.1k = 1440 MPa (see Section 5.3). Therefore, the maximum jacking force 
per strand is 1440 × 93 × 10–3 = 133.9 kN. The minimum number of seven-
wire strands is therefore 891/133.9 = 6.7.

Use seven 12.5 mm diameter strands at e = 33 mm (i.e. Ap = 7 × 93.0 = 
651 mm2, dp = 113 mm), with an initial jacking stress of σpi = Pj/Ap = 891 × 
103/651 = 1369 MPa.

(4) Calculate losses of prestress

Immediate losses: For this pretensioned member with straight tendons, the 
immediate loss of prestress is due to elastic shortening. The concrete stress 
at the steel level at mid-span immediately after transfer is:

	
σcp.0 = −

×
×

− × ×
×

+ × ×846 10
168 10

846 10 33
358 4 10

21 28 10 33
358

3

3

3 2

6

6

.
.

..
.

4 106×
= −5 65 MPa

and from Equation 5.146, the loss of prestress at mid-span due to elastic 
shortening is:

	
∆Pel 23 1 kN= × − × × = −−195 000

31 000
5 65 651 10 3,

,
( . ) .

Note that at the supports, where the moment caused by external loads is 
zero, σcp.0 = −7.61 MPa and ΔPel = −31.2 kN.

Jacking force: From step 3, the required minimum prestress at mid-span imme-
diately after transfer is Pm0 = 846 kN and adding the elastic shortening losses, 
the minimum force required at the jack is:

	 Pj = 846 + 23.1 = 869.1 kN = 124.2 kN/strand

With this jacking force, the stress in the strand at the jack is:

	
σpj

j

p
pk1335 MPa 718= = × = =

P
A

f
869 1 10

651
0

3.
.

which is less than 0.9 fp0.1k and is therefore acceptable.
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In summary:

	 Pj = 869.1 kN

	 Pm0 = 846 kN at mid-span (and Pm0 = 838 kN at the supports)

Time-dependent losses: The hypothetical thickness of an isolated plank is 
h0 = 138.8 mm. Assuming cement class N, strength class C35/45, inside con-
ditions (RH = 50%) and that the age at first loading (transfer) is t0 = 7 days, 
Figure 4.7 gives the final creep coefficient φ(∞, t0) = 3.0. The autogenous 
shrinkage and drying shrinkage strains at time infinity are εca(∞) = −63 × 10–6 
and εcd(∞) = −424 × 10–6 (given by Equations 4.31 and 4.32, respectively), and, 
from Equation 4.29, the final design shrinkage strain εcs(∞) = −487 × 10–6.

With σpi = P j/Ap = 1369 MPa for the pretensioned low-relaxation strand 
(Class 2), μ = σpi/fpk = 0.736 and ρ1000 = 0.025, from Equation 4.35, after 
30 years:

	

∆σp,r = − × × 





 ××

−

0 66 2 5
263 000
1 000

9 1 0 736
0 75 1 0 736

. .
,

,
. .

. ( . )

e 110

1369 55 2

5−












× = − . MPa

The sustained load is wsus = 6.03 kN/m, and the sustained moment at mid-
span is Msus = 31.8 kNm. The concrete stress at the centroid of the prestress-
ing steel at mid-span (at e = 33 mm) immediately after the application of the 
full sustained load is:

	
σc.QP

m0 m0 sus MPa= − − + = −P
A

P e
I

M e
I

2

4 68.

At the supports, where the moment caused by external loads is zero, 
σc.QP 7 53 MPa= − . .

The total time-dependent loss of steel stress at mid-span is approximated 
using Equation 5.152:

	

∆σp,c s r+ +

−

=
− × × + × − + × × −487 10 195 000 0 8 55 2

195 000
34 000

3 0 46 , . .
,
,

. ..

,
, ,

,
.

68

195 000 651
34 000 168 000

1
168 000

358 4 10
336

21+ ×
×

+
×

×





 + × 

= −

1 0 8 3 0. .

197 MPa
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which is 15% of the prestress immediately after transfer. This is smaller than 
the time-dependent losses of 25% assumed in step 3 and is therefore accept-
able. The total time-dependent loss at the supports is −241 MPa.

The prestressing force after all losses Pm,t is at mid-span is:

	 P P Am t m p p,c s r
3846 651 197 1 718 kN, = + = − × × =+ +
−

0 0∆σ

and at the supports:

	 P P Am t m p p,c s r
3838 651 241 1 681 kN, = + = − × × =+ +
−

0 0∆σ

(5) Deflection check
At transfer: The curvature immediately after transfer at each support is:

	
κ0.s

m0

cm,0

62 49 1 mm= − = − × ×
× ×

= − × − −P e
E I

838 10 33
31 000 358 4 10

0
3

6, .
. 11

and at mid-span is:

	
κ0.m

o m0

cm,0

= − = × − × ×
× ×

= −M P e
E I

21 28 10 846 10 33
31 000 358 4 10

0
6 3

6

.
, .

..598 1 mm6 1× − −0

The corresponding deflection at mid-span may be calculated using Equation 
5.165:

	
v0 4 8 mm = − + × − − × = − ↑−6500

96
2 49 10 0 598 2 49 10

2
6. ( . ) . . ( )

which is likely to be satisfactory in most practical situations.

Under full loads: The instantaneous curvature caused by the prestress at the 
supports is:

	
κsus,0.s

m,t

cm,t

185 1= − = − × ×
× ×

= − ×P e
E I

682 10 33
34 000 358 4 10

0
3

6, .
. −− −6 1mm

With ρ = 0.0055, Equation 5.185 gives α = 1.22 and the final creep-induced 
curvature at the supports is estimated using Equation 5.183:

	
κ κ ϕ

α
cc.s sus,0.s

6 14 54 1 mm= ∞ = − × × = − ×− − −( , )
.

.
.

.
t0 61 85 10

3 0
1 22

0
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The final load-dependent curvature at the supports is:

	 κ κ κsus.s sus,0.s cc.s
6 16 39 1 mm= + = − × − −. 0

The moment at mid-span caused by the sustained loads is Msus = Msw + MG + 
(0.7/3.0) MQ = 31.8 kNm, and the instantaneous curvature caused by the pre-
stress and the sustained moment is:

	
κ sus,0.m

sus m,t

cm

= − = × − × ×
× ×

M P e
E I

31 8 10 719 10 33
34 000 358 4 10

6 3.
, . 66 0 0= × − −.663 1 mm6 1

With α = 1.22, the final creep-induced curvature at mid-span is:

	
κcc.m

6 1164 1 mm= × × = ×− − −0 663 10
3 0

1 22
06.

.
.

.

The final load-dependent curvature at mid-span is:

	 κ κ κsus.m sus,0.m cc.m
6 12 30 1 mm= + = × − −. 0

The moment at mid-span due to the variable part of the live load is (2.3/3.0) 
MQ = 12.76 kNm and the corresponding curvature at mid-span is:

	
κvar. m

var

cm

6 11 5 1 mm= = ×
× ×

= × − −M
E I

12 76 10
34 000 358 4 10

0 0
6

6

.
, .

.

The shrinkage-induced curvature is constant along the span (since the bonded 
steel is at a constant eccentricity). From Equation 5.189, the shrinkage coef-
ficient kr = 0.19, and, from Equation 5.187, the final shrinkage-induced curva-
ture at mid-span is:

	
κcs mm= × × = ×

−
− −0 19 487 10

160
0 58 10

6
6 1.

.

The final curvatures at each end and at mid-span are the sum of the load-
dependent and shrinkage curvatures:

	 κ κ κs sus.s cs
6 15 84 1 mm= + = − × − −. 0

	 κ κ κ κm sus.m var.m cs
6 13 93 1 mm= + + = + × − −. 0
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10.5 � DESIGN PROCEDURES: 
PARTIALLY-PRESTRESSED BEAMS

In the design of a partially-prestressed member, concrete stresses at transfer 
should be checked to ensure undesirable cracking or excessive compressive 
stresses do not occur during and immediately after the stressing operation. 
However, under full service loads, cracking is permitted and so a smaller 
level of prestress than that required for a fully-prestressed structure may 
be adopted. It is often convenient to approach the design from a design 
strength point of view in much the same way as for a conventionally rein-
forced member. Equations 10.6 and 10.12 can both be used to select an 
initial section size in which tensile reinforcement (both prestressed and 
non-prestressed) may be added to provide adequate strength and ductil-
ity. The various serviceability requirements can then be used to determine 
the level of prestress. The designer may choose to limit tension under the 
sustained load or some portion of it. Alternatively, the designer may select 
a part of the total load to be balanced by the prestress. Under this balanced 
load, the curvature induced on a cross-section by the eccentric prestress is 
equal and opposite to the curvature caused by the load. Losses are calcu-
lated and the area of prestressing steel is determined.

It should be remembered that the cross-section obtained using Equation 
10.12 is a trial section only. Serviceability requirements may indicate that 

From Equation 5.165, the final maximum mid-span deflection is:

	

vmax

12  mm span/5

= − + × −( ) ×

= + ↓ =

−6500
96

5 84 10 3 93 5 84 10

2 3

2
6. . .

. ( ) 55

A deflection of this magnitude is probably satisfactory, provided that the floor 
does not support any brittle partitions or finishes.

(6) Check resistance in bending at mid-span

Using the same procedure as outlined in step 8 of Example 8.1, the design 
resistance in bending of the cross-section containing Ap = 651 mm2 at dp= 113 mm 
is MRd = 103.7 kNm, and this is greater than MEd = 62.7 kNm. The flexural 
resistance of the plank is adequate.

(7) Check shear resistance

For this wide shallow plank, the design shear force V 
Ed is much less than the 

design resistance V 
Rd,c on each cross-section and no transverse steel is required.
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a larger section is needed or a smaller section would be satisfactory. If the 
latter is the case, the strength and ductility requirements can usually still be 
met by the inclusion of non-prestressed reinforcement, either compressive 
or tensile or both.

After establishing the dimensions of the cross-section, and after the mag-
nitude of the prestressing force and the size and location of the prestressed 
steel have been determined, the non-prestressed steel required to provide 
the necessary additional strength and ductility is calculated. Checks are 
made with regard to deflection and crack control, and finally, the shear 
reinforcement and anchorage zones are designed.

The following steps usually lead to a satisfactory design.

	 1.	Determine the loads on the beam including an initial estimate of 
self-weight. Hence, determine the in-service moments at the critical 
section, both at transfer Mo and under the full loads MT. Also calcu-
late the design moment MEd at the critical section.

	 2.	Make an initial selection of concrete strength and establish material 
properties. Using Equation 10.12, determine suitable section dimen-
sions. Care should be taken when using Equation 10.12. If the neutral 
axis at design resistance is outside the flange in a T-beam or I-beam, 
the approximation of a rectangular compression zone may not be 
acceptable. For long-span, lightly loaded members, deflection and not 
strength will usually control the size of the section.

	 3.	By selecting a suitable load to be balanced, the unbalanced load can 
be calculated and Equation 10.6 can be used to check the initial trial 
section selected in step 2. Adjust section dimensions, if necessary.

	 4.	Determine the prestressing force, the area of prestressing steel and the 
cable profile to suit the serviceability requirements. For example, no 
tension may be required under a portion of the service load, such as 
the dead load. Alternatively, the load at which deflection is zero may 
be the design criterion.

	 5.	Calculate the immediate and time-dependent losses of prestress and 
ensure that the serviceability requirements adopted in step 4 and the 
stress limits at transfer are satisfied.

	 6.	To supplement the prestressing steel determined in step 4, calculate 
the non-prestressed reinforcement (if any) required to provide ade-
quate flexural strength and ductility.

	 7.	Check crack control and deflections both at transfer and under full 
loads. A cracked section analysis is usually required to determine Ief 

and to check the increment of steel stress after cracking.
	 8.	Design for shear (and torsion) at the critical sections in accordance 

with the design provisions in Chapter 7.
	 9.	Design the anchorage zone using the procedures outlined in 

Chapter 8.
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Example 10.3  Partially-prestressed beam (draped tendon)

The fully-prestressed T-beam designed in Example 10.1 is redesigned here 
as a partially-prestressed beam. A section and an elevation of the beam are 
shown in Figure 10.2, and the material properties and floor loadings are as 
described in Example 10.1. At transfer, the stress limits are fct,0 = 1.25 MPa 
and fcc,0 = −12.5 MPa.

(1) Mid-span moments

As in step 1 of Example 10.1, wG = 8 kN/m, wQ = 12 kN/m, MG = 342 kNm 
and MQ = 513 kNm.

Since the deflection of the fully-prestressed beam designed in Example 10.1 
is only small, a section of similar size may be acceptable even after crack-
ing. The same section will be assumed here in the estimate of self-weight. 
Therefore, wsw = 20.7 kN/m, Msw = 886 kNm and the moments at mid-span 
at transfer and under full loads are as calculated previously:

	 M0 = 886 kNm  and  MT = 1741 kNm

The design moment resistance at mid-span is calculated as in Step 8 of 
Example 10.1, i.e. M 

Ed = 2428 kNm.

(2) Trial section size based on strength considerations

From Equation 10.12:

	
bd2

62428 10
0 27 23 33

0≥ ×
×

= ×
. .

.385 5 1 mm6 3

For b = 4000 mm, the required effective depth is d > 310.5 mm.
Clearly, strength and ductility are easily satisfied (as is evident in Step 8 of 

Example 10.1). Deflection requirements will control the beam depth.

(3) Trial section size based on acceptable deflection

In Example 10.1, the balanced load was wbal = 28.3 kN/m (see Step 7). If 
cracking is permitted, then less prestress will be provided than in Example 
10.1. For this cracked, partially-prestressed member, we will adopt enough 
prestress to balance a load of wbal = 20 kN/m. Therefore, the maximum 
unbalanced load is wunbal = wsw + wG + wQ − wbal = 20.7 kN/m and the sus-
tained unbalanced load is wunbal.sus = wsw + wG + ψ2wQ − 20 = 12.7 kN/m. 
The choice of balanced load is somewhat arbitrary, with wbal = 28.6 kN/m 
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representing the balanced load for a fully-prestressed design (Example 10.1) 
and wbal = 0 representing a reinforced concrete design (with zero prestress).

Anticipating the inclusion of some compression steel to limit long-term 
deflection and hence taking λ = 1.5, Equation 10.4 gives:

	 wtot = 20.7 + 1.5 × 12.7 = 39.8 kN/m

If the maximum total deflection vmax is to be limited to 50 mm (= span/370), 
then from Equation 10.6, the initial gross moment of inertia must satisfy the 
following:

	
I ≥ × × ×

×
= ×2

5
384

39 8 18 500
34 000 50

0 0
4. ,

,
71,42 1 mm6 4

Choose the same trial section as was used for the fully-prestressed design 
(as shown in Figure 10.3).

(4)  Determine prestressing force and cable profile

A single prestressing cable is to be used, with sufficient prestress to balance 
a load of 20 kN/m. The cable is to have a parabolic profile with zero eccen-
tricity at each support and e = 778 mm at mid-span (i.e. at mid-span, dp = 
1050 mm and the duct has the same cover at mid-span as the lower cable 
shown in Figure 10.5). The duct diameter is 80 mm with 40 mm concrete 
cover to the duct.

The effective prestress required at mid-span to balance wbal = 20 kN/m is 
calculated using Equation 1.7:

	
P

w l
e

m,t
bal  kN= = ×

×
=

2 2

8
20 0 18 5
8 0 778

1100
. .

.
,

Since the initial stress in the concrete at the steel level is lower than that in 
Example 10.1, due to the reduced prestressing force, the creep losses will be 
lower. The time-dependent losses are here assumed to be 8%. If the immedi-
ate losses at mid-span (friction plus anchorage draw-in) are assumed to be 
10%, the prestressing force at mid-span immediately after transfer Pm0 and the 
required jacking force Pj are:

	
P

P
P

P
m0

m,t
j

m01196 kN and 1329 kN= = = =
0 92 0 9. .

From Table 4.8, the cross-sectional area of a 12.5 mm diameter seven-wire strand 
is 93.0 mm2 and the maximum stress in the tendon at jacking is 0.9fp0.1k = 1440 MPa. 
Therefore, the maximum jacking force per strand is 1440 × 93 × 10–3 = 133.9 kN. 
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The minimum number of seven-wire strands is therefore 1329/133.9 = 9.9. Try ten 
12.7 mm diameter ordinary seven-wire strands (Ap = 930 mm2).

(5) Calculate losses of prestress

Immediate losses: With only one prestressing cable, elastic deformation losses 
are zero. Using the same procedures as demonstrated in Example 10.1, the 
friction loss between the jack and mid-span is 5.3% and the anchorage (draw-
in) loss at mid-span is 3.1%. The total immediate loss is therefore 8.4% and 
this is less than the 10% assumed earlier.

Time-dependent losses: The concrete has the same shrinkage and creep char-
acteristics as in Example 10.1, i.e. the final creep coefficient φ(∞, t0) = 2.4 
and the final design shrinkage strain εcs(∞) = −418 × 10–6. The hypothetical 
thickness of the web is h0 = 263 mm.

With σpi = σpm0 = Pm0/Ap = 1286 MPa for these post-tensioned low-
relaxation strands (Class 2), μ = σpi/fpk = 0.69 and ρ1000 = 0.025, from Equation 
4.35, after 30 years:

	

∆σp,r = − × × 





 ××

−

0 66 2 5
263 000
1 000

109 1 0 69
0 75 1 0 69

. .
,

,
. .

. ( . )

e −−











×

= −

5 1 286

41 3

,

. MPa

Assuming that the concrete stress at the level of the prestressing steel at 
mid-span (i.e. at e = 778 mm) immediately after the application of the full 
sustained load (32.7 kN/m) is compressive:

	

σc.QP
m0 m0 sus= − − +

= − × − × ×

P
A

P e
I

M e
I

2

3 3 21196 10
863 000

1196 10 778,
,

,
991 680 10

1399 10 778
91 680 10

2 59

6

6

6,
,

,

.

×
+ × ×

×

= + MPa (tensile)

This means the concrete crack will open at the steel level under the full service 
load and the stress in the concrete at the tendon level is zero, i.e. σc.QP = 0. 
The total time-dependent loss of steel stress at mid-span is approximated 
using Equation 5.152:

	

∆σp,c s r

1
+ +

−

=
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This is 7.9% of the prestress immediately after transfer and is less than the 
8% assumed in Step 4.

By comparison with the beam in Example 10.1 (that has almost double the 
jacking force), the concrete stress limits at transfer are clearly satisfied.

(6) Design for flexural strength

As stated in Step 1, the design moment at mid-span is MEd = 2410 kNm. Using 
the procedures outlined in Chapter 6 (and used in Example 10.1), the design 
resistance of the cross-section containing Ap = 930 mm2 at dp = 1050 mm 
is MRd1 = 1349 kN (with x = 17.3 mm). Clearly, additional non-prestressed 
tensile steel is required to ensure adequate strength. If the depth of the non-
prestressed tensile reinforcement is do = 1080 mm, then the required steel 
area may be obtained from:
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Try four 28 mm diameter bottom reinforcing bars (Ast = 2464 mm2, fyk = 
500 MPa) in two layers, as shown in Figure 10.12.

Checking the strength of this cross-section gives Fptd = 1293 kN, Fsd = 
1072 kN, x = 31.7 mm and MRd = 2485 kNm > MEd. The proposed section at 
mid-span shown in Figure 10.12 has adequate strength and ductility.

9–12.5 mm strands

4–28 mm diam bars

16 mm diam bars
(side-face reinf)

10 mm stirrups

2–28 mm diam  

1150

140

300

Figure 10.12 � Proposed steel layout at mid-span (Example 10.3).
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(7) Check deflection and crack control

The maximum moment at mid-span due to the full service load is MT = 
1741  kNm, and the moment at mid-span caused by the sustained load is 
Msus = 1399 kNm. After all losses, the prestressing force at mid-span is Pm,t = 
1100 kN. The design tensile strength of concrete is taken to be fctm = 3.2 MPa, 
and, with the web reinforcement ratios, ρw = (As + Ap)/(bwd) = (2464 + 930)/
(300 × 1063) = 0.0106 and ρcw = Asc/(bwd) = 1232/(300 × 1063) = 0.0039, 
the tensile stress that develops in the bottom fibre due to shrinkage may be 
approximated by Equation 5.179:
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The cracking moment may be approximated using Equation 5.178:
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Cracking occurs at mid-span since the cracking moment is less than the sus-
tained moment. Using the cracked section analysis described in Section 5.8.2, 
the response of the cracked section at mid-span to the full service moment 
(MT = 1741 kNm) is as follows:

•	 The top fibre stress and strain: σc,0(top) = −5.31 MPa and 
ε0(top) = −156 × 10–6.

•	 The depth to the neutral axis: dn = 164.3 mm.
•	 The stress in the bottom layer of non-prestressed steel: 

σs(1),0 = 177.0 MPa.
•	 The stress in the prestressed steel: σp,0 = 1411 MPa.
•	 The average moment of inertia: Iav = 36,370 × 106 mm4.
•	 The effective moment of inertia (using Equation 5.182 to account for 

tension stiffening): Ief = 50,610 × 106 mm4.

Since the maximum stress in the non-prestressed steel is less than 200 MPa, 
flexural crack control should be satisfactory. The 16 mm diameter side-face 
reinforcement shown in Figure 10.12 should be included to control flexural 
cracking in the web of the beam above the bottom steel.
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The upward transverse force exerted by the prestress on the member is 
wbal = 20 kN/m, and the maximum gravity load is 40.7 kN/m. An estimate of 
the maximum short-term deflection v0 caused by the full service load is:

	
v0 18 3 mm = × − ×
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Under the sustained loads, the loss of stiffness due to cracking will not be as 
great. The cracks will partially close, and the depth of the compression zone 
will increase as the variable live load is removed. For the calculation of the 
short-term deflection due to the sustained loads (32.7 kN/m), the magnitude 
of Ief is higher than that used previously. However, using Ief = 50,610 × 106 mm4 

will result in a conservative overestimate of deflection:
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With the tensile web reinforcement ratios ρ = 0.0106 and the area of com-
pression reinforcement Asc = 1232 mm2, Equations 5.184 and 5.185 give α1 = 
5.98 and α2 = 1.51. With the depth to the neutral axis on the cracked section 
(ignoring prestress), dn1 is determined as 98.8 mm, and Equation 5.186 gives 
α = 2.83. The creep-induced deflection may be approximated by:
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At the supports, where the cross-section is uncracked and the prestressing 
steel is located at the centroidal axis and ρ = Ast/(bwdo) = 0.0075, Equation 
5.189 gives kr = 0.22, and an estimate of the average shrinkage-induced cur-
vature is obtained from Equation 5.187:
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At mid-span, where the cross-section has cracked and the prestressing cable 
is near the bottom of the section, and ρ = 0.0106, Equations 5.188 and 5.190 
give kr1 = 0.826 and kr2 = 0.390, and from Equation 5.191, kr = 0.65. An 
estimate of the average shrinkage-induced curvature at mid-span is given by 
Equation 5.187:
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It should be noted that the same cross-sectional dimensions are required for 
both the fully-prestressed solution in Example 10.1 and the partially-
prestressed solution in Example 10.3, provided the deflection calculated 
earlier is acceptable. Both satisfy strength and serviceability requirements. 
With significantly less prestress, the partially-prestressed beam is most 
likely to be the more economical solution.

REFERENCE

	 1.	 EN 1992-1-1. 2004. Eurocode 2: Design of concrete structures – Part 1-1: 
General rules and rules for buildings. British Standards Institution, 
London, UK.

The shrinkage-induced deflection is obtained from Equation 5.165:
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The maximum final deflection is therefore:

	 v v v0 cc cs 36 9 mm span/5 1+ + = ↓ =. ( ) 0

Deflections of this order may be acceptable for most floor types and 
occupancies.

The design for shear strength and the design of the anchorage zone for this 
beam are similar to the procedures illustrated in steps 9 and 10 of Example 10.1.
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Chapter 11

Statically indeterminate 
members

11.1  INTRODUCTION

The previous chapters have been concerned with the behaviour of 
individual cross-sections and the analysis and design of statically determi-
nate members. In such members, the deformation of individual cross-sections 
can take place without restraint being introduced at the supports, and reac-
tions and internal actions can be determined using only the principles of 
statics. For any set of loads on a statically determinate structure, there is 
one set of reactions and internal actions that satisfies equilibrium, i.e. there 
is a single load path.

In this chapter, attention is turned towards the analysis and design of 
statically indeterminate or continuous members, where the number of 
unknown reactions is greater than the number of equilibrium equations 
available from statics. The internal actions in a continuous member depend 
on the relative stiffnesses of the individual regions and, in structural analy-
sis, consideration must be given to the material properties, the geometry 
of the structure and geometric compatibility, as well as equilibrium. For 
any set of loads applied to a statically indeterminate structure, there are an 
infinite number of sets of reactions and internal actions that satisfy equi-
librium, but only one set that also satisfies geometric compatibility and 
the stress–strain relationships for the constituent materials at each point 
in the structure. Imposed deformations cause internal actions in statically 
indeterminate members and methods for determining the internal actions 
caused by both imposed loads and imposed deformations are required for 
structural design.

By comparison with simply-supported members, continuous members 
enjoy certain structural and aesthetic advantages. Maximum bending 
moments are significantly smaller and deflections are substantially reduced 
for a given span and load. The reduced demand on strength and the increase 
in overall stiffness permit a shallower cross-section for an indeterminate 
member for any given serviceability requirement, and this leads to greater 
flexibility in sizing members for aesthetic considerations.
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In reinforced concrete structures, these advantages are often achieved 
without an additional cost, since continuity is an easily achieved conse-
quence of in-situ construction. Prestressed concrete, on the other hand, 
is very often not cast in-situ, but is precast, and continuity is not a natu-
rally achieved consequence. In precast construction, continuity is obtained 
with extra expense and care in construction. When prestressed concrete is 
cast in-situ, or when continuity can be achieved by stressing precast units 
together over several supports, continuity can result in significant cost sav-
ings. By using single cables for several spans, the number of anchorages can 
be reduced significantly, as can the labour costs associated with the stress-
ing operation.

Continuity provides increased resistance to transient loads and also to 
progressive collapse resulting from wind, explosion or earthquake. In con-
tinuous structures, failure of one member or cross-section does not nec-
essarily jeopardise the entire structure, and a redistribution of internal 
actions may occur. When overload of the structure or member in one area 
occurs, a redistribution of forces may take place, provided that the struc-
ture is sufficiently ductile and an alternative load path is available.

In addition to the obvious advantages of continuous construction, there 
are several notable disadvantages. Some of the disadvantages are common 
to all continuous structures, and others are specific to the characteristics of 
prestressed concrete. Among the disadvantages common to all continuous 
beams and frames are: (1) the occurrence of a region of both high shear and 
high moment adjacent to each internal support; (2) high localised moment 
peaks over the internal supports; and (3) the possibility of high moments 
and shears resulting from imposed deformations caused by foundation or 
support settlement, temperature changes and restrained shrinkage.

In continuous beams of prestressed concrete, the quantity of prestressed 
reinforcement can often be determined from conditions at mid-span, with 
additional non-prestressed reinforcement included at each interior support 
to provide the additional strength required in these regions. The length of 
beam associated with the high local moment at each interior support is 
relatively small, so that only short lengths of non-prestressed reinforcement 
are usually required. In this way, economical partially-prestressed concrete 
continuous structures can be proportioned.

When cables are stressed over several spans in a continuous member, 
the loss of prestress caused by friction along the duct may be large. The 
tendon profile usually follows the moment diagram and the tendon suffers 
relatively large angular changes as the sign of the moment changes along 
the member from span to span and the distance from the jacking end of 
the tendon increases. In the design of long continuous members, the loss of 
prestress that occurs during the stressing operation must therefore be care-
fully checked. Attention must also be given to the accommodation of the 
axial deformation that takes place as the member is stressed. Prestressed 
concrete members shorten as a result of the longitudinal prestress, and this 
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can require special structural details at the supports of continuous mem-
bers to allow for this movement.

There are other disadvantages or potential problems that may arise as a 
result of continuous construction. Often beams are built into columns or 
walls in order to obtain continuity, thereby introducing large additional 
lateral forces and moments in these supporting elements.

Perhaps the most significant difference between the behaviour of stati-
cally indeterminate and statically determinate prestressed concrete struc-
tures is the restraining actions that may develop in continuous structures 
as a result of imposed deformations. As a statically indeterminate structure 
is prestressed, the supports provide restraint to the deformations caused 
by prestress (both axial shortening and curvature) and reactions may be 
introduced at the supports. The supports also provide restraint to volume 
changes of the concrete caused by temperature variations and shrinkage. 
The reactions induced at the supports during the prestressing operation 
are self-equilibrating and they introduce additional moments and shears 
in a continuous member, called secondary moments and shears. These 
secondary actions may or may not be significant in design. Methods for 
determining the magnitudes of the secondary effects and their implica-
tions in the design for both strength and serviceability are discussed in 
this chapter.

11.2  TENDON PROFILES

The tendon profile used in a continuous structure is selected primarily 
to maximise the beneficial effects of prestress and to minimise the dis-
advantages discussed in Section 11.1. The shape of the profile may be 
influenced by the techniques adopted for construction. Construction tech-
niques for prestressed concrete structures have changed considerably over 
the past half century with many outstanding and innovative developments. 
Continuity can be achieved in many ways. Some of the more common 
construction techniques and the associated tendon profiles are briefly dis-
cussed here. The methods presented later in the chapter for the analysis 
of continuous structures are not dependent, however, on the method of 
construction.

Figure 11.1a represents the most basic tendon configuration for continu-
ous members and is used extensively in slabs and relatively short, lightly 
loaded beams. Because of the straight soffit, simplicity of formwork is the main 
advantage of this type of construction. The main disadvantage is the high 
immediate loss of prestress caused by friction between the tendon and the 
duct. With the tendon profile following the shape of the moment diagram, 
the tendon undergoes relatively large angular changes over the length of the 
member. Tensioning from both ends can be used to reduce the maximum 
friction loss in long continuous members.
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(a)

(b)

(c)

(d)

(e)

(f)

TendonCentroidal axis

TendonCentroidal axis

TendonCentroidal axis

Anchorage and coupling

Tendon

Tendons

Girder

Beam–column

Figure 11.1 � Representative tendon profiles. (a) Prismatic beam. (b) Haunched beam 
with continuous tendon. (c) Haunched beam with overlapping tendons. 
(d) Segmental beam construction. (e) Cantilever construction. (f) Portal frame.
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Figure 11.1b indicates an arrangement that has considerable use in longer 
span structures subjected to heavy applied loads. By haunching the beam 
as shown, large eccentricities of prestress can be obtained in the regions 
of high negative moment. This arrangement permits the use of shallower 
cross-sections in the mid-span region, and the reduced cable drape can lead 
to smaller friction losses.

Techniques for overlapping tendons or providing cap cables are numer-
ous. Figure 11.1c shows a tendon layout where the regions of high negative 
moment are provided with extra prestressing. Continuity of the structure 
is maintained even though there may be considerable variation of prestress 
along the member. This general technique can eliminate some of the disad-
vantages associated with the profiles shown in Figures 11.1a and b where 
the prestressing force is gradually decreasing along the member. However, 
any structural benefits that arise by tendon layouts of the type shown in 
Figure 11.1c are gained at the expense of extra prestressing and additional 
anchorages.

Many types of segmental construction are available and a typical case 
is represented in Figure 11.1d. Precast or cast in-situ segments are stressed 
together using prestress couplers to achieve continuity. The couplers and 
hydraulic jacks are accommodated during the stressing operation within 
cavities located in the end surface of the individual segments. The cavities 
can later be filled with concrete, cement grout or other suitable compounds, 
as necessary.

In large-span structures, such as bridges spanning highways, rivers and 
valleys, construction techniques are required where falsework is restricted 
to a minimum. The cantilever construction method permits the erection 
of prestressed concrete segments without the need for major falsework sys-
tems. Figure 11.1e illustrates diagrammatically the tendon profiles for a 
method of construction where precast elements are positioned alternatively 
on either side of the pier and stressed against the previously placed ele-
ments, as shown. The structure is designed initially to sustain the erection 
forces and construction loads as simple balanced cantilevers on each side of 
the pier. When the structure is completed and the cantilevers from adjacent 
piers are joined, the design service loads are resisted by the resulting con-
tinuous haunched girders. Construction and erection techniques, such as 
balanced cantilevered construction, are continually evolving and consider-
able ingenuity is evident in the development of these applications.

Figure 11.1f shows a typical tendon profile for a prestressed concrete 
portal frame. Prestressed concrete portal frames have generally not had 
widespread use. With the sudden change of direction of the member axis at 
each corner of the frame, it is difficult to prestress the columns and beams 
in a continuous fashion. The horizontal beam and vertical columns are 
therefore usually stressed separately, with the beam and column tendons 
crossing at the frame corners and the anchorages positioned on the end and 
top outside faces of the frame, as shown.
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11.3  CONTINUOUS BEAMS

11.3.1  Effects of prestress

As mentioned in Section 11.1, the deformation caused by prestress in a stat-
ically determinate member is free to take place without any restraint from 
the supports. In statically indeterminate members, however, this is not 
necessarily the case. The redundant supports impose additional geomet-
ric constraints, such as zero deflection at intermediate supports (or some 
prescribed non-zero settlement) or zero slope at a built-in end. During the 
stressing operation, the geometric constraints may cause additional reac-
tions to develop at the supports, which in turn change the distribution and 
magnitude of the moments and shears in the member. The magnitudes of 
these additional reactions (usually called hyperstatic reactions) depend on 
the magnitude of the prestressing force, the support configuration and the 
tendon profile. For a particular structure, a prestressing tendon with a pro-
file that does not cause hyperstatic reactions is called a concordant tendon. 
Concordant tendons are discussed further in Section 11.3.2.

The moment induced by prestress on a particular cross-section in a stat-
ically indeterminate structure may be considered to be made up of two 
components:

	 1.	The first component is the product of the prestressing force P and its 
eccentricity from the centroidal axis e. This is the moment that acts on 
the concrete part of the cross-section when the geometric constraints 
imposed by the redundant supports are removed. The moment Pe is 
known as the primary moment; and

	 2.	The second component is the moment caused by the hyperstatic reac-
tions, i.e. the additional moment required to achieve deformations 
that are compatible with the support conditions of the indeterminate 
structure. The moments caused by the hyperstatic reactions are the 
secondary moments.

In a similar way, the shear force caused by prestress on a cross-section in 
a statically indeterminate member can be divided into primary and second-
ary components. The primary shear force in the concrete is equal to the pre-
stressing force P times the slope θ of the tendon at the cross-section under 
consideration. For a member containing only horizontal tendons (θ = 0), 
the primary shear force on each cross-section is zero. The secondary shear 
force at a cross-section is caused by the hyperstatic reactions.

The resultant internal actions caused by prestress at any cross-section are 
the algebraic sums of the primary and secondary effects.

Since the secondary effects are caused by hyperstatic reactions at the sup-
ports, it follows that the secondary moments always vary linearly between 
the supports in a continuous prestressed concrete member and the second-
ary shear forces are constant in each span.
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11.3.2 � Determination of secondary effects 
using virtual work

In the design and analysis of continuous prestressed concrete members, it is 
usual to make the following simplifying assumptions (none of which intro-
duce significant errors for normal applications):

	 1.	concrete behaves in a linear-elastic manner within the range of stresses 
considered;

	 2.	plane sections remain plane throughout the full range of loading;
	 3.	the effects of external loading and prestress on the member can be 

calculated separately and added to obtain the final conditions, i.e. the 
principle of superposition is valid; and

	 4.	the magnitude of the eccentricity of prestress is small in comparison 
with the member length, and hence the horizontal component of the 
prestressing force is assumed to be equal to the prestressing force at 
every cross-section.

Consider the two-span beam shown in Figure 11.2a with straight pre-
stressing tendons at a constant eccentricity e below the centroidal axis. 

e

PP

l l

A B C

(a) 

(b) 

(c) 

PP

A B C

PP

A

RA RB RC

B C

Figure 11.2 � Two-span prestressed beam with straight tendon (constant e). (a) Beam 
elevation. (b) Unrestrained deflection due to primary moment (support B 
removed). (c) Restrained deformation.
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Prior to prestressing, the beam rests on the three supports at A, B and C. 
On each cross-section, prestress causes an axial force P on the concrete and 
a negative primary moment Pe. If the support at B was removed, the hog-
ging curvature associated with the primary moment would cause the beam 
to deflect upwards at B, as shown in Figure 11.2b. In the real beam, the 
deflection at B is zero, as indicated in Figure 11.2c. To satisfy this geomet-
ric constraint, a downward reaction is induced at support B, together with 
equilibrating upward reactions at supports A and C.

To determine the magnitude of these hyperstatic reactions, one of a num-
ber of different methods of structural analysis can be used. For one- or two-
fold indeterminate structures, the force method (or flexibility method) is a 
convenient approach. For multiply redundant structures, a displacement 
method (such as moment distribution) is more appropriate.

Moment-area methods can be used for estimating the deflection of beams 
from known curvatures. The principle of virtual work can also be used and 
is often more convenient. The principle is briefly outlined in the following 
text. For a more comprehensive discussion of virtual work, the reader is 
referred to text books on structural analysis, such as Reference [1].

The principle of virtual work states that if a structure is subjected to 
an equilibrium force field (i.e. a force field in which the external forces 
are in equilibrium with the internal actions) and a geometrically consistent 
displacement field (i.e. a displacement field in which the external displace-
ments are compatible with the internal deformations and the boundary 
conditions), then the external work product W of the two fields is equal 
to the internal work product of the two fields U. The force field may be 
entirely independent of the compatible displacement field.

In the applications discussed here, the compatible displacement field 
is the actual strain and curvature on each cross-section caused by the 
external loads and prestress, together with the corresponding external 
displacements. The equilibrium force field consists of a unit external force 
(or couple) applied to the structure at the point and in the direction of 
the displacement being determined, together with any convenient set of 
internal actions that are in equilibrium with this unit force (or couple). 
The unit force is called a virtual force and is introduced at a particular 
point in the structure to enable the rapid determination of the real dis-
placement at that point. The bending moments caused by the virtual force 
are designated M.

To illustrate the principle of virtual work, consider again the two-span 
beam of Figure 11.2. In order to determine the hyperstatic reaction at B, 
it is first necessary to determine the upward deflection vB caused by the 
primary moment when the support at B is removed (as illustrated in Figure 
11.3a). If the prestress is assumed to be constant throughout the length 
of the beam, the curvature caused by the primary moment is as shown in 
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Figure 11.3b. A unit virtual force is introduced at B in the direction of vB, 
as indicated in Figure 11.3c, and the corresponding virtual moments are 
illustrated in Figure 11.3d.

The external work is the product of the virtual forces and their corre-
sponding displacements:

	 W v v= × =1 B B	 (11.1)

In this example, the internal work is the integral over the length of the 
beam of the product of the virtual moments M and the real deformations 
−Pe/EI:
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If the virtual force applied to a structure produces virtual axial forces N, in 
addition to virtual bending moments, then internal work is also done by the 
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Figure 11.3 � Virtual forces on a two-span beam. (a) Unrestrained deflection due to 
primary moment (support B removed). (b) Curvature caused by primary 
moment. (c) Virtual force at position of redundant support and virtual reac-
tions. (d) Virtual moment diagram M.
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virtual axial forces and the real axial deformation. For any length of beam, 
Δl, a more general expression for internal work is:
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where M/(EI) and N/(EA) are the real curvature and axial strain, respec-
tively, and M and N are the virtual internal actions.

An integral of the form:
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may be considered as the volume of a solid of length ΔL whose plan is 
the function F(x) and whose elevation is the function F x( ). Consider the 
two functions F(x) and F x( ) illustrated in Figure 11.4 and the notation also 
shown. The volume integral (Equation 11.4) can be evaluated exactly using 
Simpson’s rule if the shape of the function F(x) is linear or parabolic and 
the shape F x( ) is linear. Thus:
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In the example considered here, the function F(x) is constant and equal 
to −Pe/EI (i.e. FL = FM = FR = −Pe/EI), and the function F x( ) is the virtual 
moment diagram M, which is also negative and varies linearly from A to B 
and linearly from B to C, as shown in Figure 11.3d. Evaluating the internal 
work in the spans AB and BC, Equation 11.2 gives:
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Figure 11.4 � Notation for volume integration.
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With FL = 0, F lM /= − 4 and F lR /= − 2, Equation 11.5 gives:
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The principle of virtual work states that:

	 W U= 	 (11.8)

and substituting Equations 11.1 and 11.7 in Equation 11.8 gives:
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It is next necessary to calculate the magnitude of the redundant reac-
tion, RB, required to restore compatibility at B, i.e. the value of RB required 
to produce a downward deflection at B equal in magnitude to the upward 
deflection given in Equation 11.9. It is convenient to calculate the flex-
ibility coefficient fB associated with the released structure. The flexibility 
coefficient fB is the deflection at B caused by a unit value of the redundant 
reaction at B. The curvature diagram caused by a unit vertical force at B 
has the same shape as the moment diagram shown in Figure 11.3d. That 
is, the curvature diagram caused by a unit force at B (M/EI) and the vir-
tual moment diagram M have the same shape and the same sign. Using 
the principle of virtual work and Equation 11.5 to evaluate the volume 
integral, we get:
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Compatibility requires that the deflection of the real beam at B is zero:

	 v f RB B B+ = 0	 (11.11)

and therefore:
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The negative sign indicates that the hyperstatic reaction is downwards 
(or opposite in direction to the unit virtual force at B). With the hyper-
static reactions thus calculated, the secondary moments and shears are 
determined readily. The effects of prestress on the two-span beam under 
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consideration are shown in Figure 11.5. In a statically determinate beam 
under the action of prestress only, the resultant force on the concrete at a 
particular cross-section is a compressive force FC equal in magnitude to the 
prestressing force and located at the position of the tendon. The distance 
of the force FC from the centroidal axis is therefore equal to the primary 
moment divided by the prestressing force Pe/P = e. In a statically indeter-
minate member, if secondary moments exist at a section, the location of 
FC does not coincide with the position of the tendon. The distance of FC 
from the centroidal axis is the total moment due to prestress (primary plus 
secondary) divided by the prestressing force.

For the beam shown in Figure 11.5a, the total moment due to prestress 
is illustrated in Figure 11.5e. The position of the stress resultant FC varies 
as the total moment varies along the beam. At the two exterior supports 
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Figure 11.5 � Effects of prestress. (a) Elevation of two-span beam with constant eccentric-
ity. (b) Primary moment diagram. (c) Hyperstatic reactions. (d) Secondary 
moment diagram. (e) Total moment diagram caused by prestress (primary + 
secondary). (f) The pressure line.
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(ends A and C), FC is located at the tendon level (i.e. a distance e below the 
centroidal axis), since the secondary moment at each end is zero. At the 
interior support B, the secondary moment is 3Pe/2, and FC is located at e/2 
above the centroidal axis (or 3e/2 above the tendon level). In general, at 
any section of a continuous beam, the distance of FC from the level of the 
tendon is equal to the secondary moment divided by the prestressing force. 
If the position of FC at each section is plotted along the beam, a line known 
as the pressure line is obtained. The pressure line for the beam of Figure 
11.5a is shown in Figure 11.5f.

If the prestressing force produces hyperstatic reactions, and hence sec-
ondary moments, the pressure line does not coincide with the tendon pro-
file. If, however, the pressure line and the tendon profile do coincide at 
every section along a beam, there are no secondary moments and the ten-
don profile is said to be concordant. In a statically determinate member, of 
course, the pressure line and the tendon profile always coincide.

11.3.3  Linear transformation of a tendon profile

The two-span beam shown in Figure 11.6 is similar to the beam in Figure 
11.2a (and Figure 11.5a), except that the eccentricity of the tendon is not 
constant but varies linearly in each span. At the exterior supports, the eccen-
tricity is e (as in the previous examples) and at the interior support the 
eccentricity is ke, where k is arbitrary. If the tendon is above the centroidal 
axis at B, as shown, k is negative.

(c) Pe(1 + 2k)/2

ke
e

l l(a) 

e

A B C

(d) +Pe/2

–Pe –Pe

(b) 

–Pe –Pe

–Pke

Figure 11.6 � Moments induced by prestress in a two-span beam with linearly varying ten-
don profile. (a) Linear variation of tendon eccentricity. (b) Primary moment 
diagram. (c) Secondary moment diagram. (d) Total moment diagram caused 
by prestress.
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The primary moment at a section is the product of the prestressing force 
and the tendon eccentricity and is shown in Figure 11.6b. If the support at 
B is removed, the deflection at B (vB) caused by the primary moment may be 
calculated using the principle of virtual work. The virtual moment diagram 
M is shown in Figure 11.3d.

Using Equation 11.5 to perform the required volume integration, we get:
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The flexibility coefficient associated with a release at support B is given 
by Equation 11.10, and the compatibility condition of zero deflection at 
the interior support is expressed by Equation 11.11. Substituting Equations 
11.10 and 11.13 into Equation 11.11 gives the hyperstatic reaction at B:

	
R

Pe
l

kB = − +( )1 2 	 (11.14)

The secondary moments produced by this downward reaction at B are 
shown in Figure 11.6c. The secondary moment at the interior support is 
(RB × 2l)/4 = Pe(1 + 2k)/2. Adding the primary and secondary moment dia-
grams gives the total moment diagram produced by prestress and is shown 
in Figure 11.6d. This is identical with the total moment diagram shown in 
Figure 11.5e for the beam with a constant eccentricity e throughout.

Evidently, the total moments induced by prestress are unaffected by 
variations in the eccentricity at the interior support. The moments due to 
prestress are produced entirely by the eccentricity of the prestress at each 
end of the beam. If the tendon profile remains straight, variation of the 
eccentricity at the interior support does not impose transverse loads on 
the beam (except directly over the supports) and therefore does not change 
the moments caused by prestress. It does change the magnitudes of both the 
primary and secondary moments, however, but not their sum. If the value 
of k in Figure 11.6 is −0.5 (i.e. the eccentricity of the tendon at support B 
is e/2 above the centroidal axis), the secondary moments in Figure 11.6c 
disappear. The tendon profile is concordant and follows the pressure line 
shown in Figure 11.5f.

A change in the tendon profile in any beam that does not involve a 
change in the eccentricities at the free ends and does not change the ten-
don curvature at any point along a span will not affect the total moments 
due to prestress. Such a change in the tendon profile is known as linear 
transformation, since it involves a change in the tendon eccentricity at 
each cross-section by an amount that is linearly proportional to the dis-
tance of the cross-section from the end of each span.
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Linear transformation can be used in any beam to reduce or eliminate sec-
ondary moments. For any statically indeterminate beam, the tendon profile in 
each span can be made concordant by linearly transforming the profile so that 
the total moment diagram and the primary moment diagram are the same. 
The tendon profile and the pressure line for the beam will then coincide.

Stresses at any section in an uncracked structure due to the prestressing 
force can be calculated as follows:

	
σ = − ±P

A
Pe y

I
*

	 (11.15)

The term e* is the eccentricity of the pressure line from the centroidal axis of 
the member, and not the actual eccentricity of the tendon (unless the tendon 
is concordant and the pressure line and tendon profile coincide). The signifi-
cance of the pressure line is now apparent. It is the location of the concrete 
stress resultant caused by the axial prestress, the moment caused by the ten-
don eccentricity and the moment caused by the hyperstatic support reactions.

11.3.4  Analysis using equivalent loads

In the previous section, the force method was used to determine the hyper-
static reaction in a onefold indeterminate structure. This method is useful 
for simple structures, but is not practical for manual solution when the 
number of redundants is greater than two or three.

A procedure more suited to determining the effects of prestress in highly 
indeterminate structures is the equivalent load method. In this method, the 
forces imposed on the concrete by the prestressing tendons are considered as 
externally applied loads. The structure is then analysed under the action of 
these equivalent loads using moment distribution or an alternative method 
of structural analysis. The equivalent loads include the loads imposed on 
the concrete at the tendon anchorage (which may include the axial pre-
stress, the shear force resulting from a sloping tendon and the moment due 
to an eccentrically placed anchorage) and the transverse forces exerted on 
the member wherever the tendon changes direction. Commonly occurring 
tendon profiles and their equivalent loads are illustrated in Figure 11.7.

The total moment caused by prestress at any cross-section is obtained 
by analysing the structure under the action of the equivalent loads in each 
span. The moment due to prestress is caused only by moments applied at 
each end of a member (due to an eccentrically located tendon anchorage) 
and by transverse loads resulting from changes in the direction of the ten-
don anywhere between the supports. Changes in tendon direction at a sup-
port (such as at support B in Figure 11.6a) do not affect the moment caused 
by prestress, since the transverse load passes directly into the support. This 
is why the total moments caused by prestress in the beams of Figures 11.5a 
and 11.6a are identical.
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The primary moment at any section is the product of the prestress and 
its eccentricity Pe. The secondary moment may therefore be calculated 
by subtracting the primary moment from the total moment caused by the 
equivalent loads.

11.3.4.1  Moment distribution

Moment distribution is a relaxation procedure developed by Hardy Cross 
[2] for the analysis of statically indeterminate beams and frames. It is a 
displacement method of analysis that is ideally suited to manual calcula-
tion. Although the method has been replaced in many applications by other 
analysis procedures implemented in computer programs, it remains a valu-
able tool for practising engineers because it is simple, easy to use and pro-
vides an insight into the physical behaviour of the structure.

Initially, the rotational stiffness of each member framing into each joint 
in the structure is calculated. Joints in the structure are then locked against 
rotation by the introduction of imaginary restraints. With the joints locked, 
fixed-end moments (FEMs) develop at the ends of each loaded member. At a 
locked joint, the imaginary restraint exerts a moment on the structure equal 
to the unbalanced moment, which is the resultant of all the FEMs at the joint. 
The joints are then released, one at a time, by applying a moment to the joint 
equal and opposite to the unbalanced moment. This balancing moment is 
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distributed to the members framing into the joint in proportion to their rota-
tional stiffnesses. After the unbalanced moment at a joint has been balanced, 
the joint is relocked. The moment distributed to each member at a released 
joint induces a carry-over moment at the far end of the member. These carry-
over moments are the source of new unbalanced moments at adjacent locked 
joints. Each joint is unlocked, balanced and then relocked, in turn, and the 
process is repeated until the unbalanced moments at every joint are negligible. 
The final moment in a particular member at a joint is obtained by summing 
the initial FEM and all the increments of distributed and carry-over moments. 
With the moment at each end of a member thus calculated, the moments and 
shears at any point along the member can be obtained from statics.

Consider the member AB shown in Figure 11.8a. When the couple MAB 

is applied to the rotationally released end at A, the member deforms as 
shown and a moment MBA is induced at the fixed support B at the far end 
of the member. The relationships between the applied couple MAB and the 
rotation at A (θA) and between the couples at A and B may be expressed as:

	 MAB = kABθA	 (11.16)

and

	 MBA = CMAB	 (11.17)

where kAB is the stiffness coefficient for the member AB and the term C is 
the carry-over factor. For a prismatic member, it is a simple matter (using 
virtual work) to show that for the beam in Figure 11.8a:

	
k

EI
l

AB = 4
	 (11.18)

	 C = 0.5	 (11.19)

Expressions for the stiffness coefficient and carry-over factor for members 
with other support conditions are shown in Figure 11.8b through d. FEMs 
for members carrying distributed and concentrated loads are shown in 
Figure 11.8e through i.

The stiffness coefficient for each member framing into a joint in a continu-
ous beam or frame is calculated and summed to obtain the total rotational 
stiffness of the joint Σk. The distribution factor for a member at the joint is the 
fraction of the total balancing moment distributed to that particular member 
each time the joint is released. Since each member meeting at a joint rotates by 
the same amount, the distribution factor for member AB is kAB/Σk. The sum 
of the distribution factors for each member at a joint is therefore unity.

An example of moment distribution applied to a continuous beam is 
given in the following example. For a more detailed description of moment 
distribution, the reader is referred to textbooks on structural analysis such 
as Reference [1].
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EXAMPLE 11.1  CONTINUOUS BEAM

The continuous beam shown in Figure 11.9a has a rectangular cross-section 
400 mm wide and 900 mm deep. If the prestressing force is assumed to be con-
stant along the length of the beam and equal to 1800 kN, calculate the bending 
moment and shear force diagrams induced by prestress. The tendon profile shown 
in Figure 11.9a is adopted for illustrative purposes only. In practice, a post-tensioned 
tendon profile with sharp kinks or sudden changes in direction would not be used. 
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Figure 11.8 � Stiffness coefficients, carry-over factors and fixed-end moments for pris-
matic members. (a) Propped cantilever with moment applied at simple sup-
port. (b) Simply-supported beam with moment at one end. (c) Cantilever with 
moment at free end. (d) Cantilever with moment at fixed end. (e) Uniformly 
loaded fixed-ended beam. (f) Uniformly loaded propped cantilever. (g) Fixed-
ended beam with concentrated load. (h) Propped cantilever with concen-
trated load. (i) Fixed-ended beam with part uniformly distributed load.
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Relatively short lengths of more gradually curved tendons would be used instead of 
the kinks shown at B, C and D. The results of an analysis using the idealised tendon 
profile do, however, provide a reasonable approximation of the behaviour of a 
more practical beam with continuous curved profiles at B, C and D.

In span AB, the shape of the parabolic tendon is y = 0.00575x2 − 0.1025 x + 
0.1 and its slope is y′ = dy/dx = 0.0115x – 0.1025, where x is the distance (in 
metres) along the beam from support A and y is the depth (in metres) of the 
tendon above the centroidal axis. At support A (x = 0), the tendon is 100 mm 
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Figure 11.9 � Equivalent loads and actions induced by prestress (Example 11.1). 
(a) Beam elevation and idealised tendon profile. (b) Equivalent loads 
exerted on concrete beam by tendon. (c) Total moment caused by pre-
stress, Mp (kNm). (d) Primary moment, Pe (kNm). (e) Secondary moment, 
Mp − Pe (kNm). (f) Hyperstatic reactions caused by prestress (kN).
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above the centroidal axis (y = +0.1) and the corresponding moment applied 
at the support is 180 kNm, as shown in Figure 11.9b.

The slope of the tendon at A is θA = dy/dx = −0.1025 rad and the verti-
cal component of prestress is therefore 1800 × (−0.1025) = −184.5 kN (i.e. 
downwards). The parabolic tendon exerts an upward uniformly distributed 
load on span AB. With the cable drape being zd = 350 + [(100 + 350)/2] = 
575 mm = 0.575 m, the equivalent load wp is:
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20
20 72 2
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( ).

 The slope of the parabolic tendon at B is θBA = dy/dx = +0.1275 rad and, in 
span BD, the slope of the straight tendon at B is θBC = −(0.35 + 0.35)/9 = 
−0.0778 rad. The change of slope at B is therefore θBC − θBA = −0.205 rad, and 
therefore the vertical downward force at B is 1800 × (−0.205) = −369.5 kN.

The slope of the tendon in CD is θCD = 0.0778 rad and the angular change at 
C is θC = θCD − θBC = 0.0778 − (−0.0778) = 0.1556 rad. The upward equivalent 
point load at C is therefore 1800 × 0.1556 = 280 kN. The slope of the tendon 
in DE is θDE = −0.0375 rad and the change in tendon direction at D is therefore 
θDE − θCD = −0.0375 − 0.0778 = −0.1153 rad. The transverse equivalent point load 
at D is therefore 1800 × (−0.1153) = −207.5 kN (downwards). At the free end E, 
the equivalent couple is 1800 × 0.05 = 90 kNm and the vertical component of 
the prestressing force is upwards and equal to PθDE = 1800 × 0.0375 = 67.5 kN.

All these equivalent loads are shown in Figure 11.9b. Note that the equiva-
lent loads are self-equilibrating. The vertical equivalent loads at A, B and 
D are directly above the supports and do not affect the bending moments 
induced in the member by prestress.

The continuous beam is analysed under the action of the equivalent loads 
using moment distribution as outlined in Table 11.1.

The total moment diagram caused by prestress (as calculated in Table 11.1) 
and the primary moments are illustrated in Figures 11.9c and d, respectively. 
The secondary moment diagram in Figure 11.9e is obtained by subtracting 
the primary moments from the total moments and the hyperstatic reactions 
shown in Figure 11.9f are deduced from the secondary moment diagram.

The secondary shear force diagram corresponding to the hyperstatic reac-
tions is illustrated in Figure 11.10a. The total shear force diagram is obtained 
from statics using the total moments calculated by moment distribution and 
is given in Figure 11.10b. By subtracting the secondary shear force from the 
total shear force at each section, the primary shear force diagram shown in 
Figure 11.10c is obtained. Note that the primary shear force at any section is 
the vertical component of prestress Pθ.
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Table 11.1  �Moment distribution table (Example 11.1)

Stiffness coefficients
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Figure 11.10 � Shear force components caused by prestress (Example 11.1). (a) 
Secondary shear force diagram (kN). (b) Total shear force diagram 
(kN). (c) Primary shear force diagram Pθ (kN).
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EXAMPLE 11.2  FIXED-END BEAMS

The beams shown in Figures 11.11a, 11.12 and 11.13a are rotationally, restrained 
at each end but are not restrained axially. Determine the moments induced 
by prestress in each member. Assume that the prestressing force is constant 
throughout and the member has a constant EI.
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Figure 11.12 � Fixed-end beam with straight tendon.
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Case (a): The beam shown in Figure 11.11a is prestressed with a parabolic 
tendon profile with unequal end eccentricities. The equivalent loads on the 
structure are illustrated in Figure 11.11b, with end moments of PeA and PeB, as 
shown, and an equivalent uniformly distributed upward load of wp = 8 Pzd/l2.

If the rotational restraints at each end of the beam are released, the cur-
vature is due entirely to the primary moment and is directly proportional 
to the tendon eccentricity, as shown in Figure 11.11c. The total curvature 
diagram is obtained by adding the curvature caused by the primary moments 
to the curvature caused by the restraining secondary moments at each end of 
the beam MA

s  and MB
s , respectively. The secondary curvature caused by these 

secondary moments varies linearly over the length of the beam (provided EI 
is uniform) so that the total curvature involves a linear shift in the baseline of 
the primary curvature diagram (see Figure 11.11d).

From structural analysis, for example, using virtual work, it is possible to calcu-
late the restraining moments MA

s  and MB
s  required to produce zero slope at each 

end of the beam, i.e. θA = θB = 0. However, because the beam is fixed-ended, 
the moment-area theorems reduce the problem to one that can be solved by 
inspection. Since the slopes at each end are identical, the net area under the 
total curvature diagram must be zero, i.e. the baseline in Figure 11.11c must be 
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Figure 11.13 � Curvature induced by a harped tendon in a fixed-end beam. 
(a)  Elevation. (b) Primary curvature diagram. (c) Total curvature 
diagram. (d) Secondary curvature diagram.
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translated and rotated until the area under the curvature diagram is zero. In addi-
tion, because support A lies on the tangent to the beam axis at B, the first 
moment of the final curvature diagram about support A must also be zero. With 
these two requirements, the total curvature diagram is as shown in Figure 11.11d.

Note that this is the only solution in which the net area under the cur-
vature diagram is zero and the centroids of the areas above and below the 
baseline are the same distance from A. It should also be noted that the FEM 
at each end of the beam is ⅔Pzd = wpl2/12, which is independent of the initial 
eccentricities at each end eA and eA . Evidently, the moment induced by pre-
stress depends only on the prestressing force and the cable drape, and not 
on the end eccentricities. This was foreshadowed in the discussion of linear 
transformation in Section 11.3.3.

The secondary moment diagram is obtained by subtracting the primary 
moment diagram from the total moment diagram. From Figures 11.11c and d, 
it can be seen that:

	 M MP z e P z eA
s

B
s

d A d Band( ) ( )= − = −2
3

2
3 	 (11.20)

The secondary curvature diagram caused by the linearly varying secondary 
moments is shown in Figure 11.11e.

Case (b): The beam in Figure 11.12 is prestressed with a single straight ten-
don with arbitrary end eccentricities. This beam is essentially the same as 
that in the previous example, except that the tendon drape is zero. To satisfy 
the moment-area theorems in this case, the baseline of the total curvature 
diagram coincides with the primary curvature diagram, i.e. the total moment 
induced by prestress is everywhere zero, and the primary and secondary 
moments at each cross-section are equal in magnitude and opposite in sign. 
By substituting zd = 0 in Equation 11.20, the secondary moments at each end 
of the beam of Figure 11.12 are:
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Case (c): The beam in Figure 11.13a is prestressed with the harped tendon 
shown. The primary curvature diagram is shown in Figure 11.13b, and the total 
curvature diagram, established, for example, by satisfaction of the moment-
area theorems, is illustrated in Figure 11.13c. As for the previous case, the 
total curvature (moment) induced by prestress is independent of the end 
eccentricities eA and eB. The curvature induced by the secondary moments is 
given in Figure 11.13d, and the secondary moments at each support are:
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11.3.5  Practical tendon profiles

In a span of a continuous beam, it is rarely possible to use a tendon pro-
file that consists of a single parabola, as shown in Figure 11.11a. A more 
realistic tendon profile consists of a series of segments each with a differ-
ent shape. Frequently, the tendon profile is a series of parabolic segments, 
concave in the spans and convex over the interior supports, as illustrated in 
Figure 11.1a. The convex segments are required to avoid sharp kinks in the 
tendon at the supports.

Consider the span shown in Figure 11.14, with a tendon profile consist-
ing of three parabolic segments. Adjacent segments are said to be compat-
ible at their point of intersection if the slope of each segment is the same. 
Compatible segments are desirable to avoid kinks in the tendon profile. In 
Figure 11.14, B is the point of maximum eccentricity (el) and is located a 
distance of αl l from the interior support. Parabolas 1 and 2 each have zero 
slope at B. The point of inflection at C between the concave parabola 2 and 
the convex parabola 3 is located a distance α2 l from the interior support. 
Parabolas 2 and 3 have the same slope at C. Over the internal support at D, 
the eccentricity is e2 and the slope of parabola 3 is zero. By equating the 
slopes of parabolas 2 and 3 at C, it can be shown that:

	
h e ei 2= +α

α
2

1
1( )	 (11.22)

and that the point C lies on the straight line joining the points of maximum 
eccentricity, B and D. The slope of parabolas 2 and 3 at C is:
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Figure 11.14 � Tendon profile with parabolic segments.
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The curvatures of each of the three parabolic segments (κpl, κp2 and κp3) 
are given by:
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where rl, r2 and r3 are the radii of curvature of parabolas 1, 2 and 3, 
respectively.

The length of the convex parabola α2 l should be selected so that the 
radius of curvature of the tendon is such that the duct containing the ten-
don can be bent to the desired profile without damage. For a multi-strand 
system, r3 should be greater than about 75ϕ, where ϕ is the inside diameter 
of the duct.

Equations 11.22 through 11.26 are useful for the calculation of the 
equivalent loads imposed by a realistic draped tendon profile and the deter-
mination of the effects of these loads on the behaviour of a continuous 
structure.

EXAMPLE 11.3

Determine the total and secondary moments caused by prestress in the 
fixed-end beam shown in Figure 11.15a. The tendon profile ACDEB con-
sists of three parabolic segments and the prestressing force is 2500 kN 
throughout the 16 m span. The convex segments of the tendon at each 
end of the beam are identical, with zero slope at A and B and a radius 
of curvature r3 = 8 m. The tendon eccentricity at mid-span and at each 
support is 300 mm, i.e. e l = e2 = 0.3 m and α1 (as defined in Figure 11.14) 
equals 0.5.

From Equation 11.26:
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The convex parabolic segments therefore extend for a distance α2 l = 1.2 m at 
each end of the span, as shown. The depth of the points of inflection (points C 
and E) below the tendon level at each support is obtained using Equation 11.22:

	
hi  m= + =0 075

0 5
0 3 0 3 0 09

.
.

( . . ) .

The curvature of the concave parabolic segment CDE extending over the 
middle 16 − (2 × 1.2) = 13.6 m of the span is given by Equation 11.25:
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and the equivalent uniformly distributed upward load exerted by the con-
crete tendon is:
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Figure 11.15 � Fixed-end beam with curvilinear tendon profile (Example 11.3). (a) 
Elevation. (b) Equivalent loads. (c) Total moment diagram caused by 
prestress (kNm). (d) Secondary moment diagram (kNm).
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11.3.6 � Members with varying cross-sectional 
properties

The techniques presented for the analysis of continuous structures hold 
equally well for members with non-uniform section properties. Section 
properties may vary owing to haunching or changes in member depth (as 
illustrated in Figures 11.1b, c and e), or from varying web and flange thick-
nesses, or simply from cracking in regions of high moment.

Increasing the member depth by haunching is frequently used to 
increase the tendon eccentricity in the peak moment regions at the 
interior supports. In such members, the position of the centroidal axis 

The equivalent load wp2 acts over the middle 13.6 m of the span. The equiva-
lent downward uniformly distributed load imposed at each end of the beam 
by the convex tendons AC and EB is:
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3
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The equivalent loads on the beam imposed by the tendon are shown in Figure 
11.15b. For this beam, the vertical component of prestress at each support 
is zero (since the slope of the tendon is zero) and the uniformly distributed 
loads are self-equilibrating.

The total moment diagram caused by prestress for this prismatic beam may 
be obtained by using the moment-area principles discussed in Example 11.2, 
i.e. by translating the baseline of the primary moment diagram (Pe) so that the 
net area under the moment diagram is zero. Alternatively, the total moment 
diagram may be obtained by calculating the FEMs caused by the equivalent 
distributed loads in Figure 11.15b. The total moment diagram caused by pre-
stress is shown in Figure 11.15c. By subtracting the primary moments from 
the total moments, the linear secondary moment diagram shown in Figure 
11.15d is obtained.

If an idealised tendon such as that shown in Figure 11.11a was used to model 
this more realistic profile (with eA = eB = 0.3 m and zd = 0.6 m), the total 
moment at each end (see Figure 11.11d) is:

	

2
3

2 2500 0 6
3

1000
Pzd  kN= × × =.

which is about 8% higher than the value shown in Figure 11.15c.
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varies along the member. If the tendon profile is a smooth curve and 
the centroidal axis suffers sharp changes in direction or abrupt steps 
(where the member depth changes suddenly), the total moment dia-
gram caused by prestress also exhibits corresponding kinks or steps, as 
shown in Figure 11.16.

To determine the FEMs and carry-over factors for members with 
varying section properties and to calculate the member displacements, 
the principle of virtual work may be used. The internal work is readily 
calculated using Equation 11.3 by expressing the section properties 
(EI and EA) as functions of position x. By dividing the structure into 
small segments, Equation 11.5 can be used in many practical problems to 
provide a close approximation of the volume integral for internal work in 
a non-prismatic member.

Centroidal axis Tendon

e2

Pe2

Pe1

e1
Elevation

Total moment

Total moment

Tendon

Elevation

Primary moment (Pe)

Centroidal axis

Kink

Step

(b)

(a)

Primary moment (Pe)

Figure 11.16 � Moments induced by prestress in haunched members. (a) Member with 
tapering soffit. (b) Member with stepped soffit.
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11.3.7  Effects of creep

When a statically indeterminate member is subjected to an imposed defor-
mation, the resulting internal actions are proportional to the member stiff-
ness. Since creep gradually reduces stiffness, the internal actions caused 
by an imposed deformation in a concrete structure decrease with time. 
Imposed deformations are caused by volume changes, such as shrinkage 
and temperature changes, and by support settlements or rotations. Under 
these deformations, the time-dependent restraining actions can be esti-
mated using a reduced or effective modulus for concrete. The age-adjusted 
effective modulus defined in Equations 4.25 and 5.57 (see Sections 4.2.4.3 
and 5.7.2) may be used to model adequately the effects of creep.

Provided the creep characteristics are uniform throughout a structure, 
creep does not cause redistribution of internal actions caused by imposed 
loads. The effect of creep in this case is similar to a gradual and uniform 
change in the elastic modulus. Deformations increase significantly, but 
internal actions are unaffected. When the creep characteristics are not uni-
form, redistribution of internal actions does occur with time. In real struc-
tures, the creep characteristics are rarely uniform throughout. Portions of 
a structure may be made of different materials or of concrete with different 
composition or age. The rate of change of curvature due to creep is depen-
dent on the extent of cracking and the size and position of the bonded 
reinforcement. The creep characteristics are therefore not uniform if part of 
the structure has cracked or when the bonded reinforcement layout varies 
along the member. In general, internal actions are redistributed from the 
regions with the higher creep rate to the regions with the lower creep rate. 
Nevertheless, the creep-induced redistribution of internal actions in inde-
terminate structures is generally relatively small.

Since prestress imposes equivalent loads on structures rather than fixed 
deformations, the internal actions caused by prestress are not significantly 
affected by creep. The internal actions are affected in so far as creep causes 
a reduction of the prestressing force by anything between zero and about 
12%. Hyperstatic reactions induced by prestress in indeterminate struc-
tures are not therefore significantly relieved by creep.

If the structural system changes after the application of some of the pre-
stress, creep may cause a change in the hyperstatic reactions. For example, 
the two-span beam shown in Figure 11.17 is fabricated as two precast units 
of length l and joined together at the interior support by a cast in-situ joint. 
Creep causes a gradual development of hyperstatic reactions with time and 
the resulting secondary moments and shears. After the in-situ joint is con-
structed, the structure is essentially the same as that shown in Figure 11.5a.

Before the joint in Figure 11.17 is cast, the two precast units are simply-
supported, with zero deflection and some non-zero slope at the interior support. 
Immediately after the joint is made and continuity is established, the pri-
mary moment in the structure is the same as that shown in Figure 11.5b, 
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but the secondary moment at B (and elsewhere) is zero. With time, creep 
causes a gradual change in the curvature on each cross-section. If the sup-
port at B was released, the member would gradually deflect upwards due 
to the creep-induced hogging curvature associated with the primary 
moment Pe. If it is assumed that the creep characteristics are uniform and 
that the prestressing force is constant throughout, the time-dependent 
upward deflection caused by prestress is obtained by multiplying the deflec-
tion given in Equation 11.9 by the creep coefficient (adjusted to include the 
restraint offered to creep by the bonded reinforcement):
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where the parameter α was introduced in Equation 5.183, and defined in 
Section 5.11.4.1, and is typically in the range 1.1–1.5 for an uncracked 
member containing bonded reinforcement.

The short-term deflection at B caused by a unit value of the redundant force 
applied at the release B is given in Equation 11.10. Owing to creep, however, 
the redundant at B is gradually applied to the structure. It is therefore appro-
priate to use the age-adjusted effective modulus (Ec.eff given in Equation 4.25) 
to determine the corresponding time-dependent deformations (elastic plus 
creep). Substituting Ec.eff for E in Equation 11.10 gives:

	
f t

l t t
E I

B
k

cm

/
( )

[ ( , ) ]= +3
01

6
χϕ α

	 (11.28)

To enforce the compatibility condition that the deflection at B is zero, 
Equation 11.11 gives:
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where RB(t) is the creep-induced hyperstatic reaction at B and RB is the 
hyperstatic reaction that would have developed at B if the structure was ini-
tially continuous and then prestressed with a straight tendon. The reaction 

Cast in-situ joint

Precast beam
TendonA CB

Figure 11.17 � Providing continuity at an interior support.



472  Design of Prestressed Concrete to Eurocode 2

RB is shown in Figure 11.5 and given in Equation 11.12. For a prestressed 
element with typical long-term values of the creep, aging and restraint coef-
ficients (say φ (tk, 7) = 2.5, χ = 0.65 and α =1.2), Equation 11.29 gives:
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In general, if R is any hyperstatic reaction or the restrained internal 
action that would occur at a point due to prestress in a continuous member 
and R(t) is the corresponding creep-induced value if the member is made 
continuous only after the application of the prestress, then:
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If the creep characteristics are uniform throughout the structure, then 
Equation 11.30 may be applied to systems with any number of redundants.

When continuity is provided at the interior supports of a series of sim-
ple precast beams not only is the time-dependent deformation caused by 
prestress restrained, but the deformation due to the external loads is also 
restrained. For all external loads applied after continuity has been estab-
lished, the effects can be calculated by moment distribution or an equivalent 
method of analysis. Due to the loads applied prior to casting the joints, when 
the precast units are simply-supported (such as self-weight), the moment at 
each interior support is initially zero. However, after the joint has been cast, 
the creep-induced deformation resulting from the self-weight moments in the 
spans is restrained and moments develop at the supports. For the beam shown 
in Figure 11.5a, the moment at B due to self-weight is MB = wswl2/8. For the 
segmental beam shown in Figure 11.17, it can be shown that the restraining 
moment that develops at support B due to creep and self-weight is:
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EXAMPLE 11.4

Consider two simply-supported pretensioned concrete planks, erected 
over two adjacent spans as shown in Figure 11.17. An in-situ reinforced con-
crete joint is cast at the interior support to provide continuity. Each plank 
is 1000 mm wide by 150 mm thick and pretensioned with straight strands 
at a constant depth of 110 mm below the top fibre, with Ap = 400 mm2 and 
Pinit = 500 kN. A typical cross-section is shown in Figure 11.18. The span of 
each plank is l = 6 m. If it is assumed that the continuity is provided imme-
diately after the transfer of prestress, the reactions that develop with time 
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due to creep are to be determined. For convenience and to better illus-
trate the effects of creep in this situation, shrinkage is not considered and 
the self-weight of the planks is also ignored. The material properties are 
Ecm,0 = 30,000 MPa, fctm = 3.0 MPa, φ (tk, t0) = 2.0, χ(tk, t0) = 0.65, εcs = 0 and 
Ec.eff = 13,040 MPa. From Equation 5.185, α =1.15.

Immediately after transfer, and before any creep has taken place, the 
curvature on each cross-section caused by the eccentric prestress may 
be calculated using the procedure outlined in Section 5.6.2 giving κ0 = 
−2.02 × 10–6 mm−1. The top and bottom fibre concrete stresses are 
σtop,0 = 1.30 MPa and σbtm,0 = −7.81 MPa, so that cracking has not occurred 
at transfer.

In the absence of any restraint at the supports, the curvature on each 
cross-section would change with time due to creep from κ0 to κk = −5.81 × 
10–6 mm−1 (calculated using the procedure outlined in Section 5.7.3). If the 
support at B in Figure 11.17 was removed, the deflection at B (ΔvB(tk)) that 
would occur with time due to the change in curvature due to creep ((κk)cr = 
κk − κ0 = −3.79 × 10–6 mm−1) can be calculated from Equation 5.165 for the 
planks that are now spanning 12 m:

∆v tB k mm  (( )
,

. ( . ) . .= − + × − − × = −−12 000
96

3 79 10 3 79 3 79 10 68 2
2

6 ii.e. upward)

The deflection at B caused by a unit value of the vertical redundant reac-
tion force gradually applied at the release is calculated using the proce-
dures of Section 11.3.7 and for this example is given by Equation 11.28. 
With the second moment of area of the age-adjusted transformed cross-
section I = 288.3 × 106 mm4, Equation 11.28 gives:
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Figure 11.18 � Cross-section of planks (Example 11.4).
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11.4  STATICALLY INDETERMINATE FRAMES

The equivalent load method is a convenient approach for the determination 
of primary and secondary moments in framed structures. In the treatment 
of continuous beams in the previous section, it was assumed that all mem-
bers were free to undergo axial shortening. This is often not the case in real 
structures. When the horizontal member of a portal frame, for example, is 
prestressed, significant restraint to axial shortening may be provided by the 
flexural stiffness of the vertical columns. Moment distribution can be used 
to determine the internal actions that develop in the structure as a result of 
the axial restraint.

Consider the single-bay portal frame shown in Figure 11.19a. Owing to 
the axial shortening of the girder BC during prestressing, the top of each 
column moves laterally by an amount Δ. The FEMs induced in the struc-
ture are shown in Figure 11.19b. If the girder BC was free to shorten (i.e. 
was unrestrained by the columns), the displacement Δ that would occur 
immediately after the application of a prestressing force P to the girder is:
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and the redundant force at B that gradually develops with time, RB(tk), 
is therefore:
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The reaction that would have developed at B due to prestress immediately 
after transfer, if the member had initially been continuous, is RB = 8621 N 
(Equation 11.12), and the approximation of Equation 11.29 gives:
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In this example, Equation 11.29 gives a value for RB(tk) that is within 2% 
of the value determined earlier and provides a quick and reasonable esti-
mate of the effects of creep. The secondary moment at B that develops 
with time due to prestress is 21.4 kNm, and this is 83% of the secondary 
moment that would have developed if the two planks had been continu-
ous at transfer.
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This value of Δ is usually used as a starting point in the analysis. The 
FEMs in the supporting columns due to a relative lateral end displacement 
of Δ are given by:
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and a moment distribution is performed to calculate the restraining actions 
produced by the FEMs. If the base of the frame at A was pinned rather 
than fixed, the FEM at B due to the rotation at A would be (3EcmIc/lc

2) Δ. In 
addition to bending in the beam and in the columns, an outward horizontal 
reaction is induced at the base of each column and the girder BC is therefore 
subjected to tension. The tension in BC will reduce the assumed axial short-
ening, usually by a small amount when the columns are relatively slender. 
If the reduction in Δ is significant, a second iteration could be performed 
using the reduced value for Δ to obtain a revised estimate of the FEMs and, 
hence, a more accurate estimate of the axial restraint.

The magnitude of the axial restraining actions depends on the relative 
stiffness of the columns and girder. The stiffer the columns, the greater is 
the restraint to axial shortening of the girder, and hence the larger is the 
reduction of prestress in the girder. On the other hand, slender columns 
offer less resistance to deformation and less restraint to the girder.

Axial shortening of the girder BC can also occur due to creep and shrinkage. 
A time analysis to include these effects can be made by using the age-adjusted 
effective modulus for concrete, instead of the elastic modulus, to model the 
gradually applied restraining actions caused by creep and shrinkage.

The internal actions that arise in a prestressed structure as a result of 
the restraint to axial deformation are sometimes called tertiary effects. 
These effects are added to the primary and secondary effects (calculated 
using the equivalent load method) to obtain the total effect of prestress in 
a framed structure.
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Figure 11.19 � Fixed-end moments in a fixed-base frame due to axial shortening of the 
girder.
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EXAMPLE 11.5

Determine the primary, secondary and tertiary moment distributions for the 
single-bay fixed-base portal frame shown in Figure 11.20a. The vertical col-
umns AB and ED are prestressed with a straight tendon profile, while the 
horizontal girder BD is post-tensioned with a parabolic profile, as shown. 
The girder BD has a rectangular cross-section 1200 mm deep by 450 mm 
wide and the column dimensions are 900 mm by 450 mm. The girder car-
ries a uniformly distributed live load of 10 kN/m, a superimposed dead load 
of 5 kN/m and the self-weight of the girder is 13 kN/m. If Ecm = 30,000 MPa, 
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Figure 11.20 � Actions in fixed-base portal frame (Example 11.5). (a) Elevation. 
(b) Moments due to gravity loads (kNm). (c) Equivalent loads due 
to prestress. (d) Primary + secondary moments due to prestress 
(kNm). (e) Moments caused by axial restraint (kNm).
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the moments caused by the total uniformly distributed load on the girder 
(live load + dead load + self-weight = 28 kN/m) are calculated using moment 
distribution and are shown in Figure 11.20b.

By satisfying the serviceability requirements (as discussed in Chapter 5), 
an estimate of the prestressing force and the tendon profile can be made for 
both the girder BD and the columns. For the girder, the tendon profile shown 
in Figure 11.20a is selected and the effective prestress Pm,t.BD required to bal-
ance the self-weight plus dead load is determined:
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If the time-dependent losses are taken as 25%, the average prestressing 
force in the girder immediately after transfer is Pm0.BD = 3000 kN.

To determine the effective prestress in the columns, the primary moments 
in the girder and in the columns at the corner connections B and D are taken 
to be the same. If the eccentricity in the column at B (to the centroidal axis of 
the column) is 400 mm, as shown in Figure 11.20a, then 0.4Pm,t.AB = 0.45Pm,t.BD. 
Therefore:
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The time-dependent losses in the columns are also taken as 25% and the 
prestressing force immediately after transfer is therefore Pm0.AB = 3375 kN.

The equivalent load method and moment distribution are used here to 
calculate the primary and secondary moments caused by prestress. The 
equivalent loads imposed by the tendon on the concrete members imme-
diately after prestressing are shown in Figure 11.20c. The FEM caused by 
prestress at each end of span BD is obtained using the results of the fixed-
end beam analysed in Example 11.2 – case (a) (and illustrated in Figure 11.11) 
and is given by:

	
M

P z
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The FEMs in the vertical columns due to the straight tendon profile are zero, 
as was determined for the fixed-end beam analysed in Example 11.2 – case (b). 
From a moment distribution, the primary and secondary moments caused by 
prestress are calculated and are illustrated in Figure 11.20d.
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11.5  DESIGN OF CONTINUOUS BEAMS

11.5.1  General

The design procedures outlined in Chapter 10 for statically determi-
nate beams can be extended readily to cover the design of indeterminate 
beams. The selection of tendon profile and magnitude of prestress in a 
continuous beam is based on serviceability considerations, as is the case 
for determinate beams. Load balancing is a commonly used technique 
for making an initial estimate of the level of prestress required to control 
deflections. The design of individual cross-sections for bending and shear 
strength, the estimation of losses of prestress and the design of the anchor-
age zones are the same for all types of beams, irrespective of the number 
of redundants.

In continuous beams, the satisfaction of concrete stress limits for crack 
control must involve consideration of both the primary and secondary 
moments caused by prestress. Concrete stresses resulting from prestress 
should be calculated using the pressure line, rather than the tendon profile, 
as the position of the resultant prestress in the concrete.

Because of the relatively large number of dependent and related variables, 
the design of continuous beams tends to be more iterative than the design 
of simple beams and more dependent on the experience and engineering 
judgement of the designer. A thorough understanding of the behaviour of 
continuous prestressed beams and knowledge of the implications of each 
design decision are of great benefit.

To calculate the tertiary effect of axial restraint, the axial shortening of BD 
immediately after prestressing is estimated using Equation 11.31:

	
∆ = ×
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The FEM in the columns is obtained from Equation 11.32 and is given by:
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Moment distribution produces the tertiary moments shown in Figure 11.20e. 
The restraining tensile axial force induced in the girder BD is only 12.6 kN 
and, compared with the initial prestress, is insignificant in this case.
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11.5.2  Service load range: Before cracking

Prior to cracking, the behaviour of a continuous beam is essentially linear 
and the principle of superposition can be used in the analysis. This means 
that the internal actions and deformations caused by prestress and those 
caused by the external loads can be calculated separately using linear anal-
yses and the combined effects obtained by simple summation.

Just as for simple beams, a designer must ensure that a continuous beam 
is serviceable at the two critical loading stages: immediately after transfer 
(when the prestress is at its maximum and the applied service loads are usu-
ally small) and under the full loads after all losses have taken place (when 
the prestress is at a minimum and the applied loads are at a maximum).

In order to obtain a good estimate of the in-service behaviour, the 
prestressing force must be accurately known at each cross-section. This 
involves a reliable estimate of losses, both short-term and long-term. It is 
also important to know the load at which flexural cracking is likely to occur. 
In Sections 5.7.3 and 5.7.4, it was observed that creep and shrinkage gradu-
ally relieve the concrete of some of its initial prestress and transfer the resul-
tant compression from the concrete to the bonded reinforcement. Therefore, 
a reliable estimate of the cracking moment at a particular cross-section must 
involve consideration of the time-dependent effects of creep and shrinkage.

Prior to cracking, load balancing can be used in design to establish a 
suitable effective prestressing force and tendon profile. The concept of load 
balancing was introduced in Section 1.4.3 and involves balancing a pre-
selected portion of the applied load (and self-weight) with the transverse 
equivalent load imposed on the beam by the draped tendons. Under the 
balanced load wbal, the curvature on each cross-section is zero, the beam 
does not therefore deflect, and each cross-section is subjected only to the 
longitudinal axial prestress applied at the anchorages.

By selecting a parabolic tendon profile with the sag zd as large as cover 
requirements permit, the minimum prestressing force required to balance 
wbal is calculated by rearranging Equation 1.7 to give:

	
P

w l
z

= bal

d

2

8
	 (11.33)

In order to control the final deflection of a continuous beam, the bal-
anced load wbal is often taken to be the sustained or permanent load (or 
some significant percentage of it).

Because of its simplicity, load balancing is probably the most popular 
approach for determining the prestressing force in a continuous member. 
Control of deflection is an obvious attraction. However, load balancing 
does not guard against cracking caused by the unbalanced loads, and it 
does not ensure that individual cross-sections possess adequate strength. 
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If the balanced load is small, and hence the prestressing force and prestress-
ing steel quantities are also small, significant quantities of non-prestressed 
steel may be required to increase the strength of the critical cross-sections 
and to limit crack widths under full service loads.

At service loads prior to cracking, the concrete stresses on any cross-
section of a continuous beam can be calculated easily by considering only 
the unbalanced load and the longitudinal prestress. The transverse loads 
imposed on the beam by the draped tendons have been effectively cancelled 
by wbal. The total moment diagram due to prestress (primary + secondary 
moments) is equal and opposite to the moment diagram caused by wbal. The 
primary and secondary moments induced by prestress need not, therefore, 
enter into the calculations, and there is no need to calculate the hyperstatic 
reactions at this stage (at least for the determination of concrete stresses). 
In Example 11.6, the load balancing approach is applied to a two-span 
continuous member.

In the discussion to this point, the prestressing force has been assumed to 
be constant throughout the member. In long members, friction losses may 
be significant and the assumption of constant prestress may lead to serious 
errors. To account for variations in the prestressing force with distance 
from the anchorage, a continuous member may be divided into segments. 
Within each segment, the prestressing force may be assumed constant and 
equal to its value at the midpoint of the segment. In many cases, it may be 
acceptable to adopt each individual span as a segment of constant prestress. 
In other cases, it may be necessary to choose smaller segments to model the 
effects of variations in prestress more accurately.

It is possible, although rarely necessary, to calculate the equivalent loads 
due to a continuously varying prestressing force. With the shape of the ten-
don profile throughout the member and the variation of prestress due to fric-
tion and draw-in determined previously, the transverse equivalent load at 
any point is equal to the curvature of the tendon (obtained by differentiating 
the equation for the tendon shape twice) times the prestressing force at that 
point. The effect of prestress due to these non-uniform equivalent transverse 
loads can then be determined using the same procedures as for uniform loads.

EXAMPLE 11.6  LOAD BALANCING

The idealised parabolic tendons in the two-span beam shown in Figure 11.21 
are required to balance a uniformly distributed gravity load of 20 kN/m. 
The beam cross-section is rectangular: 800  mm deep and 300  mm wide. 
Determine the concrete stress distribution on the cross-section at B over 
the interior support when the total uniformly distributed gravity load is 
25 kN/m. Assume that the prestressing force is constant throughout.
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In span AB, the tendon sag is zd.AB = 325 + (0.5 × 325) = 487.5 mm and the 
required prestressing force is obtained from Equation 11.33:

	
P = ×

×
=20 16

8 0 4875
1313

2

.
 kN

If P is constant throughout, the required sag in BC may also be obtained from 
Equation 11.33:

	
zd.BC  m  mm= ×

×
= =20 14
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2

.

and the eccentricity of the tendon at the midpoint of the span BC is equal to:

	 373 − (0.5 × 325) = 210.5 mm (below the centroidal axis).

Under the balanced load of 20 kN/m, the beam is subjected only to the axial 
prestress applied at each anchorage. The concrete stress on every cross-
section is uniform and equal to:

	
σ = − = − ×
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The bending moment at B due to the uniformly distributed unbalanced load 
of 5 kN/m is −142.5 kNm (obtained by moment distribution or an equivalent 
method of analysis), and the extreme fibre concrete stresses at B caused by 
the unbalanced moment are:
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Figure 11.21 � Two-span beam (Example 11.6).
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11.5.3  Service load range: After cracking

When the balanced load is relatively small, the unbalanced load may cause 
cracking in the peak moment regions over the interior supports and at mid-
span. When cracking occurs, the stiffness of the member is reduced in the 
vicinity of the cracks. The change in relative stiffness between the positive 
and negative moment regions causes a redistribution of bending moments. 
In prestressed members, the reduction of stiffness caused by cracking in 
a particular region is not as great as in an equivalent reinforced concrete 
member and the redistribution of bending moments under short-term ser-
vice loads can usually be ignored. It is therefore usual to calculate beam 
moments using a linear analysis both before and after cracking.

The effect of cracking should not be ignored, however, when calculating 
the deflection of the member. A cracked section analysis (see Section 5.8.3) 
can be used to determine the effective moment of inertia of the cracked 
section (see Section 5.11.3) and the corresponding initial curvature. After 
calculating the initial curvature at each end and at the midpoint of a span, 
the short-term deflection may be determined using Equation 5.165.

Under the sustained loads, the extent of cracking is usually not great. In 
many partially-prestressed members, the cracks over the interior supports 
(caused by the peak loads) are completely closed for most of the life of the 
member. The time-dependent change in curvature caused by creep, shrink-
age and relaxation at each support and at mid-span can be calculated using 
the time analysis of Section 5.7.3 (or Section 5.9.2 if the cracks remain 
open under the permanent loads). With the final curvature determined at 
the critical sections, the long-term deflection can also be calculated using 
Equation 5.165.

Alternatively, long-term deflections may be estimated from the short-term 
deflections using the approximate expressions outlined in Section 5.11.4.

The control of flexural cracking in a cracked prestressed beam is eas-
ily achieved by suitably detailing the bonded reinforcement in the cracked 
region, as discussed in Sections 5.12.1 and 5.12.2.

The resultant top and bottom fibre stresses at B caused by prestress and the 
applied load of 25 kN/m are therefore:

	 σc,top = −5.47 + 4.45 = −1.02 MPa

	 σc,btm = −5.47 − 4.45 = −9.92 MPa

The same result could have been obtained by adding the total stresses caused by 
the equivalent loads (longitudinal plus transverse forces imposed by prestress) 
to the stresses caused by a uniformly distributed gravity load of 25 kN/m.
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11.5.4 � Overload range and design 
resistance in bending

11.5.4.1  Behaviour

The behaviour of a continuous beam in the overload range depends on the 
ductility of the cross-sections in the regions of maximum moment. If the 
cross-sections are ductile, their moment–curvature relationships are simi-
lar to that shown in Figure 11.22.

Consider the propped cantilever shown in Figure 11.23a. Each cross-section 
is assumed to possess a ductile moment–curvature relationship. At service 
loads, bending moments in the beam, even in the post-cracking range, may 
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Figure 11.22 � Moment–curvature relationship for a ductile prestressed cross-section.
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Figure 11.23 � Moment redistribution in a propped cantilever. (a) Beam elevation. 
(b) Bending moment diagrams.
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be approximated reasonably using elastic analysis. The magnitude of the 
negative elastic moment at A caused by the uniformly distributed load w is 
wl 2/8. When the load w causes yielding of the reinforcement on the cross-
section at A, a sudden loss of stiffness occurs (as illustrated by the kinks in 
the moment–curvature relationship in Figure 11.22). Any further increase 
in load will cause large increases in curvature at A, but only small increases 
in moment. A constant-moment hinge (or plastic hinge) develops at A as 
the moment capacity is all but exhausted and the curvature becomes large. 
In reality, the moment at the hinge is not constant, but the rate of increase 
in moment with curvature in the post-yield range is very small. As loading 
increases and the moment at the support A remains constant or nearly so, 
the moment at mid-span increases until it too reaches the design resistance 
+MRd and a second plastic hinge develops. The formation of two constant-
moment hinges reduces a onefold indeterminate structure to a mechanism 
and collapse occurs. If an elastic–perfectly plastic moment–curvature rela-
tionship is assumed with the same moment capacity ± MRd at both hinge 
locations, the moment diagrams associated with the formation of the first 
and second hinges are as shown in Figure 11.23b. The ductility at A results 
in an increase in load carrying capacity of 46% above the load required to 
cause the first hinge to form.

Plastic analysis techniques can therefore be used to estimate the collapse 
load of a continuous prestressed beam provided the critical cross-sections 
are ductile, that is provided the moment–curvature relationships can rea-
sonably be assumed to be elastic–plastic and the critical cross-sections pos-
sess the necessary rotational capacity.

By subdividing a member into small segments and calculating the 
moment–curvature relationship for each segment, an incremental analysis 
may be used to calculate the collapse load more accurately.

11.5.4.2 � Permissible moment redistribution 
at the ultimate limit state condition

For the design of prestressed concrete continuous structures, a lower 
bound strength approach is generally specified in which the design bending 
moment MEd on every cross-section must be less than the design resistance 
MRd. Design bending moments at the ultimate limit state are usually calcu-
lated using elastic analysis and gross member stiffnesses (and are therefore 
very approximate). To account for the beneficial effects of moment redis-
tribution at the ultimate limit state, EN 1992-1-1 [3] generally permits the 
peak elastic moments at the interior supports of a continuous beam to be 
reduced provided the cross-sections at these supports are sufficiently duc-
tile. A reduction in the magnitudes of the negative moments at the ends of 
a span must be associated with an increase in the positive span moment 
and the resulting distribution of moments must remain in equilibrium with 
the applied loads. According to EN 1992-1-1 [3], the elastically determined 
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bending moments at any interior support may be reduced by redistribution, 
provided the designer can show that there is adequate rotational capacity 
in the peak moment regions. This requirement is deemed to be satisfied for 
continuous beams and slabs provided:

	 1.	the member is predominantly subject to flexure;
	 2.	the ratios of the lengths of adjacent spans are in the range 0.5–2.0;
	 3.	the ratio of the redistributed moment to the elastic bending moment δ 

satisfies:
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	 4.	in addition, δ must be greater than 0.7 where Class B and Class C 
reinforcement and tendons are used and δ must be greater than 0.8 
where Class A reinforcement is used; and

	 5.	the static equilibrium of the structure after redistribution is used to 
evaluate all action effects for strength design, including shear checks.

In Equations 11.34 and 11.35, xu is the depth of the neutral axis at the ulti-
mate limit state after redistribution, d is the effective depth of the section 
and εcu2 is the ultimate strain specified in Table 4.2.

EN 1992-1-1 [3] cautions that redistribution should not be carried out 
in situations where the rotational capacity cannot be assessed confidently, 
such as in the corners of prestressed frames. In addition, for the design of 
columns in framed structures, the elastic moments obtained from the frame 
analysis should be used without any redistribution.

11.5.4.3 � Secondary effects at the ultimate 
limit state condition

The design moment MEd may be calculated as the sum of the moments 
caused by the factored design load (dead, live, etc., as outlined in Section 
2.3.2, Equation 2.2) and the moments resulting from the hyperstatic reac-
tions caused by prestress (with a load factor of 1.0).

Earlier in this chapter, the hyperstatic reactions and the resulting sec-
ondary moments were calculated using linear-elastic analysis. Primary 
moments, secondary moments and the moments caused by the applied 
loads were calculated separately and summed to obtain the combined effect. 
Superposition is only applicable, however, when the member behaviour is 
linear. At overloads, behaviour is highly non-linear and it is not possible 
to distinguish between the moments caused by the applied loads and those 
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caused by the hyperstatic reactions. Consider the ductile propped cantilever 
in Figure 11.23. After the formation of the first plastic hinge at A, the beam 
becomes determinate for all subsequent load increments. With no rotational 
restraint at the hinge at A, the magnitude of the secondary moment is not at 
all clear. The total moment and shears can only be determined using a refined 
analysis that accurately takes into account the various sources of material 
non-linearity. It is meaningless to try to subdivide the total moments into 
individual components. The treatment of secondary moments at the ulti-
mate limit state has been studied extensively, see References [4]–[7].

Provided that the structure is ductile and moment redistribution occurs 
as the collapse load is approached, secondary moments can be ignored in 
design strength calculations. After all, the inclusion of an uncertain esti-
mate of the secondary moment generally amounts to nothing more than 
an increase in the support moments and a decrease in the span moment or 
vice versa, i.e. a redistribution of moments. Since the moments due to the 
factored design loads at the strength limit state are calculated using elastic 
analysis, there is no guarantee that the inclusion of the secondary moments 
(also calculated using gross stiffnesses) will provide better agreement with 
the actual moments in the structure after moment redistribution.

On the other hand, if the critical section at an interior support is non-
ductile, its design needs to be carefully considered. It is usually possible to 
avoid non-ductile sections by the inclusion of sufficient quantities of com-
pressive reinforcement. If non-ductile sections cannot be avoided, it is rec-
ommended that secondary moments (calculated using linear-elastic analysis 
and gross stiffnesses) are considered at the ultimate limit state. Where the 
secondary moment at an interior support has the same sign as the moment 
caused by the applied loads, it is usually conservative to include the secondary 
moment (with a load factor of 1.0) in the calculation of the design moment 
MEd. Where the secondary moment is of opposite sign to the moment caused 
by the applied loads, it is usually conservative to ignore its effect.

11.5.5  Steps in design

A suitable design sequence for a continuous prestressed concrete member 
is as follows:

	 1.	Determine the loads on the beam both at transfer and under the most 
severe load combination for the serviceability limit states. Make an 
initial selection of concrete strength and establish material properties.

		    Using approximate analysis techniques, estimate the maximum 
design moments at the critical sections in order to make an initial 
estimate of the cross-section size and self-weight. The moment and 
deflection coefficients given in Figure 11.24 may prove useful.

		    Determine appropriate cross-section sizes at the critical sections. 
The discussion in Section 10.3 is relevant here. Equation 10.11 may 
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be used to obtain cross-sectional dimensions that are suitable from 
the point of view of flexural strength and ductility. By estimating the 
maximum unbalanced load, the sustained part of the unbalanced 
load and by specifying a maximum deflection limit for the struc-
ture, a minimum moment of inertia may be selected from Equation 
10.5 (if the member is to be crack free) or Equation 10.6 (if crack-
ing does occur). If a fully-prestressed (uncracked) beam is required, 
Equation 10.1 can be used to determine the minimum section modu-
lus at each critical section.

		    For continuous beams in building structures, the span-to-depth 
ratio is usually in the range 24–30, but this depends on the load level 
and the type of cross-section.

	 2.	Determine the bending moment and shear force envelopes both at 
transfer and under the full service loads. These envelopes should 
include the effects of self-weight, superimposed permanent dead and 
live loads and the maximum and minimum values caused by tran-
sient loads. Where they are significant, pattern loadings such as those 
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Figure 11.24 � Moment and deflection coefficients for equal span elastic beams.
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shown in Figure 11.24 should be considered. For example, the mini-
mum moment at the midpoint of a particular span may not be due to 
dead load only but may result when the transient live load occurs only 
on adjacent spans. Consideration of pattern loading is most impor-
tant in structures supporting large transient live loads.

	 3.	Determine trial values for the prestressing force and tendon profile. 
Assume idealised tendon profiles that follow the shape of the bending 
moment diagram caused by the anticipated balanced loads (or as near 
to it as practical). In each span, make the tendon drape as large as 
possible in order to minimise the required prestress.

		    If a fully-prestressed beam is required, the trial prestress and eccen-
tricity at each critical section can be determined using the procedure 
outlined in Section 5.4.1. At this stage, it is necessary to assume that 
the tendon profile is concordant. If load balancing is used, the maxi-
mum available eccentricity is generally selected at mid-span and over 
each interior support and the prestress required to balance a selected 
portion of the applied load (wbal) is calculated using Equation 11.33. 
The balanced load selected in the initial stages of design may need to 
be adjusted later when serviceability and strength checks are made.

		    Determine the number and size of tendons and the appropriate duct 
diameter(s).

	 4.	Replace the kink in the idealised tendon profile at each interior sup-
port with a short convex parabolic segment as discussed in Section 
11.3.5. Determine the equivalent loads due to prestress and using 
moment distribution (or an equivalent method of analysis) determine 
the total moment caused by prestress at transfer and after the assumed 
time-dependent losses. By subtracting the primary moments from the 
total moments, calculate the secondary moment diagram and, from 
statics, determine the hyperstatic reactions at each support.

	 5.	Concrete stresses at any cross-section caused by prestress (includ-
ing both primary and secondary effects) and the applied loads may 
now be checked at transfer and after all losses. If the beam is fully-
prestressed, the trial estimate of prestress made in Step 3 was based 
on the assumption of a concordant tendon profile and secondary 
moments were ignored. If secondary moments are significant, stresses 
calculated here may not be within acceptable limits and a variation of 
either the prestressing force or the eccentricity may be required.

	 6.	Calculate the losses of prestress and check the assumptions made 
earlier.

	 7.	Check the design bending resistance at each critical section. If neces-
sary, additional non-prestressed tensile reinforcement may be used to 
increase strength. Add compressive reinforcement to improve ductility, 
if required. Some moment redistribution at the ultimate limit state may 
be permissible to reduce peak negative moments at interior supports, 
provided that cross-sections at the supports have adequate ductility.
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	 8.	Check the deflection at transfer and the final long-term deflection. For 
partially-prestressed designs, check crack control in regions of peak 
moment. Consider the inclusion of non-prestressed steel to reduce 
time-dependent deformations, if necessary. Adjust the section size or 
the prestress level (or both), if the calculated deflection is excessive.

	 9.	Check the design shear resistance of beam (and the torsional resis-
tance, if applicable) in accordance with the provisions of Chapter 7. 
Design suitable shear reinforcement where required.

	 10.	Design the anchorage zone using the procedures presented in Chapter 8.

Note: Durability and fire protection requirements are usually satisfied by 
an appropriate choice of concrete strength and cover to the tendons in 
Steps 1 and 3.

EXAMPLE 11.7

Design the four-span beam shown in Figure 11.25. The beam has a uniform 
I-shaped cross-section and carries a uniformly distributed dead load of 
25 kN/m (not including self-weight) and a transient live load of 20 kN/m. 
Controlled cracking is to be permitted at peak loads. The beam is prestressed 
by jacking simultaneously from each end, thereby maintaining symmetry of 
the prestressing force about the central support C and avoiding excessive 
friction losses. At 28 days, fck = 50 MPa (fcd = 33.3 MPa); at transfer, fck(t) = 
40 MPa (fcd(t) = 26.67 MPa) and fpk = 1860 MPa.

(1) and (2): The bending moments caused by the applied loads must first be 
determined. Because the beam is symmetrical about the central support at C, 
the bending moment envelopes can be constructed from the moment dia-
grams shown in Figure 11.26 caused by the distributed load patterns shown. 
These moment diagrams were calculated for a unit distributed load (1 kN/m) 
using moment distribution.

If the self-weight is estimated at 15 kN/m, the total dead load is 40 kN/m, 
and the factored design loads are (Equation 2.2):

	 γ γG G Q Q kN/m and kN/mw w= × = = × =1 35 40 1 5 20 3054. .

A B B́ ÁC
20 m 30 m 30 m 20 m

Figure 11.25 � Elevation of beam (Example 11.7).
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The maximum design moment MEd occurs over the support C, when the 
transient live load is on only the adjacent spans BC and CB′. Therefore, using 
the moment coefficients in Figure 11.26:

	 MEd = −80.9 × 54 + (−46.3 − 46.3) × 30 = 7147 kNm
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Figure 11.26 � Bending moment diagrams (kNm) due to unit distributed loads 
(Example 11.7). (a) Load Case 1: (1 kN/m throughout). (b) Load 
Case 2: (1 kN/m on span AB only). (c) Load Case 3: (1 kN/m on 
span BC only).
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The overall dimensions of the cross-section are estimated using Equation 
10.12 (which is valid provided the compressive stress block at the ultimate 
limit state is within the flange of the I-section):
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Try b = 750 mm, d = 1100 mm and h = 1250 mm.
The span-to-depth ratio (l/h) for the interior span is 24 which should prove 

acceptable from a serviceability point of view.
To obtain a trial flange thickness, find the depth of the compressive stress 

block. The volume of the stress block is Fcd = ηfcd λxb (see Equation 6.6), with 
λ = 0.8 and η = 1.0 for 50 MPa concrete (Equations 6.2 and 6.4, respectively). 
With the lever arm between Fcd and the resultant tensile force taken to be 
0.85d, then:
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Adopt a tapering flange 250 mm thick at the tip and 350 mm thick at the web.
To ensure that the web width is adequate for shear, it is necessary to 

ensure that web-crushing does not occur. If the vertical component of the 
prestressing force Pv is ignored, then based on Equation 7.8:

	
V V

b z f
Ed Rd,max

cw w cd

v v(cot tan )
≤ =

+
α ν
θ θ

1 	 (11.7.1)

The maximum shear force VEd also occurs adjacent to support C when live 
load is applied to spans BC and CB′ and is equal to 1251 kN. Assuming the 
average axial prestress is approximated by σcp =5 MPa, Equation 7.10 gives 
αcw = 1.15, the distance between the tension and compression chords is 
z = 0.8h = 1000 mm, ν1 = 0.48 (from Equation 7.9) and cot θv = 2.5, Equation 
11.7.1 can be rearranged to give:

	
bw mm≥ + × ×

× × ×
=( . . )

. . .
2 5 0 4 1251 10

1 15 1000 0 48 33 33
197

3

It is advisable to select a web width significantly greater than this minimum 
value in order to avoid unnecessarily large quantities of transverse steel 
and the resulting steel congestion. Duct diameters of about 100  mm are 
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anticipated, with only one duct in any horizontal plane through the web. With 
these considerations, the web width is taken to be bw = 300 mm.

The trial cross-section and section properties are shown in Figure 11.27. 
The self-weight is 24 × 0.645 = 15.5 kN/m, which is a little more than 3% 
higher than originally assumed. The revised value of MEd at C is 7201 kNm.

(3) If 100 mm ducts are assumed (side by side in the flanges), the cover to the 
reinforcement is 40 mm, and 12 mm stirrups are used, the maximum eccen-
tricity over an interior support and at mid-span is:

	 emax = 625 − 40 − 12 −(¾ × 100) = 498 mm

The maximum sag (or drape) in the spans BC and CB′ is therefore:

	 (zd.BC)max = 2 × 498 = 996 mm

The balanced load is taken to be 32 kN/m (which is equal to self-weight 
plus about two-thirds of the additional dead load). From Equation 11.33, the 
required average effective prestress in span BC is:

	
( )

.
Pm,t BC  kN= ×

×
=32 30

8 0 996
3614

2

If the friction loss between the midpoint of span AB and the midpoint of BC 
is assumed to be 15% (to be subsequently checked), then:

	
( )

.
Pm,t AB  kN= =3614

0 85
4252

750

250

100

550

100

250

300

1250

A = 645 × 103 mm2

I = 111.5 × 109 mm4

Z = 178.4 × 106 mm3

Figure 11.27 � Trial section dimensions and properties.
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and the required drape in span AB is:

	
zd.AB  m  mm= =×

×
=32 20

8 4252
0 376 376

2

.

The idealised tendon profiles for spans AB and BC are shown in Figure 11.28, 
together with the corresponding tendon slopes and friction losses (calcu-
lated from Equation 5.148 with μ = 0.19 and k = 0.01). The friction losses at 
the mid-span of BC are 13.8%, and if the time-dependent losses in BC are 
assumed to be 15%, then the required jacking force is:

	
Pj  kN=

×
=3614

0 862 0 85
4932

. .

From Table 4.8, the cross-sectional area of a 12.5 mm diameter seven-wire 
strand is 93.0 mm2, fpk = 1860 MPa and fp0.1k = 1600 MPa. The maximum stress 
in the tendon at jacking is the smaller of 0.8 fpk = 1488 MPa or 0.9 fp0.1k = 
1440 MPa (see Section 5.3). Therefore, the maximum jacking force per strand 
is 1440 × 93 × 10–3 = 133.9 kN. The minimum number of strands is therefore 
4932/133.9 = 37.

Try two cables each containing 19 strands (Ap = 1767 mm2/cable).

A B C

Slope(rad) –0.0335 +0.0166 +0.0667 –0.1328 0 +0.1328 –0.1328

0θ 0.0501 0.1002  0.2997
(Avge:  0.2000) 

0.4325 0.5653  0.8309
(Avge:  0.6981)

0 10 20 35 50

0.0 0.0281 0.0732 0.138 0.204

0.0971 0.0409 0.0 0.0 0.0

0.903 0.931 0.927 0.862 0.796

4454 4592 4572 4251 3926

3786 3903 3886 3613 3337

498 498498127

Pm,t (kN)

Pm0 (kN)

Pm0/Pj

ΔPdi/Pj

ΔPμ/Pj

x (m)

Figure 11.28 � Friction losses and tendon forces.
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The two cables are to be positioned so that they are located side by 
side in the top flange over the interior supports and in the bottom flange 
at mid-span of BC but are located one above the other in the web. The 
position of the resultant tension in the tendons should follow the desired 
tendon profile.

The loss of prestress due to a 6 mm draw-in at the anchorage is calculated 
as outlined in Section 5.10.2.4. The slope of the prestress line adjacent to the 
anchorage at A is:

	
β =

×
=

0 0281
2

13 86
.

/
.
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l
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 N/mm

and, from Equation 5.150, the length of beam associated with the draw-in 
losses is:

	
Ldi  mm= × × × =195 000 2 1 767 6
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,

The loss of force at the jack due to slip at the anchorage is given by Equation 5.151:

	 ( ) ). , ( .∆P L PLdi di jdi  kN= = × × × = =−2 2 13 86 17 272 10 479 0 09713β

and at mid-span:
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The initial prestressing force Pm0 at each critical section (after friction and 
anchorage losses) is also shown in Figure 11.28, together with the effective 
prestress assuming 15% time-dependent losses.

The average effective prestress in span AB is 3858 kN (and not 4252 kN as 
previously assumed) and the average effective prestress in span BC is 3612 kN. 
The revised drape in AB and eccentricity at mid-span are:

	
z e z

e
d.AB AB d.AB

B mm and
2

mm= ×
×

× = = − =32 20
8 3858

10 166415
2

3

This minor adjustment to the tendon profile will not cause significant changes 
in the friction losses.
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(4) The beam is next analysed under the equivalent transverse loads caused 
by the effective prestress. The sharp kinks in the tendons over the supports 
B and C are replaced by short lengths with a convex parabolic shape, as 
illustrated and analysed in Example 11.3. In this example, it is assumed that 
the idealised tendons provide a close enough estimate of moments due to 
prestress.

The equivalent uniformly distributed transverse load due to the effective 
prestress is approximately 32 kN/m (upwards). Using the moment diagram in 
Figure 11.26a, the total moments due to prestress at B and C are:

	

( ) .

( ) .

M

M

pt B

pt C

 kNm

kNm

= + × =

= + × =

63 2 32

80 9 32 2589

2022

The secondary moments at B and C are obtained by subtracting the primary 
moments corresponding to the average prestress in each span (as was used 
for the calculation of total moments):

	

( ) ( ) ( )

. .

M M P eps B pt B m,t B

 kNm

= −

= ( ) ×− × + =2022 0 5 3858 3612 0 498 162

	 ( ) ( ) ( ) .M M P eps C pt C m,t C  kNm= − = − × =2589 3612 0 498 790

The total and secondary moment diagrams are shown in Figure 11.29, 
together with the corresponding hyperstatic reactions. It should be noted 
that, in the real beam, the equivalent transverse load varies along the beam 
as the prestressing force varies and the moment diagrams shown in Figure 
11.29 are only approximate. A more accurate estimate of the moments due 
to prestress and the hyperstatic reactions can be made by dividing each span 
into smaller segments (say four per span) and assuming constant prestress in 
each of these segments.

(5) It is prudent to check the concrete stresses at transfer. The equivalent 
transverse load at transfer is 32/0.85 = 37.6 kN/m (↑) and the self-weight is 
15.5 kN/m (↓). Therefore, the unbalanced load is 22.1 kN/m (↑). At support 
C, the moment caused by the uniformly distributed unbalanced load is (see 
Figure 11.26a):

	 ( ) . .Munbal C  kNm= + × =80 9 22 1 1788
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and the initial prestressing force at C is 3926 kN. The extreme fibre concrete 
stresses immediately after transfer at C are:

	
σtop = −

×
×

− ×
×

= − − = −3926 10
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178 4 10
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The mean tensile strength at transfer is fctm = 3.5 MPa and, therefore, crack-
ing at support C is likely to occur at transfer. Bonded reinforcement should 
therefore be provided in the bottom of the member over support C to con-
trol cracking at transfer. For this level of tension, it is reasonable to calculate 
the resultant tensile force on the concrete (assuming no cracking) and supply 
enough non-prestressed steel to carry this tension with a steel stress of 
200 MPa. In this case, the tensile zone on the uncracked section lies entirely 
within the 250 thick bottom flange and the resultant tension (determined 
from the calculated stress distribution) is 361 kN and therefore:

	
( )As btm  mm= × =361 10

200
1806

3
2

Use four 25 mm diameter reinforcing bars (1964 mm2) or equivalent.
As an alternative to the inclusion of this non-prestressed reinforcement, 

the member might be stage stressed, where only part of the prestress is 

+2022 +2022
+2589

–749
B C B́

–1299
A Á

–749–1299

(a)

(b)

(c)

+790
+162+162

8.1 12.8 41.8 12.8 8.1

Figure 11.29 � Moments and reactions caused by the average effective prestress. 
(a)  Total moment caused by prestress (kNm). (b) Secondary 
moments (kNm). (c) Hyperstatic reactions (kN).
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initially transferred to the concrete when just the self-weight is acting and the 
remaining prestress is applied when the sustained dead load (or part of it) is 
in place. This would avoid the situation considered earlier where the maxi-
mum prestress is applied when the minimum external load is acting.

Similar calculations are required to check for cracking at other sections 
at transfer. At support B, ( ) . .Munbal B  kNm= + × =63 2 22 1 1397 , Pm0 = 4572 kN, 
and σbtm = 0.74 MPa. Cracking will not occur at B at transfer. Evidently, sup-
port C is the only location where cracking is likely to occur at transfer.

For this partially-prestressed beam, before conditions under full loads can 
be checked (using cracked section analyses in the cracked regions), it is neces-
sary to determine the amount of non-prestressed steel required for strength.

(6) In this example, the time-dependent losses estimated earlier are assumed 
to be satisfactory. In practice, of course, losses should be calculated using the 
procedures of Section 5.10.3 and illustrated in Example 10.1.

(7) The strength of each cross-section is now checked. For the purpose of 
this example, calculations are provided only for the critical section at sup-
port C. From Step 3, the design moment due to the factored dead plus live 
loads (assuming elastic analysis) is −7201 kNm. The secondary moment can 
be included with a load factor of 1.0. Therefore:

	 MEd = −7201 + 790 = −6411 kNm

The inclusion of the secondary moment here is equivalent to a redistribution 
of moment at C of 11%. The secondary moment will cause a corresponding 
increase in the positive moments in the adjacent spans. If the cross-section at 
C is ductile, a further redistribution of moment may be permissible (as outlined 
in Section 11.5.4.2). No additional redistribution of moment is considered here.

The minimum required design moment resistance at C is MRd = 6411 kNm. 
Using the procedure outlined in Section 6.3.4, the strength of a cross-section 
with flange width b = 750 mm and containing Ap = 3534 mm2 at dp = 1123 mm is:

	 MRd1 = 5037 kNm (with x = 245.8 mm)

Additional non-prestressed tensile reinforcement (As)top is required in the top 
of the cross-section at C. If the distance from the reinforcement to the com-
pressive face is do = 1185 mm, then As can be calculated using Equation 6.25:
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Use eight 25 mm diameter bars in the top over support C (3928 mm2). This is 
in addition to the four 25 mm bars required in the bottom of the section for 
crack control at transfer. These bottom bars in the compressive zone at the 
ultimate limit state will improve ductility. From a strength analysis of the pro-
posed cross-section, with reinforcement details shown in Figure 11.30, the 
section at C satisfies the strength and moment redistribution requirements 
of EN 1992-1-1 [3].

Similar calculations show that four 25 mm diameter bars are required in 
the negative moment region over the first interior support at B and B’, but 
at the mid-span region in all spans, the prestressing steel alone provides ade-
quate moment capacity.

(8) It is necessary to check crack control under full service loads. Results are 
provided for the cross-section at support C. With the effective prestress bal-
ancing 32 kN/m, the unbalanced sustained load is wunbal.sus = 25 + 15.5 − 32 = 
8.5 kN/m and the unbalanced transient load is 20 kN/m. Using the moment 
coefficients in Figure 11.26 and the transient live load only on spans BC and 
CB’, the maximum unbalanced moment at support C is:

	 (Munbal)C = 8.5 × (−80.9) + 20 × (−92.6) = −2540 kNm

127
750

65

Ap
(As)top

(As)btm

65

1250
(As)btm = 1964 mm2

(As)top = 3928 mm2

Ap = 3534 mm2

Figure 11.30 � Reinforcement details for cross-section at support C (Example 11.7).
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With the tensile strength taken as fctm = 3.5 MPa, cracking will occur under the 
full unbalanced moment. The error associated with estimates of the cracking 
moment based on elastic stress calculation may be significantly large. As was 
discussed in Section 5.7.3 and illustrated in Example 5.5, creep and shrink-
age may cause a large redistribution of stress on the cross-section with time, 
particularly when the cross-section contains significant quantities of non-
prestressed reinforcement (as is the case here). If a more accurate estimate of 
stresses is required, a time analysis is recommended (see Section 5.7.3).
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moment at C is equal to the sum of the moment caused by the full external 
service loads and the secondary moment:

	 MC = −80.9 × (25 + 15.5) + 20 × (−92.6) + 790 = −4338 kNm

A cracked section analysis reveals that the tensile stress in the non-prestressed 
top steel at this moment is only 106 MPa, which is much less than the incre-
ment of 200 MPa specified in EN 1992-1-1 [3] and given in Table 5.5 for 25 mm 
diameter bars if the maximum crack width is to be limited to 0.3 mm. Crack 
widths should therefore be acceptably small.
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dance with the discussions in Chapter 10.
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Chapter 12

Two-way slabs
Behaviour and design

12.1  INTRODUCTION

Post-tensioned concrete floors form a large proportion of all prestressed 
concrete construction and are economically competitive with reinforced 
concrete slabs in most practical medium- to long-span situations.

Prestressing overcomes many of the disadvantages associated with 
reinforced concrete slabs. Deflection, which is almost always the gov-
erning design consideration, is better controlled in post-tensioned slabs. 
A designer is better able to reduce or even eliminate deflection by a careful 
choice of prestress. More slender slab systems are therefore possible, and 
this may result in increased head room or reduced floor-to-floor heights. 
Prestress also inhibits cracking and may be used to produce crack-free 
and watertight floors. Prestressed slabs generally have simple uncluttered 
steel layouts. Steel fixing and concrete placing are therefore quicker and 
easier. In addition, prestress improves punching shear (see Chapter 7) 
and reduces formwork stripping times and formwork costs. On the other 
hand, prestressing often produces significant axial shortening of slabs 
and careful attention to the detailing of movement joints is frequently 
necessary.

In this chapter, the analysis and design of the following common types 
of prestressed concrete slab systems are discussed (each type is illustrated 
in Figure 12.1):

	 1.	one-way slabs;
	 2.	edge-supported two-way slabs are rectangular slab panels supported 

on all four edges by either walls or beams. Each panel edge may be 
either continuous or discontinuous;

	 3.	flat plate slabs are continuous slabs of constant thickness supported 
by a rectangular grid of columns;
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	 4.	flat slabs with drop panels are similar to flat plate slabs but with local 
increases in the slab thickness (drop panels) over each supporting col-
umn; and

	 5.	band-beam and slab systems comprise wide shallow continuous 
prestressed beams in one direction (generally the longer span) with 
one-way prestressed or reinforced slabs in the transverse direction 
(generally the shorter span).

Almost all prestressed slabs are post-tensioned using draped tendons. Use 
is often made of flat-ducted tendons consisting five or less strands in a flat 
sheath with fan-shaped anchorages, as shown in Figure 12.2. Individual 
strands are usually stressed one at a time using light handheld hydraulic 
jacks. The flat ducts are structurally efficient and allow maximum tendon 
eccentricity and drape. These ducts are most often grouted after stressing 
to provide bond between the steel and the concrete.

In North America and elsewhere, unbonded construction is often used for 
slabs. Single plastic-coated greased tendons are generally used, resulting in 

(a)

(c) (d)

(b)

(e)

Figure 12.1 � Plan views of different slab systems. (a) One-way slab. (b) Edge-supported 
two-way slab. (c) Flat plate. (d) Flat slab with drop panels. (e) Band beam and slab.
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slightly lower costs, small increases in available tendon drape, the elimina-
tion of the grouting operation (therefore reducing cycle times) and reduced 
friction losses. However, unbonded construction also leads to reduced flex-
ural strength, reduced crack control (additional bonded reinforcement is 
often required), possible safety problems if a tendon is lost or damaged (by 
corrosion, fire, accident) and increased demolition problems. Single strands 
are also more difficult to fix to profile.

Prestressed concrete slabs are typically thin in relation to their spans. 
If a slab is too thin, it may suffer excessively large deflections when fully 
loaded or exhibit excessive camber after transfer. The initial selection of the 
thickness of a slab is usually governed by the serviceability requirements 
for the member. The selection is often based on personal experience or on 
recommended maximum span-to-depth ratios. While providing a useful 
starting point in design, such a selection of slab thickness does not neces-
sarily ensure that serviceability requirements are satisfied. Deflections at all 
critical stages in the slab’s history must be calculated and limited to accept-
able design values. Failure to predict deflections adequately has frequently 
resulted in serviceability problems.

In slab design, excessive deflection is a relatively common type of fail-
ure. This is particularly true for slabs supporting relatively large transitory 
live loads or for slabs not subjected to their full service loads until some 
considerable time after transfer. EN 1992-1-1 [1] requires that the camber, 
deflection and vibration frequency and amplitude of slabs must be within 
acceptable limits at service loads. In general, however, little guidance is 
given as to how this is to be done.

The service load behaviour of a concrete structure can be predicted far 
less reliably than its strength. Strength depends primarily on the properties 

75

19
Live anchorage

Dead end anchorages

Cross-section of duct

Flat duct

Flat duct

Figure 12.2 � Details of typical flat-ducted tendons and anchorages.
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of the reinforcing steel and tendons, while serviceability is most affected 
by the properties of concrete. The non-linear and inelastic nature of con-
crete complicates the calculation of deflection, even for line members such 
as beams. For two-way slab systems, the three-dimensional nature of the 
structure, the less well-defined influence of cracking and tension stiffening, 
and the development of biaxial creep and shrinkage strains create addi-
tional difficulties.

A more general discussion of the design of prestressed structures for ser-
viceability, including types of deflection problems and criteria for deflection 
control, was given in Section 2.5.2. Methods for determining the instanta-
neous and time-dependent behaviour of cross-sections at service loads were 
outlined in Sections 5.6 through 5.9, and techniques for calculating beam 
deflections were presented in Section 5.11. Procedures for calculating and 
controlling deflections in slabs are included in this chapter.

12.2  EFFECTS OF PRESTRESS

As discussed previously, the prestressing operation results in the imposition 
of both longitudinal and transverse forces on post-tensioned members. The 
concentrated longitudinal prestress P produces a complex stress distribu-
tion immediately behind the anchorage and the design of the anchorage 
zone requires careful attention (see Chapter 8). At sections further away 
from the anchorage, the longitudinal prestress applied at the anchorage 
causes a linearly varying compressive stress over the depth of the slab. If the 
longitudinal prestress is applied at the centroidal axis (which is generally at 
the mid-depth of the slab), this compressive stress is uniform over the slab 
thickness and equal to P/A.

We have already seen that wherever a change in direction of the tendon 
occurs, a transverse force is imposed on the member. For a parabolic tendon 
profile, such as that shown in Figure 12.3a, the curvature is constant along 
the tendon and hence the transverse force imposed on the member is uni-
form along its length (if P is assumed to be constant). From Equation 1.7, 
the uniformly distributed transverse force is:

	
w

Pz
l

p
d= 8

2 	 (12.1)

where zd is the sag of the parabolic tendon and l is the span. If the cable 
spacing is uniform across the width of a slab and P is the prestressing force 
per unit width of slab, then wp is the uniform upward load per unit area.

The cable profile shown in Figure 12.3a, with the sharp kink located 
over the internal support, is an approximation of the more realistic and 
practical profile shown in Figure 12.3b. The difference between the effects 
of the idealised and practical profiles is discussed in Section 11.3.5 for 
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continuous beams. The idealised profile is more convenient for the analysis 
and design of continuous slabs, and the error introduced by the idealisa-
tion is usually not significant.

The transverse load wp causes moments and shears that usually tend to be 
opposite in sign to those produced by the external loads. In Figure 12.4, the 
elevation of a prestressing tendon in a continuous slab is shown, together 
with the transverse loads imposed on the slab by the tendon in each span. If 
the slab is a two-way slab, with prestressing tendons placed in two orthogo-
nal directions, the total transverse load caused by the prestress is the sum 
of wp for the tendons in each direction.

The longitudinal prestress applied at the anchorage may also induce 
moments and shears in a slab. At changes in slab thickness, such as those 
that occur in a flat slab with drop panels, the anchorage force P is eccentric 
with respect to the centroidal axis of the section, as shown in Figure 12.5a. 
The moments caused by this eccentricity are indicated in Figure 12.5b and 

Usually parabolic

= 0.2l

wpl
wp

wp

P sinθ
P

θ

l

l
(a)

(b)

Figure 12.3 � Tendon profiles in a continuous slab. (a) Idealised tendon profile. (b) Practical 
tendon profile.
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Figure 12.4 � Transverse loads imposed by tendons in one direction.
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should also be considered in the analysis of the slab. However, the moments 
produced by relatively small changes in slab thickness tend to be small com-
pared with those caused by cable curvature and, if the thickening is below 
the slab, it is conservative to ignore them.

At some distance from the slab edge, the concentrated anchorage forces 
have dispersed and the slab is uniformly stressed. The so-called angle of 
dispersion 2β (shown in Figure 12.6) determines the extent of the slab 
where the prestress is not effective. Specifications of the angle of dispersion 
vary considerably. It is claimed in some trade literature [2] that tests have 
shown 2β to be 120°. In EN 1992-1-1 [1], β is specified conservatively as 
33.7° (so that the angle of dispersion is 67.4°).

e1 e2

P P

Pe2Pe1 Pe1 Pe2

(a)

(b)

Figure 12.5 � Effect of changes in slab thickness. (a) Elevation of slab. (b) Imposed moments.

Not prestressed
in x-direction

y

x

2β

2β

Corner
column Not prestressed Not prestressed in y-direction

Figure 12.6 � Areas of ineffective prestressing at slab edge.
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Care must be taken in the design of the hatched areas of the slab shown in 
Figure 12.6, where the prestress in one or both directions is not effective. It is 
good practice to include a small quantity of bonded non-prestressed reinforce-
ment in the bottom of the slab perpendicular to the free edge in all exterior 
spans. An area of non-prestressed steel of about 0.0015bh is usually sufficient 
for crack control, where b and h are the width and depth of the slab. In addi-
tion, when checking the punching shear strength at the corner column in Figure 
12.6, the beneficial effect of prestress is not available over the full critical shear 
perimeter. At sections remote from the slab edge, the average P/A stresses are 
uniform across the entire slab width and do not depend on either the value of β 
or variations of cable spacing from one region of the slab to another.

12.3  BALANCED LOAD STAGE

Under transverse loads, two-way panels deform into dish-shaped surfaces, 
as shown in Figure 12.7. The slab is curved in both principal directions and 
therefore bending moments exist in both directions. In addition, part of the 
applied load is resisted by twisting moments which develop in the slab at all 
locations except the lines of symmetry.

The prestressing tendons are usually placed in two directions parallel to the 
pane1 edges, each tendon providing resistance to a share of the applied load. 
The transverse load on the slab produced by the tendons in one direction adds 
to (or subtracts from) the transverse load imparted by the tendons in the per-
pendicular direction. For edge-supported slabs, the portion of the load to be 
carried by tendons in each direction is more or less arbitrary, the only strict 
requirement is the satisfaction of statics. For flat slabs, the total load must be 
carried by tendons in each direction from column line to column line.

The concept of utilising the transverse forces resulting from the curva-
ture of the draped tendons to balance a selected portion of the applied load 
is useful from the point of view of controlling deflections. In addition to 
providing the basis for establishing a suitable tendon profile, load balancing 
allows the determination of the prestressing force required to produce zero 
deflection in a slab panel under the selected balanced load.

(a) (b)

Figure 12.7 � Deformation of interior two-way slab panels. (a) Edge-supported slab. 
(b) Flat slab.



508  Design of Prestressed Concrete to Eurocode 2

At the balanced load, the slab is essentially flat (no curvature) and is 
subjected only to the effects of the prestressing forces applied at the anchor-
ages. A slab of uniform thickness is subjected only to uniform compression 
(P/A) in the directions of the orthogonal tendons. With the state of the 
slab under the balanced load confidently known, the deflection due to the 
unbalanced portion of the load may be calculated by one of the techniques 
discussed later in this chapter. The calculation of the deflection of a pre-
stressed slab is usually more reliable than for a conventionally reinforced 
slab, because only a portion of the total service load needs to be considered 
(the unbalanced portion) and, unlike reinforced concrete slabs, prestressed 
slabs are often uncracked at service loads.

To minimise deflection problems, the external load to be balanced is usu-
ally a significant portion of the sustained or permanent service load. If all the 
permanent load is balanced, the sustained concrete stress (P/A) is uniform 
over the slab depth. A uniform compressive stress distribution produces uni-
form creep strain and, hence, little long-term load-dependent curvature or 
deflection. Bonded reinforcement does, of course, provide restraint to both 
creep and shrinkage and causes a change of curvature with time if the steel is 
eccentric to the slab centroid. However, the quantity of bonded steel in pre-
stressed slabs is generally relatively small and the time-dependent curvature 
caused by this restraint does not usually cause significant deflection.

Problems can arise if a relatively heavy dead load is to be applied at some 
time after stressing. Excessive camber after transfer, which continues to 
increase with time owing to creep, may cause problems prior to the appli-
cation of the fully balanced load. In such a case, the designer may consider 
stage stressing as a viable solution.

The magnitude of the average concrete compressive stress after all losses 
can indicate potential serviceability problems. If P/A is too low, the pre-
stress may not be sufficient to prevent or control cracking due to shrinkage, 
temperature changes and the unbalanced loads. Some codes of practice 
specify minimum limits on the average concrete compressive stress after 
all losses. Using flat-ducted tendons containing four or more strands, 
prestressing levels are typically in the range P/A = 1.2–2.6 MPa in each 
direction of a two-way slab.

If the average prestress is high, axial deformation of the slab may be 
large and may result in distress in the supporting structure. The remainder 
of the structure must be capable of withstanding and accommodating the 
shortening of the slab, irrespective of the average concrete stress, but when 
P/A is large, the problem is exacerbated. Movement joints may be necessary 
to isolate the slab from stiff supports.

For slabs supporting uniformly distributed loads, the spacing of tendons 
in at least one direction should not exceed the smaller of eight times the slab 
thickness and 1.5 m [3], particularly for slabs containing less than mini-
mum quantities of conventional tensile reinforcement (i.e. less than about 
0.15% of the cross-sectional area of the slab).
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12.4  INITIAL SIZING OF SLABS

12.4.1  Existing guidelines

At the beginning of the design of a suspended post-tensioned floor, the 
designer must select an appropriate floor thickness. The floor must be stiff 
enough to avoid excessive deflection or camber, and it must have adequate 
fire resistance and durability.

In its recommendations for the design of post-tensioned slabs, the Post-
Tensioning Institute [4] suggested that the span-to-depth ratios given in 
Table 12.1 have proved acceptable, in terms of both performance and econ-
omy. Note that for flat plates and flat slabs with drop panels, the longer of 
the two orthogonal spans is used in the determination of the span-to-depth 
ratio, while for edge-supported slabs, the shorter span is used.

The minimum slab thickness that will prove acceptable in any situation 
depends on a variety of factors, not the least of which is the level of the 
superimposed load and the occupancy. The effect of load level on the limit-
ing span-to-depth ratio of flat slabs in building structures is illustrated in 
Figure 12.8. The minimum thickness obtained from Table 12.1 may not 
therefore be appropriate in some situations. On the other hand, thinner 
slabs may be acceptable, if the calculated deflections, camber and vibration 
frequency and amplitude are acceptable. In addition to the satisfaction of 
serviceability requirements, strength requirements, such as punching shear 
at supporting columns, must also be satisfied. Fire resistance and durability 
requirements must also be considered.

A slab exposed to fire must retain its structural adequacy and integrity 
for a particular fire resistance period (FRP). It must also be sufficiently 
thick to limit the temperature on one side, when exposed to fire on the 
other side, i.e. it must provide a suitable FRP for insulation. As discussed in 
Section 2.7, the FRP required for a particular structure is generally speci-
fied by the local building authority and depends on the type of structure 
and its occupancy. The minimum dimensions of a slab exposed to fire are 
specified in EN 1992-1-2 [5] and were given in Table 2.10.

Table 12.1  �Limiting span-to-depth ratios [4]

Floor system 
Span-to-depth 

ratio l/h

Flat plate 45
Flat slab with drop panels 50
One-way slab 48
Edge-supported slab 55
Waffle slab 35
Band beams (b ≈ 3h) 30
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12.4.2 � Serviceability approach for the 
calculation of slab thickness

For uniformly loaded slabs, a better initial estimate of slab thickness which 
should ensure adequate stiffness and satisfactory service load behaviour 
can be made using a procedure originally developed for reinforced concrete 
slabs [6] and extended to cover post-tensioned floor systems [7]. By rear-
ranging the expression for the deflection of a span, a simple equation is 
developed for the span-to-depth ratio that is required to satisfy any speci-
fied deflection limit.

If it is assumed that a prestressed concrete slab is essentially uncracked at 
service loads, which is most often the case, the procedure for estimating the 
overall depth of the slab is relatively simple. Figure 12.9 shows typical inte-
rior panels of a one-way slab, a two-way edge-supported slab and two-way 
flat slabs. Equivalent one-way slab strips are also defined and illustrated for 
each slab type. For a one-way slab, the mid-span deflection is found by ana-
lysing a strip of unit width as shown in Figure 12.9a. For an edge-supported 
slab, the deflection at the centre of the panel may be calculated from an 
equivalent slab strip through the centre of the panel in the short direction, as 
shown in Figure 12.9b. For the flat plate and flat slab panels shown in Figures 
12.9c and d, the deflection at the midpoint of the long span on the column 
line is found by analysing a unit-wide strip located on the column line.

The stiffness of these equivalent slab strips must be adjusted for each 
slab type so that the deflection of the one-way strip at mid-span is the same 
as the deflection of the two-way slab at that point. For an edge-supported 
slab, for example, the stiffness of the equivalent slab strip is increased sig-
nificantly to realistically model the actual slab deflection at the mid-panel. 
For a flat slab, the stiffness of the slab strip must be reduced, if the maxi-
mum deflection at the centre of the panel is to be controlled rather than 
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Figure 12.8 � Effect of superimposed load on maximum l/h for flat slabs.
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the deflection on the column line. The stiffness adjustment is made using a 
slab system factor K that was originally calibrated using a non-linear finite 
element model [8,9].

By rearranging the equation for the mid-span deflection of a one-way slab, 
an expression can be obtained for the minimum slab thickness required to 
satisfy any specified deflection limit. The maximum deflection caused by 
the unbalanced uniformly distributed service loads on an uncracked one-way 
prestressed slab strip of width b, depth h and effective span l may be esti-
mated using Equation 10.2, which is reproduced and renumbered here for 
ease of reference:

	
v

w l
E I

w l
E I

= +β λβunbal

cm

unbal.sus

cm

4 4

	 (12.2)

where Ecm is the elastic modulus of concrete, I is the gross moment of iner-
tia of the cross-section, wunbal is the unbalanced service load per unit length 
and wunbal.sus is the sustained portion of the unbalanced load per unit length. 
In the design of a slab, wunbal.sus should not be taken less than 25% of the 
self-weight of the member. This is to ensure that at least a small long-term 
deflection is predicted by Equation 12.2. A small long-term deflection is 
inevitable, even for the case when an attempt is made to balance the entire 
sustained load by prestress. The term β in Equation 12.2 is a deflection 
coefficient that depends on the support conditions and the type of load. 

(d)

Equivalent strip1 m

(c)

Equivalent strip
1 m

(a)

Equivalent strip1 m

(b)

Equivalent strip

1 m

Figure 12.9 � Slab types and equivalent slab strips [7]. (a) One-way slab. (b) Edge-supported 
two-way slab. (c) Flat plate. (d) Flat slab with drop panels.
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The effective span of the slab strip l is defined in Figure 2.1 as leff and is 
usually taken as the centre-to-centre distance between supports or the clear 
span plus the depth of the member, whichever is the smaller. As discussed 
in Section 10.3.1, the long-term deflection multiplier λ for an uncracked 
prestressed member is significantly higher than for a cracked reinforced 
concrete member and should not be taken less than 3.

Setting the deflection v in Equation 12.2 equal to the maximum deflec-
tion limit selected in design vmax, substituting bh3/12 for I and rearranging 
Equation 12.2 gives the maximum span-to-depth ratio for the slab strip:
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To avoid dynamic problems, a maximum limit should be placed on the 
span-to-depth ratio. Upper limits of the span-to-depth ratio for slabs to 
avoid excessive vertical acceleration due to pedestrian traffic that may 
cause discomfort to occupants were recommended by Mickleborough and 
Gilbert [10]. This work forms the basis of the upper limits on l/h specified 
in Equation 12.4.

For prestressed concrete slabs, an estimate of the minimum slab thick-
ness may be obtained by applying Equation 12.3 to the slab strips in 
Figure 12.9. Equation 12.3 can be re-expressed as follows:
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<50  for one-way slabs and flat slabs
<55  for two-way edge-supported slabs

The width of the equivalent slab strip b has been taken as 1000 mm and, 
in the absence of any other information, the long-term deflection multiplier 
λ should be taken not less than 3. The loads wunbal and wunbal.sus are in kPa 
(i.e. kN/m2 or N/mm2) and Ecm is in MPa. The term K is the slab system 
factor that accounts for the support conditions of the slab panel, the aspect 
ratio of the panel, the load dispersion and the torsional stiffness of the slab. 
For each slab type, values of K are presented and discussed in the following.

12.4.2.1  Slab system factor, K

One-way slabs: For a one-way slab, K depends only on the support condi-
tions and the most critical pattern of unbalanced load. From Equation 12.3:
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For a continuous slab, β should be determined for the distribution of unbal-
anced load which causes the largest deflection in each span. For most slabs, 
a large percentage of the sustained load (including self-weight) is balanced 
by the prestress and much of the unbalanced load is transitory. Pattern 
loading must therefore be considered in the determination of β. For a 
simply-supported span β = 5/384, and from Equation 12.5, K = 1.86. For 
a fully loaded end span of a one-way slab that is continuous over three or 
more equal spans and with the adjacent interior span unloaded, β = 3.5/384 
(determined from an elastic analysis) and, therefore, K = 2.09. For a fully 
loaded interior span of a continuous one-way slab with adjacent spans 
unloaded, β = 2.6/384 and K = 2.31.

Flat slabs: For flat slabs, the values of K given earlier must be modified 
to account for the variation of curvature across the panel width. The 
moments, and hence curvatures, in the uncracked slab are greater close to 
the column line than those near the mid-panel of the slab in the middle strip 
region. For this reason, the deflection of the slab on the column line will be 
greater than the deflection of a one-way slab of similar span and continu-
ity. If the deflections of the equivalent slab strips in Figure 12.9c and d are 
to represent accurately the deflection of the real slab on the column line, a 
greater than average share of the total load on the slab must be assigned to 
the column strip (of which the equivalent strip forms a part). A reasonable 
assumption is that 65% of the total load on the slab is carried by column 
strips, and so the value for K for a flat slab becomes:
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For an end span, with β = 3.5/384, Equation 12.6 gives K = 1.92. For an 
interior span, with β = 2.6/384, the slab system factor is K = 2.12.

For a slab containing drop panels that extend at least l/6 in each direc-
tion on each side of the support centre line and that have an overall depth 
not less than 1.3 times the slab thickness beyond the drops, the values of 
K given earlier may be increased by 10%. If the maximum deflection at the 
centre of the panel is to be limited (rather than the deflection on the long-
span column line), the values of K for an end span and for an interior span 
should be reduced to 1.75 and 1.90, respectively.

Edge-supported two-way slabs: For an edge-supported slab, values for K 
must be modified to account for the fact that only a portion of the total 
load is carried by the slab in the short-span direction. In addition, torsional 
stiffness, as well as compressive membrane action, increases the overall slab 
stiffness. In an earlier study of span-to-depth limits for reinforced concrete 
slabs, a non-linear finite element model was used to quantify these effects [6]. 
Values of K depend on the aspect ratio of the rectangular edge-supported 
panel and the support conditions of all edges and are given in Table 12.2.
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12.4.3  Discussion

Equation 12.4 forms the basis of a useful approach for the preliminary 
design of prestressed slabs. When the load to be balanced and the deflec-
tion limit have been selected, an estimate of slab depth can readily be made. 
All parameters required for input into Equation 12.4 are usually known at 
the beginning of the design. An iterative approach may be required if an 
estimate of self-weight is needed, i.e. if the load to be balanced is less than 
self-weight.

Deflections at various stages in the slab history may still have to be cal-
culated, particularly if the unbalanced load causes significant cracking or 
if an unusual load history is expected. Serviceability problems, however, 
can be minimised by a careful choice of slab depth using Equation 12.4. 
This involves an understanding of the derivation of the equation and its 
limitations. If, for example, a designer decides to minimise deflection by 
balancing the entire sustained load, it would be unwise to set the sustained 
part of the unbalanced load wunbal.sus to zero. In the real slab, of course, 
the magnitude of the sustained unbalanced load varies as the prestressing 
force varies with time and does not remain zero. Restraint to creep and 
shrinkage caused by the eccentric bonded steel will inevitably cause some 
time-dependent deflection (or camber). In such cases, selection of a slab 
depth greater than that indicated by Equation 12.4 would be prudent. It is 
suggested that wunbal.sus should not be taken to be less than 0.25 times the 
self-weight of the slab. As with the rest of the design process, sound engi-
neering judgement is required.

Table 12.2  �Values of K for an uncracked two-way edge-supported slab [7]

Support conditions for slab panel 

Slab system factor, K 

Ratio of long span to short span

1.0 1.25 1.5 2.0

4 edges continuous 3.0 2.6 2.4 2.3
1 short edge discontinuous 2.8 2.5 2.4 2.3
1 long edge discontinuous 2.8 2.4 2.3 2.2
2 short edges discontinuous 2.6 2.4 2.3 2.3
2 long edges discontinuous 2.6 2.2 2.0 1.9
2 adjacent edges discontinuous 2.5 2.3 2.2 2.1
2 short +1 long edge 
discontinuous

2.4 2.3 2.2 2.1

2 long +1 short edge 
discontinuous

2.4 2.2 2.1 1.9

4 edges discontinuous 2.3 2.1 2.0 1.9
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EXAMPLE 12.1

Determine preliminary estimates of the thickness of a post-tensioned flat 
slab floor for an office building. The supporting columns are 400 mm by 
400 mm in section and are regularly spaced at 9.8 m centres in one direc-
tion and 7.8 m centres in the orthogonal direction. Drop panels extending 
span/6 in each direction are located over each interior column. The slab 
supports a dead load of 1 kPa (in addition to self-weight) and a service live 
load of 3.0 kPa (of which 1.0 kPa is sustained or permanent). The self-weight 
of the slab only is to be balanced by prestress. Therefore, the unbalanced 
loads are:

	 wunbal = 4.0 kPa  and  wunbal.sus = 2.0 kPa

In this example, the longer effective span is calculated as clear span + h. If h is 
initially assumed to be about 200 mm, then l = 9800 − 400 + 200 = 9600 mm. 
The elastic modulus for concrete is taken as Ecm = 33,000 MPa.

In Case (a), the maximum deflection on the column line in the long-span 
direction is first limited to span/250, and then in Case (b), it is limited to 
span/500.

Case (a): The deflection in an exterior or edge panel of the slab will control 
the thickness. From Equation 12.6, K = 1.92 for an end span and this may be 
increased by 10% to account for the stiffening effect of the drop panels, i.e. 
K = 2.11. With λ = 3, Equation 12.4 gives:
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Case (b): If the slab supports brittle partitions and the deflection limit is 
taken to be span/500, a thicker slab than that required for (a) will be needed. 
Assuming h = 250 mm, the revised effective span is l = 9650 mm and, with 
λ = 3, Equation 12.4 gives:
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12.5  OTHER SERVICEABILITY CONSIDERATIONS

12.5.1 � Cracking and crack control 
in prestressed slabs

The effect of cracking in slabs is to reduce the flexural stiffness of the highly 
stressed regions and thus to increase the deflection. Prior to cracking, 
deflection calculations are usually based on the moment of inertia of the 
gross concrete section Ig neglecting the contributions of the reinforcement. 
After cracking, the effective moment of inertia Ief, which is less than Ig, 
is used. In Section 5.8, the analysis of a cracked prestressed section was 
presented and procedures for calculating the cracked moment of inertia and 
for including the tension stiffening effect were discussed in Section 5.11.3. 
Using these procedures, the effective moment of inertia of a cracked region 
of the slab can be calculated.

For prestressed concrete flat slabs, flexural cracking at service loads, if 
it occurs, is usually confined to the negative moment column strip region 

EXAMPLE 12.2

Evaluate the slab thickness required for an edge panel of a two-way slab 
with short and long effective spans of 8.5 and 11 m, respectively. The slab 
is continuously supported on all four edges by stiff beams and is discontinu-
ous on one long edge only. The slab must carry a dead load of 1.25 kPa (plus 
self-weight) and a service live load of 3 kPa (of which 1 kPa is sustained). As 
in the previous example, only the self-weight is to be balanced by prestress, 
and therefore:

	 wunbal = 4.25 kPa  and  wunbal.sus = 2.25 kPa

The maximum mid-panel deflection is limited to vmax = 20 mm and the elas-
tic modulus for concrete is Ecm = 33,000 MPa.

With an aspect ratio of 11.0/8.5 = 1.29, the slab system factor is obtained by 
interpolation from Table 12.2, i.e. K = 2.4. With λ = 3, Equation 12.4 gives:
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above the supports. A mat of non-prestressed reinforcement is often placed 
in the top of the slab over the column supports for crack control and to 
increase both the stiffness and the strength of this highly stressed region. 
This mat of crack control reinforcement should consist of bars in each 
direction (or welded wire mesh) with each bar or wire being continuous 
across the column line and extending at least 0.25 times the clear span in 
each direction from the face of the column. An area of crack control rein-
forcement of about 0.001 times the gross area of the cross-section is usually 
sufficient.

The mechanism of flexural cracking in a statically indeterminate two-
way slab is complex. The direction of flexural cracking is affected to some 
extent by the spacing and the type of bonded reinforcement, the level of 
prestress in each direction, the support conditions and the level and distri-
bution of the applied loads. However, for slabs containing conventionally 
tied bonded reinforcement at practical spacings in both directions, flexural 
cracks occur in the direction perpendicular to the direction of principal 
tension.

If the level of prestress in a slab is sufficiently high to ensure that the 
tensile stresses in a slab in bending are always less than the tensile strength 
of concrete, flexural cracking will not occur. If the level of prestress is not 
sufficient, cracking occurs and bonded reinforcement at reasonable centres 
is necessary to control the cracks adequately. Because slabs tend to be very 
lightly reinforced, the maximum moments at service loads are rarely very 
much larger than the cracking moment. However, when cracking occurs, 
the stress in the bonded reinforcement increases and crack widths may 
become excessive if too little bonded steel is present or the steel spacing is 
too wide.

The requirements for flexural crack control in EN 1992-1-1 [1] were dis-
cussed in Sections 5.12.1 and 5.12.2, and the maximum increment of stress 
in the steel near the tensile face (as the load is increased from its value when 
the extreme concrete tensile fibre is at zero stress to the short-term service 
load value) was given in Tables 5.5 and 5.6. In addition, the requirements 
for the control of direct tension cracking in slabs due to restrained shrink-
age and temperature changes were outlined in Section 5.12.4.

12.5.2  Long-term deflections

As discussed in Chapter 5, long-term deflections due to creep and shrink-
age are influenced by many variables, including load intensity, mix propor-
tions, slab thickness, age of slab at first loading, curing conditions, quantity 
of compressive steel, relative humidity and temperature.

In most prestressed slabs, the majority of the sustained load is most often 
balanced by the transverse force exerted by the tendons on the slab. Under 
this balanced load, the time-dependent deflection will not be zero because 
of the restraint to creep and shrinkage offered by eccentrically located 
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bonded reinforcement. Therefore, the use of a simple deflection multiplier 
to calculate long-term deflection is not satisfactory.

In Sections 4.2.5.3 and 4.2.5.4, the procedures specified in EN 1992-1-1 
[1] for calculating the final creep coefficient of concrete φ(∞,t0) and the 
final shrinkage strain εcs(∞) are presented, and the procedures for the deter-
mination of the long-term behaviour of uncracked and cracked prestressed 
cross-sections are presented in Sections 5.7 and 5.9. Alternative and more 
approximate expressions for estimating the creep and shrinkage compo-
nents of the long-term deflection of beams are given in Section  5.11.4. 
Similar equations for determining deflections of slab strips are presented 
in the following.

For uncracked prestressed concrete slab cross-sections, which usually 
have low quantities of steel, the increase in curvature due to creep is nearly 
proportional to the increase in strain due to creep. This is in contrast with 
the behaviour of a cracked reinforced concrete cross-section. If we set α 
in Equation 5.183 to unity on every cross-section, the final creep-induced 
deflection vcc may be approximated by:

	 v t vcc sus.0= ∞ϕ( , )0 	 (12.7)

where vsus.0 is the short-term deflection produced by the sustained portion 
of the unbalanced load. Typical values for the final creep coefficient for 
concrete in post-tensioned slabs φ(∞,t0) are in the range 2.5–3.0.

The average deflection due to shrinkage of an equivalent slab strip (in the 
case of edge-supported slabs) or the wide beam (as discussed subsequently 
in Section 12.9.6 for the case of flat slabs) may be obtained from:

	 v lcs cs
2= βκ 	 (12.8)

where κcs is the average shrinkage-induced curvature, l is the effective span 
of the slab strip under consideration and β depends on the support condi-
tions and equals 0.125 for a simply-supported span, 0.090 for an end span 
of a continuous member and 0.065 for an interior span of a continuous 
member.

The shrinkage curvature κcs is non-zero wherever the eccentricity of the 
bonded steel area is non-zero and varies along the span as the eccentricity 
of the draped tendons varies. A simple and very approximate estimate of 
the average shrinkage curvature for a fully-prestressed slab, which will usu-
ally produce reasonable results, is:

	
κ ε

cs
cs= 0 3.

h
	 (12.9)

For a cracked partially-prestressed slab, with significant quantities of 
non-prestressed conventional reinforcement, the value of κcs is usually at 
least 100% higher than that indicated earlier.
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12.6  DESIGN APPROACH: GENERAL

After making an initial selection of the slab thickness, the second step in 
slab design is to determine the amount and distribution of prestress. Load 
balancing is generally used to this end. A portion of the load on a slab is 
balanced by the transverse forces imposed by the draped tendons in each 
direction. Under the balanced load, the slab remains plane (without cur-
vature) and is subjected only to the resultant longitudinal compressive P/A 
stresses. It is the remaining unbalanced load that enters into the calculation 
of service load behaviour, particularly for the estimation of load-dependent 
deflections and for checking the extent of cracking and crack control.

At ultimate limit state conditions, when the slab behaviour is non-linear 
and superposition is no longer valid, the full factored design load must be 
considered. The factored design moments and shears at each critical section 
must be calculated and compared with the design strength of the section, 
as discussed in Chapters 6 (for flexure) and 7 (for shear). Slabs are usually 
very ductile and redistribution of moments occurs as the collapse load of 
the slab is approached. Under these conditions, secondary moments can 
usually be ignored.

In the following sections, procedures for the calculation of design 
moments and shears at the critical sections in the various slab types are 
presented. In addition, techniques and recommendations are also presented 
for the determination of the magnitude of the prestressing force required in 
each direction to balance the desired load.

12.7  ONE-WAY SLABS

A one-way slab is generally designed as a beam with cables running in 
the direction of the span at uniform centres. A slab strip of unit width 
is analysed using simple beam theory. In any span, the maximum cable 
sag zd depends on the concrete cover requirements and the tendon dimen-
sions. When zd is determined, the prestressing force required to balance an 
external load wbal is calculated from Equation 11.33, which is restated and 
renumbered here for ease of reference:

	
P

w l
z

= bal

d

2

8
	 (12.10)

In the transverse direction, conventional reinforcement may be used to 
control shrinkage and temperature cracking (see Section 5.12.4) and to dis-
tribute local load concentrations. Not infrequently, the slab is prestressed 
in the transverse direction to eliminate the possibility of shrinkage cracking 
parallel to the span and to ensure a watertight and crack-free slab.
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12.8  TWO-WAY EDGE-SUPPORTED SLABS

12.8.1  Load balancing

Consider the interior panel of the two-way edge-supported slab shown in 
Figure 12.10. The panel is supported on all sides by walls or beams and 
contains parabolic tendons in both the x- and y-directions. If the cables in 
each direction are uniformly spaced, then from Equation 12.1, the upward 
forces per unit area exerted by the tendons in each direction are:

	
w

P z
l

px
x d.x

x

= 8
2 	 (12.11)

and

	
w

P z
l

py
y d.y

y

=
8

2 	 (12.12)

where Px and Py are the prestressing forces in each direction per unit width, 
and zd.x and zd.y are the cable drapes in each direction.

The uniformly distributed downward load to be balanced per unit area 
wbal is calculated as:

	 wbal = wpx + wpy	 (12.13)

In practice, perfect load balancing is not possible, since external loads are rarely 
perfectly uniformly distributed. However, for practical purposes, adequate 

lx = long span

ly = short span

wpy

wpx

wpxlx

wpyly

Beams or wall under

Figure 12.10 � Interior edge-supported slab panel.



Two-way slabs  521

load balancing can be achieved. Any combination of wpx and wpy that satisfies 
Equation 12.13 can be used to make up the balanced load. The smallest quan-
tity of prestressing steel will result if all the loads are balanced by cables in the 
short-span direction, i.e. wbal = wpy. However, under unbalanced loads, service-
ability problems in the form of unsightly cracking may result. It is often prefer-
able to distribute the prestress in much the same way as the load is distributed 
to the supports in an elastic slab, i.e. more prestress in the short-span direction 
than in the long-span direction. The balanced load resisted by tendons in the 
short direction may be estimated by:

	
w

l
l l

wpy
x
4

y x
4 bal=

+δ 4 	 (12.14)

where δ depends on the support conditions and is given by:
δ = 1.0  for 4 edges continuous or discontinuous

= 1.0  for 2 adjacent edges discontinuous
= 2.0  for 1 long edge discontinuous
= 0.5  for 1 short edge discontinuous
= 2.5  for 2 long +1 short edge discontinuous
= 0.4  for 2 short +1 long edge discontinuous
= 5.0  for 2 long edges discontinuous
= 0.2  for 2 short edges discontinuous

Equation 12.14 is the expression obtained for that portion of any exter-
nal load which is carried in the short-span direction if twisting moments 
are ignored and if the mid-span deflections of the two orthogonal unit-wide 
strips through the slab centre are equated.

With wpx and wpy selected, the prestressing force per unit width in each 
direction is calculated using Equations 12.11 and 12.12 as:

	
P

w l
z

x
px x

d.x

=
2

8
	 (12.15)

and

	
P

w l
z

y
py y

d.y

=
2

8
	 (12.16)

Equilibrium dictates that the downward forces per unit length exerted 
over  each edge support by the reversal of cable curvature (as shown in 
Figure 12.10) are:

	 wpxlx (kN/m)  carried by the short-span supporting beams or walls

	 wpyly (kN/m)  carried by the long-span supporting beams or walls
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The total force imposed by the slab tendons that must be carried by the 
edge beams is therefore:

	 wpxlxly + wpylylx = wballxly

and this is equal to the total upward force exerted by the slab cables. 
Therefore, for this two-way slab system, to carry the balanced load to the 
supporting columns, resistance must be provided for twice the total load 
to be balanced (i.e. the slab tendons must resist wballxly and the supporting 
beams must resist wballxly). This requirement is true for all two-way floor 
systems, irrespective of construction type or material.

At the balanced load condition, when the transverse forces imposed by 
the cables exactly balance the applied external loads, the slab is subjected 
only to the compressive stresses imposed by the longitudinal prestress in 
each direction, i.e. σx = Px/h and σy = Py/h, where h is the slab thickness.

12.8.2  Methods of analysis

For any service load above (or below) the balanced load, moments are 
induced in the slab and, if large enough, these moments may lead to crack-
ing or excessive deflection. A reliable technique for estimating slab moments 
is therefore required to check in-service behaviour under the unbalanced 
loads. In addition, reliable estimates of the maximum moments and shears 
caused by the full factored dead and live loads must be made in order to 
check the flexural and shear strength of a slab.

A simplified method for the analysis of reinforced two-way edge-supported 
rectangular slabs subjected to uniformly distributed design ultimate loads 
[11,12] is described here. In the absence of more accurate methods of analy-
sis, the moment coefficients specified in Table 12.3 may be used to determine 
the design moments in prestressed concrete edge-supported slabs.

If wEd is the factored design load per unit area at the strength limit state, 
the positive design moments per unit width at the mid-span of the slab in 
each direction are:

	 M w lEd.x x Ed y= β 2	 (12.17)

and

	 M w lEd.y y Ed y= β 2	 (12.18)

where ly is the short effective span and βx and βy are the moment coefficients that 
depend on the support conditions and the aspect ratio of the panel (i.e. lx/ly). The 
values for βx and βy are given in Table 12.3 or may be obtained from:

	
β

γ γ γ γ
γx

y x y x

x

/ /
=

+ −2 3

9

2 2

2

[ ( ) ]
	 (12.19)
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and

	
β

β
γy

x y

x

y x

x

/
= +

−l
l

l l2 1
3 2

[ ( )]
	 (12.20)

where,
γy = 2.0  if both short edges are discontinuous
γy = 2.5  if one short edge is discontinuous
γy = 3.0  if both short edges are continuous
γx = 2.0  if both long edges are discontinuous
γx = 2.5  if one long edge is discontinuous
γx = 3.0  if both long edges are continuous

Table 12.3  �Design moment coefficients for rectangular edge-supported slabs [12]

Edge conditions of 
the rectangular 
slab panel 

Short-span coefficient βy Long-span 
coefficient βx 
for all values 

of lx/ly 

Aspect ratio lx/ly

1.0 1.1 1.2 1.3 1.4 1.5 1.75 ≥2.0

1.	� Four edges 
continuous

0.024 0.028 0.032 0.035 0.037 0.040 0.044 0.048 0.024

2.	� One short 
edge 
discontinuous

0.028 0.032 0.036 0.038 0.041 0.043 0.047 0.050 0.028

3.	� One long 
edge 
discontinuous

0.028 0.035 0.041 0.046 0.050 0.054 0.061 0.066 0.028

4.	� Two short 
edges 
discontinuous

0.034 0.038 0.040 0.043 0.045 0.047 0.050 0.053 0.034

5.	� Two long 
edges 
discontinuous

0.034 0.046 0.056 0.065 0.072 0.078 0.091 0.100 0.034

6.	� Two adjacent 
edges 
discontinuous

0.035 0.041 0.046 0.051 0.055 0.058 0.065 0.070 0.035

7.	� Three edges 
discontinuous
(one long edge 
continuous)

0.043 0.049 0.053 0.057 0.061 0.064 0.069 0.074 0.043

8.	� Three edges 
discontinuous
(one short edge 
continuous)

0.043 0.054 0.064 0.072 0.078 0.084 0.096 0.105 0.043

9.	� Four edges 
discontinuous

0.056 0.066 0.074 0.081 0.087 0.093 0.103 0.111 0.056
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The magnitudes of the negative design moments at a continuous edge and 
at a discontinuous edge are taken to be 1.33 times the positive mid-span 
value and 0.5 times the positive mid-span value, respectively.

The moment coefficients of Table 12.3 may also be used for service-
ability calculations, with the moments caused by the unbalanced load 
taken as:

	 M w lunbal.x x unbal y= β 2	 (12.21)

and

	 M w lunbal.y y unbal y= β 2	 (12.22)

These values of unbalanced moments may be used to check for crack-
ing at service loads. However, for edge-supported prestressed concrete 
slabs, cracking is unlikely at service loads. Even reinforced concrete 
slabs that are continuously supported on all edges are often uncracked 
at service loads. If cracking is detected, then an average effective moment 
of inertia Ief that reflects the loss of stiffness due to cracking should be 
used in deflection calculations (see Section 5.11.3). For the determina-
tion of deflection of the slab strip in the shorter-span direction (shown in 
Figure 12.9b), a weighted average value of Ief should be used and may be 
taken as 0.7 times the value of Ief at mid-span plus 0.3 times the average 
of the values of Ief at each end of the span. For an exterior span, a reason-
able weighted average is 0.85 times the mid-span value plus 0.15 times the 
value at the continuous end. If a particular region is uncracked, Ief for this 
region should be taken as Ig.

For the purposes of calculating the shear forces in a slab or the forces 
applied to the supporting walls or beams, the uniformly distributed load on 
the slab is allocated to the supports as shown in Figure 12.11.

Edge of supporting beam or wall

Plan

45°

Figure 12.11 � Distribution of shear forces in an edge-supported slab.
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EXAMPLE 12.3

Design an exterior panel of a 180 mm thick two-way floor slab for a retail 
store. The rectangular panel is supported on four edges by stiff beams and is 
discontinuous on one long edge as shown in Figure 12.12a. The slab is post-
tensioned in both directions using the draped parabolic cable profiles shown 

lx = 12 m

ly = 9 m

1 B

2y

x

2

A

C 1 D

(a)

7
19
25

(b)

53 53180

34

Beam BDBeam AC
(d)

180 53

53

Beam AB Beam CD
(c)

Figure 12.12 � Details of edge-supported slab (Example 12.3). (a) Plan. (b) Section 
through a typical duct in y-direction at mid-span (dimensions in mm). 
(c) Tendon profile in y-direction (Section 1–1). (d) Tendon profile in 
x-direction (Section 2-2).
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in Figures 12.12c and d. The slab supports a dead load of 1.5 kPa in addition to 
its own self-weight and the live load is 5.0 kPa. The level of prestress required 
to balance a uniformly distributed load of 5.0 kPa is required. Relevant mate-
rial properties are fck = 40 MPa, fctm = 3.5 MPa, Ecm = 35,000 MPa, fpk = 1,860 
MPa and Ep = 195,000 MPa.

Load balancing:

Flat-ducted tendons containing four 12.5 mm strands are to be used with a 
duct size of 75 mm × 19 mm, as shown in Figure 12.12b. With 25 mm concrete 
cover to the duct, the maximum depth to the centre of gravity of the short-
span tendons is:

	 dy = 180 − 25 − (19 − 7) = 143 mm (refer to Figure 12.12b)

The cable drape in the short-span direction is therefore:

	
zd.y 79 5 mm= + + =53 0

2
53 .

The depth dx of the long-span tendons at mid-span is less than dy by the 
thickness of the duct running in the short-span direction, i.e. dx = 143 − 19 = 
124 mm. The cable drape in the long-span direction is shown in Figure 12.12d 
and is given by:

	
zd.x 87  mm= + + =53 53

2
34 0.

The self-weight of the slab is 24 × 0.18 = 4.3 kPa and if 40% of the live load is 
assumed to be sustained, then the total sustained load is:

	 wsus = 4.3 + 1.5 + (0.4 × 5.0) = 7.8 kPa

In this example, the effective prestress in the tendons in both directions 
balances an external load of wbal = 5.0 kPa. The transverse load exerted by 
the tendons in the short-span direction is determined using Equation 12.14:

	
wpy 3 6 kPa=

× +
× =12

2 9 12
5 0 0

4

4 4 . .

and the transverse load imposed by the tendons in the long-span direction is 
calculated using Equation 12.13:

	 w w wpx bal py 5 3 6 194 kPa= − = − =. . .0 0
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The effective prestress in each direction is obtained from Equations 12.15 
and 12.16:

	
P Py x39  kN/m and 4 1 kN/m= ×

×
= = ×

×
=3 06 9

8 0 0795
0

1 94 12
8 0 087

0
2 2.

.
.

.

To determine the jacking forces and cable spacing in each direction, both 
the time-dependent losses and friction losses must be calculated. For the 
purpose of this example, it is assumed that the time-dependent losses in each 
direction are 15% and the immediate losses (friction, anchorage, etc.) in the 
y-direction are 8% and in the x-direction are 12%. Immediately after transfer, 
before the time-dependent losses have taken place, the prestressing forces at 
mid-span in each direction are:

	
P Pm0.y m0.x459 kN/m and 472 kN/m= = = =390

0 85
401
0 85. .

and at the jack:

	
P Pj.y j.x499 kN/m and 536 kN/m= = = =459

0 92
472
0 88. .

Using four 12.5 mm strands/tendon, Ap = 372 mm2/tendon and the maxi-
mum jacking force/tendon is 0.9 fp0.1k × Ap = 1440 × 372 = 536 kN, and the 
required tendon spacing in each direction (rounded down to the nearest 
10 mm) is therefore:

	
s sy x1 7  mm and 1  mm= × = = × =1000 536

499
0 0

1000 536
536

000

We will select a tendon spacing of 1000 mm in each direction.
This simply means that the tendons in the y-direction will balance slightly 

more load than previously assumed. With one tendon in each direction per 
metre width, the revised prestressing forces at the jack per metre width are 
Py = Px = 536 kN/m and at mid-span, after all losses, are:

	 Pm,t.y 419 kN/m= × × =0 85 0 92 536. .

and

	 Pm,t.x 4 1 kN/m= × × =0 85 0 88 536 0. .
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The load to be balanced is revised using Equations 12.11 and 12.12:

	
wpy 3 29 kPa= × × =8 419 0 0795

92

.
.

and

	
wpx 194 kPa= × × =8 401 0 087

122

.
.

and therefore wbal = 3.29 + 1.94 = 5.23 kPa.

Estimate maximum moment due to unbalanced load:

The maximum unbalanced transverse load to be considered for short-term 
serviceability calculations is:

	� wunbal = wsw + wG + ψ1wQ − wbal = 4.30 + 1.5 + (0.7 × 5.0) − 5.23 = 4.07 kPa

Under this unbalanced load, the maximum moment occurs over the beam 
support CD. Using the moment coefficients for edge-supported slabs in 
Table 12.3, the maximum moment is approximated by:

	 MCD = −1.33 × 0.047 × 4.07 × 92 = −20.6 kNm/m

Check for cracking:

In the y-direction over support CD, the concrete stresses in the top and bot-
tom fibres caused by the maximum moment MCD after all losses are:

	
σc..top

m,t.y CD 2 33 3 81 148 MPa tension= − + = − + = +
P

A
M
Z

. . . ( )

	
σc.btm

m,t.y CD 2 33 3 81 6 14 MPa compression= − − = − − = −
P

A
M
Z

. . . ( )

where A is the area of the gross cross-section per metre width (= 180 × 103 
mm2/m) and Z is the section modulus per metre width (= 5.4 × 106 mm3/m).

Both tensile and compressive stresses are relatively low. Even though the 
moment used in these calculations is an average and not a peak moment, 
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if cracking does occur, it will be localised and the resulting loss of stiffness 
will be small. Deflection calculations may be based on the properties of the 
uncracked cross-section.

Estimate maximum total deflection:

The deflection at the mid-panel of the slab can be estimated using the so-
called crossing beam analogy, in which the deflections of a pair of orthogonal 
beams (slab strips) through the centre of the panel are equated. The fraction 
of the unbalanced load carried by the strip in the short-span direction is given 
by an equation similar to Equation 12.14. With:

	
wunbal.y 4 61 4 7 2 48 kN/m=

× +
× = × =12

2 0 9 12
4 07 0 0

4

4.
. . . .

and with the deflection coefficient β taken as 2.6/384 (in accordance with 
the discussion in Section 12.4.2), the corresponding short-term deflection at 
mid-span of this 1 m wide slab strip in the short-span direction through the 
mid-panel (assuming the variable live load is removed from the adjacent slab 
panel) is approximated by:

	
v

w l
E I

0
unbal.y y

4

cm

4

6= = ×
× ×

=2 6
384

2 6
384

2 48 9 000
35 000 486 106

. . . ,
,

..48 mm

The sustained portion of the unbalanced load on the slab strip is:

	

l
l l

w w y w wx
4

y x
4 sw G 2 Q bal 61 4 3 15 4 5 5

δ 4 0 0 0 0
+

× + + − = × + + × −( ) . [ . . ( . . ) .223

157 kPa

]

.=

and the corresponding short-term deflection is:

	
v vsus.0 0 4 1  mm= × =1 57

2 48
0

.
.

.

Assuming a final creep coefficient φ(∞,t0) = 2.5 and conservatively ignor-
ing the restraint provided by any bonded reinforcement, the creep-induced 
deflection given by Equation 12.7 may be estimated using:

	 vcc 1 25 mm= × =2 5 4 10 0. . .

The final shrinkage strain is assumed to be εcs = 0.0005. The shrinkage cur-
vature κcs is non-zero wherever the eccentricity of the steel area is non-zero 
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and varies along the span as the eccentricity of the draped tendons varies. 
A simple and very approximate estimate of the average final shrinkage curva-
ture is made using Equation 12.9:

	
κ ε

cs
cs 6 183 1 mm= = × = × − −0 3 0 3 0 0005

180
0 0

. . .
.

h

The average deflection of the slab strip due to shrinkage is given by 
Equation 12.8:

	 vcs = × × × =−0 090 0 83 10 9000 06 2. . .6 8 mm

The maximum total deflection of the slab strip is therefore:

	 v v v vtot cc cs 6 48 1 25 6 8 22 8 mm span/395= + + = + + = =0 0 0. . . .

and the long-term to short-term deflection ratio is λ = 2.52. This deflection 
is likely to be satisfactory for a retail floor.

It is of value to examine the slab thickness predicted by Equation 12.4, 
if the limiting deflection is taken to be 22.8 mm. For this edge-supported 
slab panel, the slab system factor is obtained from Table 12.2 as K = 2.37, 
the unbalanced load wunbal = 4.07 kPa, and the sustained part of the unbal-
anced load is wunbal.sus = 2.48 kPa. With λ = 2.52, the minimum slab thick-
ness required to limit the total deflection to 22.8 mm is obtained from 
Equation 12.4 as:

	

9 000
2 37

22 8 9 000 1 000 35 000
4 07 2 52 2 48

1
,

.
( . , ) , ,

. . .h
≤ × × ×

+ ×






/
//

.
3

48 5=

	 ∴ h ≥ 185 mm. 

In this example, Equation 12.4 is consistent with the deflection calculation 
procedure and just conservative.

Check flexural strength:

It is necessary to check the design strength of the slab. As previously cal-
culated, the dead load is 1.5 + 4.3 = 5.8 kPa and the live load is 5.0 kPa. The 
factored design load (using the load factors specified in Equation 2.2) is:

	 wEd = 1.35 × 5.8 + 1.5 × 5.0 = 15.33 kPa
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The design moments at mid-span in each direction are obtained from 
Equations 12.17 and 12.18, with βy = 0.047 and βx = 0.028 taken from Table 12.3:

	 MEd.y 58 4 kNm/m= × × =0 047 15 33 92. . .

	 MEd.x 34 8 kNm/m= × × =0 028 15 33 92. . .

The maximum design moment occurs over the beam support CD (the long 
continuous edge) and is:

	 ( ) . . .MEd.x CD 133 58 4 77 7 kNm/m= − × = −

A safe lower bound solution to the problem of adequate strength is obtained 
if the design strength of the slab at this section exceeds the design moment.

The resistance per metre width of the 180 mm thick slab containing ten-
dons at 1000  mm centres (i.e. Ap = 372  mm2/m) at an effective depth of 
143 mm is obtained using the procedures discussed in Chapter 6. Such an 
analysis indicates that the cross-section is ductile, with the depth to the neu-
tral axis of x1 = 24.3 mm (or 0.17d). The tensile force in the steel is 517.5 kN/m 
(σpud1 = fpd = fp0.1k/γs = 1391 MPa) and the magnitude of the design resistance 
is given by Equation 6.24:

	
MRd1 69  kNm/m= × × − ×






 × =−1391 372 143

0 8 24 3
2

10 06. .
.

With M MRd1 Ed.x CD< ( ) , conventional reinforcement is required to supplement 
the prestressing steel over the beam support CD. From Equation 6.25, with 
the internal lever arm z2 = 111.2 mm (Equation 6.26), the required area of 
additional non-prestressed steel is approximated by:

	
A

M M
f z

s
Ed.x CD Rd1

yd

218  mm /m= − = − ×
×

=( ) ( . . )
.2

677 7 69 0 10
435 111 2

0

Use 12 mm diameter bars (fyk = 500 MPa) at 450 mm centres (Ast = 251 mm2/m) 
as additional steel in the top of the slab over beam support CD. If this steel 
had been necessary for crack control, a maximum spacing of around 300 mm 
would have been recommended, but it is included specifically to increase the 
design resistance and calculations have indicated that crack control will not 
be a problem.
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Checking flexural strength at other critical sections indicates that:

	 (a)	 At mid-span in the y-direction:

	 M M dEd.y Rd158 4 kNm/m and 69  kNm/m 143 mm= = =( ). .0

	� ∴ �No additional bottom reinforcement is required at mid-span in the 
y-direction.

	 (b)	 At mid-span in the x-direction:

	 M M dEd.x Rd134 8 kNm/m and 59 1 kNm/m 124 mm= = =( ). .

	� ∴ �No additional bottom reinforcement is required at mid-span in the 
x-direction.

	 (c)	 At the short continuous support in the x-direction:

	

( ) . . .

.

M

M d

Ed.x AC

Rd1

133 32 8 46 3 kNm/m and

69  kNm/m 143 mm

= × =

= =(0 ))

	� ∴ �No additional top reinforcement is required in the x-direction over 
AC and BD.

Summary of reinforcement requirements:

Tendons consisting of four 12.5  mm strands at 1000  mm centres in each 
direction are used with the profiles shown in Figures 12.12c and d. In addi-
tion, 12 mm diameter non-prestressed reinforcing bars in the y-direction at 
450 mm centres are also placed in the top of the slab over the long support 
CD (extending on each side of the beam to the point 0.3 times the clear span 
in the x-direction from the face of the support).

Check shear strength:

In accordance with Figure 12.11, the maximum shear in the slab occurs at the 
face of the long support near its mid-length, where:

	 VEd = wEdly/2 = 15.33 × 9/2 = 69.0 kN/m

The contribution of the concrete to the shear resistance VRd,c in the region of 
low moment at the face of the discontinuous support is given by Equation 7.4. 
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12.9  FLAT PLATE SLABS

12.9.1  Load balancing

Flat plates behave in a similar manner to edge-supported slabs except that the 
edge beams are strips of slab located on the column lines, as shown in Figure 
12.13. The edge beams have the same depth as the remainder of the slab 
panel, and therefore the system tends to be less stiff and more prone to service-
ability problems. The load paths for both the flat plate and the edge-supported 
slabs are, however, essentially the same (compare Figures 12.10 and 12.13).

In the flat plate panel of Figure 12.13, the total load to be balanced is 
wballxly. The upward forces per unit area exerted by the slab tendons in each 
direction are given by Equations 12.11 and 12.12, and the slab tendons 
impose a total upward force of:

	 wpxlxly + wpylylx = wballxly

With fctd = 1.67 MPa, σcp = Pm,t.y/A = 2.33 MPa, I = 486 × 106 mm4/m and S = 
4.05 × 106 mm3/m:

	
VRd,c =

× ×
×

+ × ×


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Clearly, VEd is much less than VRd,c and the shear resistance is ample here. 
Shear resistances at all other sections are also satisfactory. Shear is rarely a 
problem in edge-supported slabs.

lx (≥ ly)

wpx

wpx lx

wpy

ly

The shaded slab strip
must carry the line

load wpyly

wpy ly

Figure 12.13 � Interior flat plate panel.
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Just as for edge-supported slabs, the slab tendons may be distributed arbi-
trarily between the x- and y-directions provided that adequate additional 
tendons are placed in the slab strips to balance the line loads wpyly and wpxlx 
shown on the column lines in Figure 12.13. These additional column line 
tendons correspond to the beam tendons in an edge-supported slab sys-
tem. For perfect load balancing, the column line tendons would have to be 
placed within the width of slab in which the slab tendons exert downward 
load due to reverse curvature. However, this is not a strict requirement 
and considerable variation in tendon spacing can occur without noticeably 
affecting slab behaviour. Column line tendons are frequently spread out 
over a width of slab as large as one half the shorter span, as indicated in 
Figure 12.14c.

The total upward force that must be provided in the slab along the 
column lines is:

	 wpxlxly + wpylylx = wballxly

(a) (b)

y

x

lx (≥ly)

lx – ly /2

lx/2

ly/2

ly/2

ly/2ly/2

Column strip Column strip

Column
strip

Column
strip

Middle
strip

Middle strip(c)

ly

Figure 12.14 � Alternative tendon layouts. (a) One-way slab arrangement. (b) Two-way 
slab arrangement with column line tendons in narrow band. (c) Two-way 
slab arrangement with column line tendons distributed over column strip.
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Therefore, prestressing tendons (slab tendons plus column line tendons) 
must be provided in each panel to give a total upward force of 2wballxly. 
The slab tendons and column line tendons in each direction must, between 
them, provide an upward force equal to the total load to be balanced wballxly. 
For example, in the slab system shown in Figure 12.14a, the entire load to 
be balanced is carried by slab tendons in the y-direction, i.e. wpy = wbal and 
wpx = 0. This entire load is deposited as a line load on the column lines in 
the x-direction and must be balanced by column line tendons in this vicin-
ity. This slab has in effect been designed as a one-way slab spanning in the 
y-direction and supported by shallow heavily stressed slab strips on the 
x-direction column lines.

The two-way system shown in Figure 12.14b is more likely to perform 
better under unbalanced loads, particularly when the orthogonal spans 
lx and ly are similar and the panel is roughly square. In practice, how-
ever, steel congestion over the supporting columns and minimum spacing 
requirements (often determined by the size of the anchorages) make the 
concentration of tendons on the column lines impossible. Figure 12.14c 
shows a more practical and generally acceptable layout. Approximately 
75% of the tendons in each direction are located in the column strips, 
as shown, the remainder being uniformly spread across the middle strip 
regions.

If the tendon layout is such that the upward force on the slab is approxi-
mately uniform, then at the balanced load the slab has zero deflection 
and is subjected only to uniform compression caused by the longitudi-
nal prestress in each direction applied at the anchorages. Under unbal-
anced loads, moments and shears are induced in the slab. To calculate the 
moments and stresses due to unbalanced service loads and to calculate 
the factored design moments and shears in the slab (in order to check for 
strength), one of the methods described in the following sections may be 
adopted.

12.9.2  Behaviour under unbalanced load

Figure 12.15 illustrates the distribution of moments caused by an unbal-
anced uniformly distributed load wunbal on an internal panel of a flat plate. 
The moment diagram in the direction of span lx is shown in Figure 12.15b. 
The slab in this direction is considered as a wide, shallow beam of width 
ly and span lx and carrying a load wunbally per unit length. The relative mag-
nitudes of the negative moments M1–2 and M3–4 and positive moment M5-6 
are found by elastic frame analysis (see Section 12.9.3) or more approxi-
mate recommendations (see Section 12.9.4). Whichever method is used, the 
total static moment Mo is fixed by statics and is given by:

	
M

w l l
o

unbal y x
2

=
8

	 (12.23)
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In Figure 12.15c and d, variations in elastic moments across the panel at 
the column lines and at mid-span, respectively, are shown. At the column 
lines, where curvature is a maximum, the moment is also a maximum. On 
panel centre line, where curvature is a minimum, so too is the moment. In 
design, it is convenient to divide the panel into column and middle strips 
and to assume that the moment is constant in each strip as shown. The 
column strips in the lx direction are defined as strips of width 0.25ly, but 
not greater than 0.25lx, on each side of the column centre line. The middle 
strips are the slab strips between the column strips.

It may appear from the moment diagrams that at the design loads, the 
best distribution of tendons (and hence strength) is one in which tendons 
are widely spaced in the middle strips and closer together in the column 
strips, as shown in Figure 12.14c. However, provided that the slab is duc-
tile, redistribution of moments takes place as the ultimate condition is 
approached and the final distribution of moments depends very much on 
the layout of the bonded steel.

After the slab cracks and throughout the overload range, superposition 
is no longer applicable and the concepts of balanced and unbalanced loads 
are not meaningful. As discussed in Section 11.5.4, for ultimate limit state 
design, when the load factors are applied to the dead and live load moments, 
codes of practice often insist that secondary moments are considered with 
a load factor of 1.0. However, provided that the slab is ductile, and slabs 
are usually very ductile, secondary moments may be ignored in the strength 
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Figure 12.15 � Distribution of moments in a flat plate. (a) Plan. (b) Moments in long 
direction. (c) Distribution of M1–2 across panel. (d) Distribution of 
M5–6 across panel.
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calculations. The difficulty in accurately estimating slab moments, particu-
larly in the overload range, is rendered relatively unimportant by the ductile 
nature of slabs.

12.9.3  Frame analysis

A commonly used technique for the analysis of flat plates in building struc-
tures is the equivalent frame method (or idealised frame method). The 
structure is idealised into a set of parallel two-dimensional frames running 
in two orthogonal directions through the building. Each frame consists 
of a series of vertical columns spanned by horizontal beams. These ide-
alised beams consist of the strip of slab of width on each side of the column 
line equal to half the distance to the adjacent parallel row of columns and 
include any floor beams forming part of the floor system. The member 
stiffnesses are determined and the frames are analysed under any desired 
gravity loading using a linear-elastic frame analysis. EN 1992-1-1 [1] per-
mits the stiffness of the members to be based on gross cross-sections and, 
for vertical gravity loads, the stiffness may be based on the full width of 
the panels. For flat slab structures subjected to lateral (horizontal) loads, the 
stiffness of the horizontal (floor) members should be based on 40% of 
the full width of the panels. EN 1992-1-1 [1] states that this reduction of 
stiffness reflects the increased flexibility of the slab–column connections 
compared to column–beam connections in beam and slab floor systems. 
For a flat plate building in which shear walls, or some other bracing system, 
are provided to resist all lateral loads, it is usually permissible to analyse 
each floor of the building separately, with the columns above and below the 
slab assumed to be fixed at their remote ends.

The equivalent frame method provides a relatively crude model of struc-
tural behaviour, with inaccuracies being associated with each of the follow-
ing assumptions: (1) a two-way plate is idealised by orthogonal one-way 
strips; (2) the stiffness of a cracked slab may be significantly less than that 
based on gross sections; and (3) a linear-elastic analysis is applied to a struc-
ture that is non-linear and inelastic both at service loads and at overloads. 
A simple estimate of member stiffness, for example, based on gross section 
properties, will lead to an estimate of frame moments that satisfies equilib-
rium and usually provides an acceptable solution. When such a frame analy-
sis is used to check bending strength, an equilibrium load path is established 
that will prove to be a satisfactory basis for design, provided that the slab is 
ductile and the moment distribution in the real slab can redistribute towards 
that established in the analysis. For strength design, it is usually sufficient to 
analyse the slab assuming that the full factored load is applied to all spans.

For the determination of the design moments at each critical section of 
the frame at the serviceability limit states, variations of the load intensi-
ties on individual spans should be considered, including pattern loading 
whereby the transient load is applied to some spans and not to others. 
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Loading patterns to be considered to assess deflection and cracking should 
include at least the following:

	 1.	where the loading pattern is known, the frame should be analysed 
under that known loading. This includes the factored permanent dead 
load G; and

	 2.	with regard to the live loads Q, where the pattern of loaded and 
unloaded spans is variable, the factored live load should be applied: 

	 a.	 on alternate spans (this will permit the determination of the max-
imum factored positive moment near the middle of the loaded 
spans)

	 b.	 on two adjacent spans (this will permit the determination of 
the maximum factored negative moment at the interior support 
between the loaded spans)

	 c.	 on all spans

The frame moments calculated at the critical sections of the idealised 
horizontal members are distributed across the floor slab into the column 
and middle strips (as defined in the previous section). EN 1992-1-1 [1] appor-
tions the total frame moments to column and middle strips in accordance 
with Table 12.4. Studies have shown that the performance of reinforced 
concrete flat slabs both at service loads and at overloads is little affected by 
variations in the fraction of the total frame moment that is assigned to the 
column strip [13], provided that the slab is ductile and capable of the neces-
sary moment redistribution.

With the in-service moments caused by the unbalanced loads determined 
at all critical regions in the slab, checks for cracking and crack control and 
calculations of deflection may be undertaken.

When the design resistances of the column and middle strips are being 
checked, it is advisable to ensure that the depth to the neutral axis at any sec-
tion does not exceed about 0.25d. This will ensure sufficient ductility for the 
slab to redistribute bending moments towards the bending moment diagram 
predicted by the idealised frame analysis and will also allow the designer 
to safely ignore the secondary moments. There are obvious advantages in 

Table 12.4  �Fraction of frame moments distributed 
to the column and middle strips [1]

Negative moments (%) Positive moments (%) 

Column strip 60–80 50–70
Middle strip 40–20 50–30

Note:	 The sum of moments resisted by the column and middle strips 
at any location must always equal the frame moment at that 
location.
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allocating a large fraction of the negative moment at the supports to the 
column strip. The resulting increased steel quantities stiffen and strengthen 
this critical region of the slab, thereby improving punching shear and crack 
control. In prestressed flat slabs, only the column strip regions over the inte-
rior columns are likely to experience significant cracking.

12.9.4  Direct design method

A simple semi-empirical approach for the analysis of prestressed flat plates 
is the ‘direct design method’. The following limitations are often imposed 
on the use of the direct design method [12]:

	 1.	there are at least two continuous spans in each direction;
	 2.	the support grid is rectangular, or nearly so (individual supports may 

be offset up to a maximum of 10% of the span in the direction of the 
offset);

	 3. the ratio of the longer span to the shorter span measured centre-to-
centre of supports within any panel is not greater than 2.0;

	 4.	in each direction, successive span lengths do not differ by more than 
one-third of the longer span and in no case is an end span longer than 
the adjacent interior span;

	 5.	gravity loads are essentially uniformly distributed. Lateral loads are 
resisted by shear walls or braced vertical elements and do not enter 
into the analyses;

	 6.	the live load does not exceed twice the dead load; and
	 7.	low-ductility reinforcement is not used as the flexural reinforcement.

The slab is divided into design strips in each direction and each strip is 
designed one span at a time. The total static moment Mo in each span of the 
design strip is calculated from:

	
M

w l l
o

Ed t eff
2

=
8

	 (12.24)

where wEd is the design load per unit area (factored for strength), leff is the 
effective span (i.e. the lesser of the centre-to-centre distance between sup-
ports and ln + h), ln is the clear span between the faces of the supports, h is 
the overall slab thickness and lt is the width of the design strip measured 
transverse to the direction of bending. For an interior design strip, lt is 
equal to the average of the centre-to-centre distance between the supports 
of the adjacent transverse spans. For an edge design strip, lt is measured 
from the slab edge to the point halfway to the centre line of the next interior 
and parallel row of supports.

The static moment Mo is shared between the supports (negative moments) 
and the mid-span (positive moment). At any critical section, the design 
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moment may be determined by multiplying Mo by the relevant factor given 
in Table 12.5 or 12.6, as appropriate. At any interior support, the floor slab 
should be designed to resist the larger of the two negative design moments 
determined for the two adjacent spans unless the unbalanced moment is dis-
tributed to the adjoining members in accordance with their relative stiffnesses.

The positive and negative design moments are next distributed to the 
column and middle strips using the column strip moment factor from 
Table 12.4.

12.9.5  Shear resistance

Punching shear strength requirements often control the thickness of a 
flat slab at the supporting columns and must always be checked. The 
shear resistance of the slabs was discussed in Section 7.4 and methods for 
designing the slab–column intersection were presented.

If frame analyses are performed to check the flexural resistance of a 
slab, the design moment MEd transferred from the slab to a column and the 
design shear VEd are obtained from the relevant analyses. MEd is that part of 
the unbalanced slab bending moments that is transferred into the column 
at the support. If the direct design method is used for the slab design, MEd 
and VEd must be calculated separately. The shear force crossing the criti-
cal shear perimeter around a column support may be taken as the product 

Table 12.5  �Design moment factors for an end span [1]

Negative moment factor at 
Positive 

moment factor  Exterior support Interior support

Flat slabs with exterior edge 
unrestrained

0.0 0.80 0.60

Flat slabs with exterior edge 
restrained by columns only

0.25 0.75 0.50

Flat slabs with exterior edge 
restrained by spandrel beams and 
columns

0.30 0.70 0.50

Flat slabs with exterior edge fully 
restrained

0.65 0.65 0.35

Beam and slab construction 0.15 0.75 0.55

Table 12.6  �Design moment factors for an interior span [1]

Type of slab system Negative moment factor Positive moment factor 

All types 0.65 0.35
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of the factored design load wEd and the plan area of slab supported by the 
column and located outside the critical shear perimeter. At an interior sup-
port, MEd may be taken as [1]:

	 M w w l l w l lEd G Q t eff G t eff= + − ′0 06 1 35 0 75 1 352 2. [( . . ) ( ) . ( ) ]	 (12.25)

where wG and wQ are the uniformly distributed dead and live loads on the 
slab (per unit area), lt is the transverse width of the slab as defined in the 
text below Equation 12.24, leff and ′leff are the longer and shorter effective 
spans on either side of the column. For an edge column, MEd is equal to the 
design moment at the exterior edge of the slab and may be taken as 0.25Mo 
(where Mo is the static moment for the end span of the slab calculated using 
Equation 12.24).

When detailing the slab–column connection, it is advisable to have at 
least two prestressing tendons crossing the critical shear perimeter in each 
direction. Additional well anchored non-prestressed reinforcement cross-
ing the critical perimeter will also prove beneficial (both in terms of crack 
control and ductility) in the event of unexpected overloads.

12.9.6  Deflection calculations

The deflection of a uniformly loaded flat slab may be estimated using the 
wide beam method which was formalised by Nilson and Walters [14]. 
Originally developed for reinforced concrete slabs, the method is particu-
larly appropriate for prestressed flat slabs which are usually uncracked at 
service loads [15]. The basis of the method is illustrated in Figure 12.16. 
Deflections of the two-way slab are calculated by considering separately the 
slab deformations in each direction. The contributions in each direction are 
then added to obtain the total deflection.

In Figure 12.16a, the slab is considered to act as a wide shallow beam 
of width equal to the smaller panel dimension ly and span equal to the 
longer panel effective span lx. This wide beam is assumed to rest on 
unyielding supports. Because of variations in the moments caused by the 
unbalanced loads and the flexural rigidity across the width of the slab, 
all unit strips in the x-direction will not deform identically. Unbalanced 
moments and hence curvatures in the regions near the column lines (the 
column strip) are greater than in the middle strips. This is particularly 
so for uncracked prestressed concrete slabs or prestressed slabs that are 
cracked only in the column strips. The deflection on the column line is 
therefore greater than that at the panel centre. The slab is next consid-
ered to act as a wide shallow beam spanning in the y-direction, as shown 
in Figure 12.16b. Once again, the effect of variation of moment across 
the wide beam is shown.
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The mid-panel deflection is the sum of the mid-span deflection of the 
column strip in the long direction and that of the middle strip in the short 
direction, as shown in Figure 12.16c:

	 vmid = vcx + vmy	 (12.26)

The method can be used irrespective of whether the moments in each 
direction are determined by the equivalent frame method, the frame 
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Figure 12.16 � The basis of the wide beam method [14]. (a) Bending in x-direction. 
(b) Bending in y-direction. (c) Combined bending.
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analysis based on gross stiffnesses or the direct design method (see Sections 
12.9.3 and 12.9.4). The definition of column and middle strips, the longitu-
dinal moments in the slab, the lateral moment distribution coefficients and 
other details are the same as for the moment analysis so that most of the 
information required for the calculation of deflection is already available.

The actual deflection calculations are more easily performed for strips of 
floor in either direction bounded by the panel centre lines, as is used for the 
moment analysis. In each direction, an average deflection vavge at mid-span 
of the wide beam is calculated from the previously determined moment 
diagram and the moment of inertia of the entire wide beam Ibeam using the 
deflection calculation procedures outlined in Section 5.11. The effect of the 
moment variation across the wide beam, as well as possible differences in 
column and middle strip sizes and rigidities, is accounted for by multiply-
ing the average deflection by the ratio of the curvature of the relevant strip 
to the curvature of the wide beam. For example, for the wide beam in the 
x-direction, the column and middle strip deflections are, respectively:

	
v v

M
M

E I
E I
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cm beam

cm col

= 	 (12.27)

and
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= 	 (12.28)

It is usual to assume that Mcol/Mbeam is about 0.7 and therefore Mmid/Mbeam is 
about 0.3. If cracking is detected in the column strip, the effective moment 
of inertia of the cracked cross-section can be calculated using the analysis 
described in Section 5.11.3. The effective moment of inertia of the column 
strip Icol is calculated as the average of Ief at the negative moment region at 
each end of the strip, which may include the loss of stiffness due to crack-
ing and/or the stiffening effect of a drop panel, and the positive moment 
region, which is usually uncracked. Icol is then added to the moment of iner-
tia of the middle strip Imid (which is also usually uncracked and therefore 
based on gross section properties) to form the effective moment of inertia 
of the wide beam Ibeam. These quantities are then used in the calculation of 
the short-term column and middle strip deflections in each direction using 
Equations 12.27 and 12.28. A reasonable estimate of the weighted average 
effective moment of inertia of an interior span of the wide beam is obtained 
by taking 0.7 times the value at mid-span plus 0.3 times the average of the 
values at each end of the span. For an exterior span, a reasonable weighted 
average is 0.85 times the mid-span value plus 0.15 times the value at the 
continuous end. This recommendation may also be used for the calculation 
of Icol for a cracked column strip.
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The moment of inertia of the wide beam is, of course, always the sum 
of Icol and Imid. Long-term deflections due to sustained unbalanced loads 
can also be calculated in each direction using the procedures outlined in 
Section 5.11.4.

Nilson and Walters [14] originally proposed to analyse a fixed-ended beam 
and then calculate the deflection produced by rotation at the supports. 
This does not significantly improve the accuracy of the model, and the 
additional complication is not warranted.

EXAMPLE 12.4

Determine the tendons required in the 220  mm thick flat slab shown in 
Figure 12.17. The live load on the slab is 3.0 kPa and the dead load is 1.0 kPa 
plus the slab self-weight. All columns are 600 mm by 600 mm and are 4 m 
long above and below the slab. At the top of each column, a 300 mm column 
capital is used to increase the supported area, as shown. In this example, the 
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Figure 12.17 � Plan and section of flat plate (Example 12.4).
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dead load wG is to be effectively balanced by prestress and is given by wG = 
1 kPa + self-weight = 1 + (24 × 0.22) = 6.3 kPa.

1. Checking punching shear:

Before proceeding too far into the design, it is prudent to make a preliminary 
check of punching shear at typical interior and exterior columns. Consider 
the interior column B in Figure 12.17. The area of slab supported by the col-
umn is 10 × (8.5 + 10)/2 = 92.5 m2. Using the strength load factors specified 
in EN 1992-1-1 [1] (Equation 2.2), the factored design load is:

	 w w wEd G Q
213  kN/m= + = × + × =1 35 1 5 1 35 6 3 1 5 3 0 0. . ( . . ) ( . . ) .

and therefore the shear force crossing the critical section may be approxi-
mated by:

	 VEd ≈ 13.0 × 92.5 = 1203 kN

From Equation 12.25, the design moment transferred to the column may 
be taken as:

	

MEd

2

= × + × × × − × × ×

=

0 06 1 35 6 3 0 75 3 0 10 9 02 1 35 6 3 10 7 522 2. [( . . . . ) . . . . ]

336 kNm

The design value of the maximum punching shear resistance on any control 
section is obtained from Equation 7.45:

	
vRd,max

250
MPa= × −



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× =0 3 1

40
26 67 6 72. . .

Referring to Figure 7.18, lH = 300 mm, c = 600 mm and l1 = l2 = 1200 mm. 
The average effective depth around the shear perimeter is taken to be deff = 
220 − 50 = 170 mm, and from Equation 7.38, rcont = 2 × 170 + 0.56 × 1200 = 
1012 mm. The critical shear perimeter is located at a distance rcont from the 
centroid of the column (constructed so that its length is minimised). In each 
span direction, the critical shear perimeter is located at 412 mm from the 
edge of the loaded area (i.e. the edge of the column capital). The critical shear 
perimeter is therefore:

	 u1 = 4 × 600 + 2π × 412 = 4989 mm
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The design punching shear resistance for a slab without shear reinforce-
ment is obtained from Equation 7.42. With k = 2.0, vmin = 0.035 × k1.5 × fck

0.5 = 
0.626. We will assume that ρ1 = 0.006 and the average prestress in the con-
crete is assumed to be σcp = 2.4 MPa. These assumptions will need to be 
checked subsequently. Equation 7.42 gives:

	� vRd,c = �0.12 × 2.0 × (100 × 0.006 × 40)1/3
 + 0.1 × 2.4 = 0.932 MPa 

(>vmin + k1σcp)

From Equation 7.49:
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and from Equation 7.47 and Table 7.2:
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From Equation 7.46, the maximum shear stress on the basic control 
perimeter is:

	
vEd 182 MPa= × ×

×
=1 286

1203 10
4989 170

3

. .

which is much less than vRd,max, but greater than vRd,c, and therefore shear 
reinforcement is required. 

Punching shear at edge and corner columns should similarly be checked.

2. Establish cable profiles:

Using four 12.5 mm strands in a flat duct, with 25 mm concrete cover to 
the duct (the same as in Figure 12.12b), the maximum depth to the centre of 
gravity of the strand is:

	 dp = 220 − (25 + 19 − 7) = 183 mm

and the corresponding eccentricity is e = 73 mm. The maximum cable drapes 
in an exterior span and in an interior span are, respectively:

	
( ) .zd.max ext 1 9 5 mm= + =73

2
73 0
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and

	
( )max intzd. 146 mm= + + =73 73

2
73

Consider the trial cable profile shown in Figure 12.18. For the purposes of 
this example, it is assumed that jacking occurs simultaneously from both ends 
of a tendon so that the prestressing force in a tendon is symmetrical with 
respect to the centre line of the structure (shown in Figure 12.17). The fric-
tion losses have been calculated using Equation 5.148 with μ = 0.19 and k = 
0.016 for flat ducts, and the losses due to a 6 mm draw-in at the anchorage 
are calculated as outlined in Section 5.10.2.4 using Equation 5.151. The imme-
diate losses (friction + draw-in) are also shown in Figure 12.18.

3. Determine tendon layout:

It is assumed here that the average time-dependent loss of prestress in each 
low-relaxation tendon is 15%. Of course, this assumption should be checked.

The effective prestressing forces per metre width required to balance 
6.3 kPa using the fully available drape in the exterior span (AB) and in the 
interior span (BC) are found using Equation 12.10:
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Figure 12.18 � Cable profile and immediate loss details (Example 12.4).
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and the corresponding forces required at the jack prior to the instantaneous 
and time-dependent losses are:

	

Pj 687 kN/m 

required to balance 6 3 kPa in t

=
×

=520
0 890 0 85. .

. hhe exterior span( )

	

Pj 7 5 kN/m 

required to balance 6 3 kPa in t

=
×

=540
0 901 0 85

0
. .

. hhe interior span( )

The jacking force is therefore governed by the requirements for the inte-
rior span.

For the 10 m wide panel, the total jacking force required is 705 × 10 = 7050 kN. 
If the maximum stress in the tendon is 0.9fp0.1k = 1440 MPa, the total area of 
prestressing steel is therefore:

	
Ap

24896 mm= × =7050 10
1440

3

At least 14 flat-ducted cables are required in the 10 m wide panel (with the 
area of prestressing steel in each cable Ap = 372 mm2/cable) with an initial 
jacking force of 7050/14 = 504 kN per cable (i.e. σpj = 0.728fpk).

The required jacking force in the 8.5 m wide panel is 705 × 8.5 = 5993 kN 
and therefore Ap = 4162 mm2. At least 12 flat-ducted cables are needed in the 
8.5 m wide panels (Ap = 4462 mm2) with an initial jacking force of 5993/12 = 
500 kN per cable (i.e. σpj = 0.722 fpk).

In the interests of uniformity, all tendons will be initially stressed with a 
jacking force of 504 kN/cable (i.e. σpj = 0.728fpk). This means that a slightly 
higher load than 6.3 kPa will be balanced in the 10 m wide panels. The average 
prestress at the jack in each metre width of slab is (26 × 504)/(8.5 + 10) = 708 
kN/m, and the revised drape in the exterior span is:

	
hAB 1 6 m= ×

× × ×
=6 3 8 5

8 708 0 890 0 85
0 0

2. .
. .

.

The final cable profile and effective prestress per panel after all losses are 
shown in Figure 12.19.
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The maximum average stress in the concrete due to the longitudinal 
anchorage force after the deferred losses is:

	

P
A
= ×

×
=5 489 10

10 000 220
0

3,
,

.2 5  MPa

which is within the range mentioned in Section 12.3 as being typical for flat slabs.
The cable layout for the slab is shown on the plan in Figure 12.20. For 

effective load balancing, about 75% of the cables are located in the column 
strips. The minimum spacing of tendons is usually governed by the size of 
the anchorage and is taken here as 300 mm, while a maximum spacing of 
1600 mm has also been adopted.

4. Serviceability considerations:

In practice, the time-dependent losses in the post-tensioned tendons should 
now be checked using the procedures outlined in Section 5.10.3 and illus-
trated previously in Examples 10.1 and 10.3. For the purposes of this exam-
ple, we will assume that the losses have been checked at the critical sections 
and are as assumed in step 3. We will now analyse the slab under the unbal-
anced loads and check for the likelihood of cracking.

Considering the 10 m wide frame on column line ABC in Figure 12.17, the 
effective spans (clear spans + slab depth) are:

	 For end span AB:      (leff)AB = 8.5 − 0.6 − 0.6 + 0.22 = 7.52 m

	 For interior span BC:  (leff)BC = 10.0 − 0.6 − 0.6 + 0.22 = 9.02 m

With the full dead load balanced by the effective prestress, the maxi-
mum unbalanced load is 3 kPa (of which 1.0 kPa is assumed to be sustained). 

For the 10 m wide panel:

Pm,t(kN): 5160 5351 5489 5453 5255

10 m
CBA

8.5 m

73
73

73
69

Symmetrical about centre line

Figure 12.19 � Cable profile and effective prestress (Example 12.4).
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The  total static moments in the end span AB and in the interior span BC 
caused by the maximum unbalanced load are obtained using Equation 12.23:

	
( )

.
.Mo AB

2

212 1 kNm= × × =3 10 7 52
8

and

	
( )

.
.Mo BC

2

3 5 1 kNm= × × =3 10 9 02
8

0

The moment diagrams for each span caused by the unbalanced load obtained 
using the direct design method are shown in Figure 12.21.

Check for cracking: For the 5 m wide and 220 mm deep column strip, the prop-
erties of the gross cross-section are A = 1100 × 103 mm2, I = 4437 × 106 
mm4 and Z = 40.33 × 106 mm3. Taking 75% of the negative frame moment 
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Figure 12.20 � Tendon layout (Example 12.4).
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at support C to be carried in the 5 m wide column strip, the column strip 
moment at C is (MC)col = 0.75 × (−198.3) = −148.7 kNm and the effective pre-
stress in the column strip at C is Pm,t = 0.85 × 0.877 × Pj = 2628 kN. The tensile 
stress in the top concrete fibre is:

	
σc,top

m,t C col 2 39 3 69 13  MPa tension= − − = − + = +P
A

M
Z

( )
. . . ( )0

This is less than the lower characteristic tensile strength of the concrete 
fctk,0.05 and therefore cracking is unlikely and will not cause any significant loss 
of stiffness (see the discussion on flexural crack control in Section 12.5.1). 
The tensile stresses at the top of the slab in the column strip over support B 
and in the bottom of the slab in the column strip at the mid-spans of AB and 
BC will be less than that calculated earlier because in each case the magnitude of 
the effective prestress is larger than that at support C and the magnitude 
of the unbalance moment is smaller.

Although the tensile stresses in the column strips are less than the tensile 
strength of concrete, some local cracking over the interior column support 
is likely since peak moments are much higher than average values. A mat 
of conventional non-prestressed reinforcement (rectangular in plan) is here 
provided over the interior supporting columns to ensure crack control. The 
steel in each direction will be continuous across the column support line and 
extend to 25% of the clear span in each direction (see discussion in Section 
12.5.1). The non-prestressed steel area in each direction for crack control 
is at least:

	 As.x = As.y = 0.001 × 220 × 1000 = 220 mm2/m

A 8.5 m B 10 m C

–0.75(Mo)AB = –159.1 kNm

0.5(Mo)AB = 106.1 kNm 0.35(Mo)BC = 106.8 kNm

–0.65(Mo)BC = –198.3
kNm

Simply-supported edge

–0.65(Mo)BC = –198.3 kNm

Figure 12.21 � Bending moment diagram for flat slab frame ABC (Example 12.4).
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Unless a larger quantity of non-prestressed steel is required for strength, we 
will use a mat of welded wire mesh with 7.6 mm diameter wires at 200 mm 
centre in the top of the slab over each interior column.

In addition, a non-prestressed steel area of 0.0015bh = 330  mm2/m is 
required for crack control in the top of the slab perpendicular to the free 
edge in all exterior panels (where prestress may not be effective in accor-
dance with the discussion in the last paragraph of Section 12.2).

Check deflection: Although some localised cracking may occur in the column 
strip over the interior columns of this slab, it will not be sufficient to sig-
nificantly affect the slab stiffness and deflection may be calculated using the 
properties of the gross cross-section.

We will check deflection in the end span and in the interior spans of the 
10 m wide slab strip centred on column line ABC in Figure 12.17 and sub-
jected to the unbalanced load. For this uncracked wide beam: Icol = 4437 × 
106 mm4, Imid = 4437 × 106 mm4 and Ibeam = 8873 × 106 mm4. The maximum 
average deflection vavge at mid-span of the wide beam occurs when adjacent 
spans are unloaded. In accordance with the discussion in Section 12.4.2 
(concerning effect of pattern loading on the β factor in Equation 12.6), the 
appropriate deflection coefficient for the end span is β = 3.5/384 and for 
the interior span is β = 2.6/384. Therefore, due to the maximum unbal-
anced load:

	
( )

. ( ) . . ,
v

w l l
E I

avge AB
unbal t eff AB

cm beam

= = × ×3 5
384

3 5
384

3 0 10 7 54 220
35 000 8 873 10

4

6, ,
.

× ×
= 2 81 mm

	
( )

. ( ) . . ,
v

w l l
E I

avge BC
unbal t eff BC

cm beam

= = × ×3 5
384

2 6
384

3 0 10 9 04 220
35 000 8 873 10

4

6, ,
.

× ×
= 4 33 mm

Taking 70% of moment in the column strip, the deflections of the column 
strip and the middle strip are obtained from Equations 12.27 and 12.28:

	
( ) ( ) . . . .v v

I
I

c AB avge AB
beam

col

3 93 mm= × × = × × =0 7 2 81 0 7 2

	
( ) ( ) . . . .v v

I
I

m AB avge AB
beam

mid

169 mm= × × = × × =0 3 2 81 0 3 2

	 ( ) . . .vc BC 6 6 mm= × × =4 33 0 7 2 0

	 ( ) . . .vm BC 2 6  mm= × × =4 33 0 3 2 0
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Due to symmetry, the column and middle strip deflections in the orthogo-
nal direction are the same for this uncracked slab.

The maximum short-term deflection at the midpoint of the panels due to 
the unbalanced load is obtained by adding the column strip deflection to the 
x-direction with the middle strip deflection in the y-direction (Equation 12.26). 
For the edge panel, adjacent to column line AB (with lx =10 m and ly = 8.5 m), 
the maximum short-term deflection is:

	 (vi.mid)AB = 6.06 + 1.69 = 7.75 mm

while for the internal panel adjacent to column line BC (with lx = 10 m and 
ly= 10 m), the maximum short-term deflection is:

	 (vi.mid)BC = 6.06 + 2.60 = 8.66 mm

The sustained portion of the unbalanced load wunbal.sus = 1.0 kPa (= 0.33 wunbal) 
and the short-term mid-panel deflections produced by the sustained unbal-
anced load are therefore one-third of the values given earlier. Assuming the 
final creep coefficient φ(∞, t0) = 2.5, the creep-induced deflection at the 
midpoint of each panel is estimated from Equation 12.7:

	 ( ) . . . .vcc.mid AB 6 46 mm= × × =2 5 0 333 7 75

	 ( ) . . . .vcc.mid BC 7 22 mm= × × =2 5 0 333 8 66

Assuming the final shrinkage strain in the concrete is εcs
*  = 0.0005, the aver-

age shrinkage curvature κcs in each direction is estimated using Equation 12.9:

	
κcs mm= × = × − −0 3 0 0005

220
0 68 10 6 1. .
.

The average deflections due to shrinkage on the column centre lines are 
obtained from Equation 12.8:

	 ( ) . . .vcs AB 3 46 mm= × × × =−0 090 0 68 10 75206 2

	 ( ) . . .vcs BC 3 6  mm= × × × =−0 065 0 68 10 9020 06 2

and the shrinkage deflections at the midpoints of the panels adjacent to col-
umn lines AB and BC are the sum of the shrinkage deflection in each direction:

	 ( ) ( ) ( ) .v v vcs.mid AB cs AB cs BC 7 6 mm= + = 0

	 ( ) ( ) ( ) .v v vcs.mid BC cs BC cs BC 7 2  mm= + = 0
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Therefore, the maximum total deflections at the midpoints of the panels 
adjacent to column lines AB and BC are:

	� (vmid)AB = (vi.mid)AB + (vcc.mid)AB + (vcs.mid)AB = 7.75 + 6.46 + 7.06 = 21.3 mm

	� (vmid)BC = (vi.mid)BC + (vcc.mid)BC + (vcs.mid)BC = 8.66 + 7.22 + 7.20 = 23.1 mm

As the longer effective span in each of these two panels is leff = 9.02 m, 
the maximum deflection is leff/390 and this should be satisfactory for most 
occupancies.

5. Check shear and flexural resistance:

With the level of prestress determined, punching shear should also  be 
checked at both exterior and interior columns in accordance with the proce-
dure outlined in Section 7.4. The dimensions of the column capitals may need 
to be modified and shear reinforcement may be required particularly in the 
spandrel strips along each free edge.

The flexural resistance of the slab must also be checked. For the pur-
poses of this example, the design flexural resistance of the interior panel will 
be compared with the design moments determined from the direct design 
method. As calculated in step 1, wEd =13.0 kPa, the panel width is lt = 10 m 
and the effective span of an interior panel is leff = 9.02 m. From Equation 12.24, 
the total static moment is:

	
Mo

2

1322 kNm= × × =13 0 10 9 02
8

. .

From Table 12.6, the negative support moment is:

	 0 65. Mo 859 kNm=

Because both the positive and negative moment capacities are similar (each 
having the same quantity of prestressed steel at the same effective depth), 
only the negative moment region needs to be checked. From Table 12.5, the 
design negative moment in the column strip at the support is taken as:

	 MEd 6 1 kNm= × =0 7 859 0.

The 5 m wide column strip contains 10 cables (Ap = 3720 mm2) at an effective 
depth of 183 mm. The following results are obtained for the column strip 
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12.9.7  Yield line analysis of flat plates

Yield line analysis is a convenient tool for calculating the load required 
to cause flexural failure in reinforced concrete slabs. The procedure was 
described in detail by Johansen [16,17] and is a plastic method for the 
analysis of two-way slabs, with yield lines (or plastic hinge lines) developing 
in the slab and reducing the slab to a mechanism.

Typical yield line patterns for a variety of slab types subjected to uni-
formly distributed loads are shown in Figure 12.22. The yield lines divide 
the slab into rigid segments. At collapse, each segment rotates about an axis 
of rotation that is either a fully supported edge or a straight line through 
one or more point supports, as shown. All deformation is assumed to take 
place on the yield lines between the rigid segments or on the axes of rota-
tion. The yield line pattern, or the collapse mechanism, for a particular slab 
must be compatible with the support conditions.

The principle of virtual work is used to determine the collapse load cor-
responding to any possible yield line pattern. For a particular layout of yield 
lines, a compatible virtual displacement system is postulated. Symmetry in 
the slab and yield line pattern should be reflected in the virtual displacement 
system. The external work W done by all the external forces as the slab 
undergoes its virtual displacement is equal to the internal work U. The 
internal work associated with a particular yield line is the product of the 
total bending moment on the yield line and the angular rotation that takes 
place at the line. Since all internal deformation takes place on the yield lines, 
the internal work U is the sum of the work done on all yield lines.

In reinforced concrete slabs with isotropic reinforcement, the moment 
of resistance or plastic moment mu (per unit length) is constant along any 
yield line and the internal work associated with any of the collapse mecha-
nisms shown in Figure 12.22 is easily calculated. In prestressed concrete 
slabs, the depth of the orthogonal prestressing tendons may vary from 
point to point along a particular yield line and the calculation of U is more 
difficult.

at the column support in accordance with the design strength procedures 
outlined in Chapter 6:

	� σpud = 1391 MPa;  Fpt = 5175 kN;  x = 48.5 mm = 0.265dp; 
MRd = 847 kNm

The design resistance of the column strip MRd is substantially greater than MEd 
and therefore the slab possesses adequate flexural strength at this location. 
The strength is also adequate at all other regions in the slab.
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For flat plate structures, however, with the yield line patterns shown in 
Figures 12.22e and 12.23, the prestressing tendons crossing a particular 
yield line do so at the same effective depth, the plastic moment per unit length 
of the yield line is constant provided the tensile reinforcement and tendon 
areas per unit length are constant and the collapse load is readily calculated.

Consider the interior span of Figure 12.23a. If it is assumed conserva-
tively that the columns are point supports and that the negative yield lines 
pass through the support centre lines and if the slab strip shown is given 
a unit vertical displacement at the position of the positive yield line, the 
external work done by the collapse loads wu (in kN/m2) acting on the slab 
strip is the total load on the strip times its average virtual displacement 
(which in this case is 0.5):

	
W

w l l= u t

2
	 (12.29)

Simply-supported edge+ve yield line

(a) (b)

+ve yield line

–ve yield line
along fixed edges

Fixed edge

Fixed edge

–ve yield line

+ve yield line

(c)

Axes of
rotation

(d)

+ve yield line

–ve yield lines

(e)

Figure 12.22 � Plan views of slabs showing typical yield line patterns. (a) Four simply-
supported edges. (b) Two fixed, one simple and one free edge. (c) One 
fixed edge and two corner supports - Pattern 1. (d) One fixed edge and 
two corner supports - Pattern 2. (e) Edge panel of a flat plate.
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The internal work done at the negative yield line at each end of the 
span is the total moment ′m lu t times the angular change at the yield line 
θ (= 1/(l/2) = 2/l). At the positive yield line, the angular change is 2θ (= 4/l) 
and the internal work is mult × 4/l. The total internal work on all yield lines 
is therefore:

	
U m l

l
m l

l
l m m

l
= + ′ = + ′

u t u t
t u u4

2
2 4 ( )

	 (12.30)

The principle of virtual forces states that W = U and therefore:

	
w

l
m mu u u= + ′8

2 ( )	 (12.31)

where mu and ′mu are the moment resistances per unit length along the posi-
tive and negative yield lines, respectively.

When calculating mu and ′mu, it is reasonable to assume that the total 
quantity of prestressed and non-prestressed steel crossing the yield line is 
uniformly distributed across the slab strip, even though this is unlikely to 
be the case.

The amount of non-prestressed steel and the depth of the prestressed ten-
dons may be different at each end of an interior span, and hence the value 
of ′mu at each negative yield line may be different. When this is the case, the 
positive yield line will not be located at mid-span. The correct position is 
the one that corresponds to the smallest collapse load wu.

–ve yield line

+ve yield

lt1

lt2

(b)
a l – a

Slab strip

Slab strip

l 2θ

θ

θ

lt = (lt1 + lt2)/2

lt1 lt2
(a)

+ve yield line

–ve yield line

Figure 12.23 � Yield line analysis of a flat plate. (a) Interior span. (b) Exterior span.
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Consider the exterior span in Figure 12.23b. If the positive yield line is 
assumed to occur at mid-span, the collapse load is given by an expression 
similar to Equation 12.31, except that only one negative yield line contrib-
utes to the internal work and therefore:

	
w

l
m mu u u= + ′8

0 52 ( . )	 (12.32)

For the case when mu and ′mu have the same magnitude, the value of wu 
given by Equation 12.32 is:

	
w

m
l

u
u= 12

2 	 (12.33)

However, a smaller collapse load can be obtained by moving the position of 
the positive yield line a little closer to the exterior edge of the slab strip. The 
minimum collapse load for the mechanism shown in Figure 12.23b occurs 
when a = 0.414L, and the internal work is:

	
U m l

l l
m l

l
l m
l

i u t u t
t u= +






 + ′ =1

0 414
1

0 586
1

0 586
5 83

. . .
.

The external work is still given by Equation 12.29. Equating the internal 
and external work gives:

	
w

m
l

u
u= 11 66

2

.
	 (12.34)

The collapse loads predicted by both Equations 12.33 and 12.34 are 
close enough to suggest that, for practical purposes, the positive yield line 
in this mechanism may be assumed to be at mid-span.

Yield line analysis is therefore an ‘upper bound approach’ and predicts a 
collapse load that is equal to or greater than the theoretically correct value. 
It is important to check that another yield line pattern corresponding to 
a lower collapse load does not exist. In flat plates, a fan-shaped yield line 
pattern may occur locally in the slab around a column (or in the vicinity of 
any concentrated load), as shown in Figure 12.24.

The concentrated load Pu at which the fan mode shown in Figure 12.24c 
occurs is:

	 P m mu u u= + ′2π( )	 (12.35)

The loads required to cause the fan mechanisms around the columns in Figure 
12.24a and b increase as the column dimensions increase. Fan mechanisms 



Two-way slabs  559

may be critical in cases where the column dimensions are both less than 
about 6% of the span in each direction [18].

Although yield analysis theoretically provides an upper bound to the col-
lapse load, slabs tested to failure frequently (almost invariably) carry very 
much more load than that predicted. When slab deflections become large, 
in-plane forces develop in most slabs and the applied load is resisted by 
membrane action in addition to bending. The collapse load predicted by 
yield line analysis is therefore usually rendered conservative by membrane 
action. Although yield line analysis provides a useful measure of flexural 
strength, it does not provide any information regarding serviceability. 
Service load behaviour must be examined separately.

12.10  FLAT SLABS WITH DROP PANELS

Flat slabs with drop panels behave and are analysed similarly to flat plates. 
The addition of drop panels improves the structural behaviour both at ser-
vice loads and at overloads. Drop panels stiffen the slab, thereby reducing 
deflection. Drop panels also increase the flexural and shear strength of the 
slab by providing additional depth at the slab–column intersection. The 
extent of cracking in the negative moment region over the column is also 
reduced. The slab thickness outside the drop panel may be significantly 
reduced from that required for a flat plate. Drop panels, however, interrupt 
ceiling lines and are often undesirable from an architectural point of view.

Drop panels increase the slab stiffness in the regions over the columns 
and therefore affect the distribution of slab moments caused by unbalanced 
loads. The negative or hogging moments over the columns tend to be larger 
and the span moments tend to be smaller than the corresponding moments 
in a flat plate.

Building codes often place minimum limits on the dimensions of drop 
panels. For example, to include the effect of drop panels when sizing a 
slab by limiting the span-to-depth ratios using Equation 12.4, drop panels 

(a) (b) (c)

Figure 12.24 � Fan mechanisms at columns or under concentrated loads. (a) Rectangular 
column (under slab). (b) Circular column (under slab). (c) Concentrated 
load (on top of the slab).
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should extend a distance equal to at least one-sixth of the span on each 
side of the column centre line and the projection of the drop below the slab 
should be at least 30% of the slab thickness beyond the drop [12].

In Figure 12.25, the moments introduced into a slab by the change in 
eccentricity of the horizontal prestressing force at the drop panels are illus-
trated. These may be readily included in the slab analysis. The fixed end 
moment at each support of the span shown in Figure 12.25a is given by:

	
M

Pe
I I

F

/
=

+
2

21 2( )
	 (12.36)

and the resultant bending moment diagram is shown in Figure 12.25b. 
The moments of inertia of the various slab regions I1 and I2 are defined in 
Figure 12.25a. The moments in the drop panel due to this effect are posi-
tive and those in the span are negative, as shown, and, although usually rel-
atively small, tend to reduce the moments caused by the unbalanced loads.

12.11  BAND-BEAM AND SLAB SYSTEMS

Band-beam floors are a popular form of prestressed concrete construc-
tion. A one-way prestressed or reinforced concrete slab is supported by 
wide shallow beams (slab bands or band beams) spanning in the transverse 
direction. The system is particularly appropriate when the spans in one 
direction are significantly larger than those in the other direction.

The slab bands, which usually span in the long direction, have a depth 
commonly about two to three times the slab thickness and a width that 
may be as wide as the drop panels in a flat slab. A section through a typical 
band-beam floor is shown in Figure 12.26. The one-way slab is normally 

(b)
MF MF

MF – Pe

+

–

+

(a)

MF MFPe Pe

l/6 l/62l/3
I2 I2I1

Figure 12.25 � Bending moments due to eccentricity of longitudinal prestress. (a) Equivalent 
loads. (b) Bending moment diagram.
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considered to have an effective span equal to the clear span (from band 
edge to band edge) plus the slab depth. If the slab is prestressed, the tendons 
are usually designed using a load balancing approach and have a constant 
eccentricity over the slab bands with a parabolic drape through the effec-
tive span as shown in Figure 12.26. The depth and width of the band 
beams should be carefully checked to ensure that the reaction from the 
slab, deposited near the edge of the band, can be safely carried back to the 
column line.

The prestressing forces at the slab tendon anchorages will also induce 
moments at the change of depth from slab to slab band in the same way as 
was discussed for drop panels.

The slab band is normally designed to carry the full load in the transverse 
direction (usually the long-span direction). The prestressing tendons in this 
direction are concentrated in the slab bands, and these are also usually 
designed by load balancing. Because the prestress disperses out into the slab 
over the full panel width, the prestress anchorage should be located at the 
centroid of the T-section comprising the slab band and a slab flange equal 
in width to the full panel.

When checking serviceability and strength of the slab band, the effective 
flange width of the T-section is usually assumed to be equal to the width of 
the column strip as defined for a flat plate in Section 12.9.2.
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Chapter 13

Compression and 
tension members

13.1  TYPES OF COMPRESSION MEMBERS

Many structural members are subjected to longitudinal compression, 
including columns and walls in buildings, bridge piers, foundation piles, 
poles, towers, shafts and web and chord members in trusses. The idea of 
applying prestress to a compression member may at first seem unnecessary 
or even unwise. In addition to axial compression, however, these members 
are often subjected to significant bending moments. Bending in compres-
sion members can result from a variety of load types. Moments are induced 
in the columns in framed structures by the gravity loads on the floor sys-
tems. Lateral loads on buildings and bridges cause bending in columns and 
piers and lateral earth pressures bend foundation piles. Even members that 
are intended to be axially loaded may be subjected to unintentional bend-
ing caused by eccentric external loading or by initial crookedness of the 
member itself. Most codes of practice specify a minimum eccentricity for 
use in design. All compression members must therefore be designed for 
combined bending and compression.

Prestress can be used to overcome the tension caused by bending and 
therefore reduce or eliminate cracking at service loads. By eliminating 
cracking, prestress can be used to reduce the lateral deflection of columns 
and piles and greatly improve the durability of these elements. Prestress 
also improves the handling of slender precast members and is used to 
overcome the tension due to rebound in driven piles. The strength of com-
pression members is dependent on the strength of the concrete and con-
siderable advantage can be gained by using concrete with high mechanical 
properties. Prestressed columns and piles are therefore commonly precast 
in an environment where quality control and supervision are of a high 
standard.

If a structural member is subjected primarily to axial compression, 
with little or no bending, prestress causes a small reduction in the load 
carrying capacity. For most prestressed concrete columns, the level of pre-
stress is usually between 1.5 and 5 MPa, which is low enough not to cause 
significant reductions in strength. When the eccentricity of the applied 
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load is large and bending is significant, however, prestress results in an 
increase in the moment resistance, in addition to improved behaviour at 
service loads.

13.2 � CLASSIFICATION AND BEHAVIOUR 
OF COMPRESSION MEMBERS

Consider the pin-ended column shown in Figure 13.1. The column is sub-
jected to an external compressive force P applied at an initial eccentricity eo. 
When P is first applied, the column shortens and deflects laterally by an 
amount δi. The bending moment at each end of the column is Peo, but at 
the column mid-length the moment is P (eo + δi). The moment at any sec-
tion away from the column ends depends on the lateral deflection of the 
column, which in turn depends on the length of the column and its flexural 
stiffness. The initial moment Peo is called the primary moment and the 
moment caused by the lateral displacement of the column Pδi is the second-
ary moment. As the applied load P increases, so too does the lateral dis-
placement δi. The rate of increase of the secondary moment Pδi is therefore 
faster than the rate of increase of P. This non-linear increase in the internal 
actions is brought about by the change in geometry of the column and is 
referred to as geometric non-linearity.

(a) (b) (c) (d)

CCC eo eo

Peo

eo

B

P

A A A A

P

P

P

C

B B B

δi δi + ∆δ

P∆δ

Pδi

P

P

Figure 13.1 � Deformation and moments in a slender pin-ended column. (a) Elevation. 
(b) Deformation at t = 0. (c) Deformation at time t. (d) Moments.
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For a reinforced or prestressed concrete column under sustained loads, 
the member suffers additional lateral deflection due to creep. This time-
dependent deformation leads to additional bending in the member, and this 
in turn causes the column to deflect further. During a period of sustained 
loading, an additional deflection Δδ develops and the resulting gradual 
increase in secondary moment with time P(δi + Δδ) reduces the load carry-
ing capacity.

Columns are usually classified into two categories according to their 
length or slenderness. Short (or stocky) columns are compression members 
in which the secondary moments are insignificant, i.e. columns that are 
geometrically linear. Long (or slender) columns are geometrically non-linear 
and the secondary moment is significant, i.e. the lateral deflection of the 
column is enough to cause a significant increase in the bending moment 
at the critical section and, hence, a reduction in strength. For given cross-
sectional and material properties, the magnitude of the secondary moment 
depends on the length of the column and its support conditions. The sec-
ondary moment in a long column may be as great as or greater than the 
primary moment and the load carrying capacity is much less than that of a 
short column with the same cross-section.

The resistance of a stocky column is equal to the resistance of its cross 
section when a compressive load is applied at an eccentricity eo. The resis-
tance depends only on the cross-sectional dimensions, the quantity and dis-
tribution of the steel reinforcement (both prestressed and non-prestressed) 
and the compressive strengths of both concrete and steel. Many practical 
concrete columns in buildings are, in fact, stocky columns. The analysis 
of a prestressed concrete column cross-section at the ultimate limit state is 
presented in Section 13.3.

The resistance of a slender column is also determined from the strength 
of the critical cross-section subjected to an applied compressive load at 
an eccentricity (eo + δ). The calculation of secondary moments (Pδ) at the 
ultimate limit state and the treatment of slenderness effects in design are 
discussed in Section 13.4. Many precast prestressed compression mem-
bers, as well as some in-situ columns and piers, fall into the category of 
slender columns.

For very long columns, an instability or buckling failure may take place 
before the strength of any cross-section is reached. The resistance of a very 
slender member is not dependent on the cross-sectional resistance and must 
be determined from a non-linear stability analysis (see Reference [1]). Such 
an analysis is outside the scope of this book. A very slender member may 
buckle under a relatively small applied load, either when the load is first 
applied or after a period of sustained loading. The latter type of instabil-
ity is caused by excessive lateral deformation due to creep and is known 
as creep buckling. Upper limits on the slenderness of columns are usually 
specified by codes of practice in order to avoid buckling failures.
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13.3 � CROSS-SECTION ANALYSIS: 
COMPRESSION AND BENDING

13.3.1  Strength interaction diagram

The design resistance of a prestressed concrete column cross-section in com-
bined bending and uniaxial compression is calculated as for a conventionally 
reinforced concrete cross-section. Strength is conveniently represented by a 
plot of the design axial load resistance NRd versus the design moment resis-
tance on the section MRd. This plot is called the strength interaction curve.

A typical strength interaction curve is shown in Figure 13.2 and represents 
the failure line or strength line. Any combination of axial force and bend-
ing moment applied to the column cross-section that falls inside the interac-
tion curve is safe and can be carried by the cross-section. Any point outside 
the curve represents a combination of axial force and moment that exceeds 
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Figure 13.2 � A typical strength interaction diagram.
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the resistance of the cross-section. Depending on the properties of the cross-
section and the relative magnitudes of the axial force and bending moment, 
the type of failure can range from compressive, when the moment is small, to 
tensile or flexural, when the axial force is small and bending predominates.

Several critical points are identified on the strength interaction curve in 
Figure 13.2. Point 0 on the vertical axis is the point of axial compression 
(zero bending) and the design resistance is NRd.0 (often called the design 
squash load). The cross-section is subjected to a uniform compressive 
strain, as shown. Point 1 represents the zero tension point. The combina-
tion of axial force NRd.1 and moment NRd.1e1 at point 1 (when combined 
with pre-strain caused by prestress) produces zero strain in the extreme 
concrete fibre (i.e. x/h = 1). The extreme fibre-compressive strain at failure 
is εcu3. Between points 0 and 1 on the curve, the entire cross-section is in 
compression.

When the eccentricity of the applied load is greater than e1, bending causes 
tension over part of the cross-section. Point 2 is known as the balanced fail-
ure point. The strain in the extreme compressive fibre is εcu3 and the strain in 
the tensile steel is the design yield strain εyd. The eccentricity of the applied 
load at the balanced failure point is e2 (=eb). When a cross-section contains 
both non-prestressed and prestressed tensile steel with different yield strains 
and located at different positions on the cross-section, the balanced failure 
point is not well defined. Point 2 is usually taken as the point corresponding 
to a strain of εyd in the steel closest to the tensile face of the cross-section 
and is usually at or near the point of maximum moment capacity. At any 
point on the interaction curve between points 0 and 2, the tensile steel has 
not yielded at the ultimate limit state and failure is essentially compressive. 
Failures that occur between points 0 and 2 (when the eccentricity is less than eb) 
are sensibly known as primary compressive failures.

Point 3 is the pure bending point, where the axial force is zero. The 
moment resistance at this point MRd.3 is calculated as described in Chapter 6. 
Point 4 is the point corresponding to direct axial tension. At any point on 
the interaction curve between points 2 and 4, the capacity of the tensile 
steel (or part of the tensile steel) is exhausted, with strains exceeding the 
yield strain, and the section suffers a primary tensile failure.

Any straight line through the origin represents a line of constant eccen-
tricity called a loading line. Two such lines, corresponding to points 1 and 2, 
are drawn on Figure 13.2. The slope of each loading line is l/e. When a 
monotonically increasing compressive force N is applied to the cross-section 
at a particular eccentricity ei, the plot of N versus M (=Nei) follows the 
loading line of slope l/ei until the strength of the cross-section is reached at 
the point where the loading line and the interaction curve intersect. If the 
eccentricity of the applied load is increased, the loading line becomes flatter 
and the design resistance of the cross-section NRd is reduced.

The general shape of the interaction curve shown in Figure 13.2 is typical 
for any cross-section that is under-reinforced in pure bending (i.e. where 
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the tensile steel strain at point 3 exceeds the yield strain). At the pure bend-
ing point, a small increase in axial compression increases the internal com-
pressive stress resultant on the section but does not appreciably reduce the 
internal tension, thus increasing the design moment resistance, as is indi-
cated by the part of the interaction curve between points 3 and 2. For short 
columns, where the axial force N 

Ed is less than about 0.1fcdAg, it is usually 
acceptable to design the cross-section for bending only.

13.3.2  Strength analysis

Individual points on the strength interaction curve can be calculated using 
ultimate strength theory, similar to that outlined for pure bending in Section 
6.3. The analysis described in the following is based on the assumptions 
listed in Section 6.3.1 and the idealised rectangular stress block specified in 
EN 1992-1-1 [2] and presented in Section 6.3.2. At any point on the inter-
action curve between points 1 and 3, the extreme fibre concrete compres-
sive strain at failure is taken to be εcu3 (see Table 4.2). For axial compression 
at point 0, the extreme fibre concrete compressive strain at failure is taken 
to be εc1 (but not less than the design yield strain of the conventional non-
prestressed reinforcement εyd).

Calculation of the design moment resistance in pure bending MRd (point 3 
on the interaction curve where MRd = MRd.3) was discussed in Chapter 6. 
Other points on the strength interaction curve (between points 3 and 1) 
may be obtained by successively increasing the depth to the neutral axis 
and analysing the cross-section. With the extreme fibre strain equal to εcu3, 
each neutral axis position defines a particular strain distribution that corre-
sponds to a point on the strength interaction diagram. The strain diagrams 
associated with points 1, 2 and 3 are also shown in Figure 13.2.

To define the interaction curve accurately, relatively few points are 
needed. In fact, if only points 0, 1, 2 and 3 are determined, a close approxi-
mation can be made by passing a smooth curve through each point, or even 
by linking successive points together by straight lines. Such an approxima-
tion is often all that is required in design.

Consider the rectangular cross-section shown in Figure 13.3a, with overall 
dimensions h and b. The section contains two layers of non-prestressed rein-
forcement As(1) and As(2), and two layers of bonded prestressing steel Ap(1) and 
Ap(2), as shown. A typical strain diagram in the ultimate limit state condition 
and the corresponding idealised stresses and stress resultants are illustrated 
in Figures 13.3b through d, respectively. These strains and stresses corre-
spond to a resultant axial force NRd at an eccentricity e measured from the 
plastic centroid of the cross-section (as shown in Figure 13.3d). Assuming 
that As(1) and Ap(1) are above the neutral axis, and As(2) and Ap(2) are below, as 
shown, longitudinal equilibrium requires that:

	 N F F F F FRd cd sd(1) ptd(1) ptd(2) sd(2)= + − − − 	 (13.1)
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and moment equilibrium gives:

	

M N e F d
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(13.2)

where dpc is the depth of the plastic centroid of the cross-section from the 
compressive face.

Each of the internal forces can be calculated readily from the strain dia-
gram. The magnitude of the compressive force in the concrete Fcd is the 
volume of the rectangular stress block given by:

	 F f Acd cd c= ′µ 	 (13.3)

where ′Ac is the area of concrete under the stress block and equals the gross 
area λxb minus the areas of any bonded steel and hollow ducts within this 
area.

The magnitude of the strain in the compressive non-prestressed steel As(1) is:

	
ε

ε
sd(1)

cu3 s(1)=
−( )x d

x
	 (13.4)
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Figure 13.3 � Design stresses and strains on a rectangular cross-section in compression 
and uniaxial bending. (a) Cross-section. (b) Strain. (c) Stresses and forces. 
(d) Stress resultant.
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and the compressive force in As(1) is:

	 Fsd(1) = As(1)Esεsd(1)  if εsd(1) < εyd (= fyd/Es)	 (13.5)

	 = As(1)fyd	 if εsd(1) ≥ εyd (= fyd/Es)	 (13.6)

The strain in the tensile non-prestressed steel As(2) is:

	
ε

ε
sd(2)

cu3 s(2)=
−( )d x

x
	 (13.7)

and the force in As(2) is:

	 Fsd(2) = As(2)Esεsd(2)  if εsd(2) < εyd	 (13.8)

	 = As2fsy	 if εsd(2) ≥ εyd	 (13.9)

To determine the design strain in the prestressing steel, account must be 
taken of the large initial tensile strain in the steel εpe caused by the effective 
prestress. For each area of prestressing steel:
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A E
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A E
	 (13.10)

The strains in the concrete at the different levels of the prestressing steel 
caused by the effective prestress (εce(1) and εce(2)) are readily calculated. If 
the prestressing forces in Ap(1) and Ap(2) are such that the effective prestress 
is axial, producing uniform compressive strain εce, i.e. εce = εce(1) = εce(2), the 
resultant effective prestressing force Pm,t (= Pm,t(1) + Pm,t(2)) acts at the cen-
troidal axis and the magnitude of εce is:
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	 (13.11)

where αs is the modular ratio Es/Ecm and Ac and Ag are, respectively, the 
concrete area and the gross cross-sectional area (minus the cross-sectional 
area of any unbonded ducts).
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The changes in strain in the bonded prestressing tendons due to the appli-
cation of NRd at an eccentricity e may be obtained from the strain diagram 
of Figure 13.3b and are given by:
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ε
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cu3 p(1)
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−
+

( )x d
x

	 (13.12)

and

	
∆ε

ε
εp(2)

cu3 p(2)
ce(2)=

−
+

( )d x
x

	 (13.13)

The final strain in each prestressing tendon is therefore:

	 ε ε εpud(1) pe(1) p(1)= + ∆ 	 (13.14)

and

	 ε ε εpud(2) pe(2) p(2)= + ∆ 	 (13.15)

The final stress in the prestressing tendons (σpud(1) and σpud(2)) may be 
obtained from a stress–strain curve for the prestressing steel, such as 
one of the curves shown in Figure 4.10, or from one of the idealised 
lines in Figure 4.12. If the strain in the prestressing steel remains in the 
elastic range (and on the compressive side of the cross-section it does), 
then σpud = εpudEp.

The design forces in the tendons are:

	 F Aptd(1) pud(1) p(1)= σ 	 (13.16)

and

	 F Aptd(2) pud(2) p(2)= σ 	 (13.17)

With the internal forces determined from Equations 13.3, 13.5, 13.6, 
13.8, 13.9, 13.16 and 13.17, the compressive resistance NRd is obtained 
from Equation 13.1 and the eccentricity e is calculated using Equation 13.2. 
The resulting point (NRd, MRd (= NRde)) represents the point on the design 
strength interaction curve corresponding to the assumed strain distribution.
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When the cross section is subjected to pure compression (point 0 on the 
interaction curve), the eccentricity is zero and the strength (known as the 
design squash load) is given by:

	 N F A A f A ARd.0 cd.0 s(1) s(2) yd pud(1) p(1) pud(2) p(2)= + + − −( ) σ σ 	 (13.18)

where Fcd.0 is the resultant compressive force carried by the concrete part 
of the cross-section (Ac) in uniform compression and may be taken as 
Fcd.0 = fcdAc.

EXAMPLE 13.1

Calculate the critical points on the strength interaction curve of the post-
tensioned concrete column cross-section shown in Figure 13.4a. The cross-
section is 600  mm wide and 800  mm deep. Steel quantities, prestressing 
details and material properties are as follows:

	 As(1) = As(2) = 2250 mm2,  Ap(1) = Ap(2) = 1000 mm2,  Es = 200 × 103 MPa,

	 fyd = 435 MPa,  fck = 40 MPa,  Ecm = 35,000 MPa,  and  αs = Es/Ecm = 5.71. 

From Equations 6.2 and 6.4, λ = 0.8 and η = 1.0. Assume that the ducts 
have been grouted.

The properties of the prestressing steel are taken from the idealised 
stress–strain relationship shown in Figure 13.4b, where the initial elastic 
modulus Ep = 195 × 103 MPa and the effective prestress in each bonded ten-
don is Pm,t(1) = Pm,t(2) = 1200 kN.
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70
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+
Plastic centroid

400

520

Figure 13.4 � Cross-sectional details and idealised design stress–strain relation-
ship for tendons (Example 13.1). (a) Cross-section. (b) Design stress 
versus strain for tendons.
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The effective strain in each tendon is obtained from Equation 13.10:

	
ε εpe(1) pe(2)= = ×

×
=1 200 10

1 000 195 000
0 00615

3,
, ,

.

Because of the symmetry of the cross-section and the fact that the resul-
tant effective prestress passes through the centroid of the section, the strain 
in the concrete caused by the effective prestress is uniform over the section 
and obtained from Equation 13.11:

	

ε ε εce ce(1) ce(2)= = = × ×
− × + + ×

2 1 200 10
5 71 1 2 250 2 250 800

3,
[( . ) ( , , ) ( 6600 35 000

0 000137
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Point 0: Pure compression (e = 0)
At the design squash load, the strain on the cross-section is uniform with a 
magnitude of εc1 = 0.0023 [2]. The compressive force carried by the concrete 
in uniform compression is:

F f Acd.0 cd c= = × × − × − × × =−26 67 600 800 2 2 250 2 1 000 10 12 63. [ ( , ) ( , )] , 227 kN

The magnitude of the compressive stress in the non-prestressed steel is 
fyd = 435 MPa and the tensile stress in the prestressing steel is in the elastic 
range and given by:

	 σpud(1) (= σpud(2)) = Ep(εpe(1) − εc1 + εce(1))

	 = 195 × 103 × (0.00615 − 0.0023 + 0.000137) = 777.5 MPa

The design resistance of the cross-section in axial compression is given by 
Equation 13.18:

	

NRd.0 = + + × × − + × ×−12 627 2 250 2 250 435 10 1 000 1 000 777 5 103, ( , , ) ( , , ) . −−

=

3

0 013, 3  kN

Point 1: Zero tension
For the case of zero tension, x = h = 800 mm and the magnitude of εcu3 is 
0.0035 [2]. With λx = 640 mm, Equation 13.3 gives the compressive force in 
the concrete:

	

F f A f xb A Ascd cd c cd p(1)= ′ = − −

= × × × −

µ µ λ( )

. . ( ,

( )1

1 0 26 67 640 600 2 250 −− × =−1 000 10 03, ) ,1 153 kN
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From Equation 13.4, the magnitude of the compressive strain in As(1) is:

	
ε εsd(1) yd319 218= × − = > =( )0 0035 800 70

800
0 00 0 00

. ( )
. .

The top layer of non-prestressed steel has yielded and the compressive force 
in As(1) is given by Equation 13.6:

	 Fsd(1) = 2250 × 435 × 10–3 = 979 kN

From Equation 13.7, the strain in As(2) is:

	
εsd(2) 3 6= × − = −0 0035 730 800

800
0 000 0

. ( )
.

Since the bottom steel As(2) is above the neutral axis at Point 1 and in compression 
(and not above the neutral axis and in tension as shown in Figure 13.3), the force 
Fsd(2) will in fact be a negative quantity. From Equation 13.8:

	� Fsd(2) = 2,250 × 200,000 × (−0.000306) × 10–3

	 = −138 kN (i.e. compressive)

The change in strain at each level of prestressing steel is compressive and 
given by Equations 13.12 and 13.13:

	
∆εp(1) 275= − × − + = −0 0035 800 140

800
0 000137 0 00

. ( )
. .

	
∆εp(2) 476= × − + = −0 0035 660 800

800
0 000137 0 000

. ( )
. .

and the final strains in the prestressing tendons are obtained from Equations 
13.14 and 13.15:

	 εpud(1) 34= − =0 00615 0 00275 0 00 0. . .

	 εpud(2) 567= − =0 00615 0 000476 0 00. . .

Both final strains are in the elastic range and the forces in the tendons are:

F A E Aptd(1) pud(1) p(1) pud(1) p p(1)= = = × × ×σ ε 0 00340 195 000 1 000. , , 110 3− = 663 kN

F A E Aptd(2) pud(2) p(2) pud(2) p p(2)= = = × × ×σ ε 0 00567 195 000 1 000. , , 110 03− =1,1 6 kN
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The resultant compressive force is obtained from Equation 13.1:

	 NRd.1 1 153 979 663 1,1 6 138 9,5 1 kN= + − − + =0 0 0,

and the design moment resistance for the case of zero tension is calculated 
using Equation 13.2:

	

MRd.1 = × − ×










 + × −( ) − × −10 153 400

0 8 800
2

1 979 400 70 663 400 1,
.

440

1106 660 400 138 730 400 10

1205

3

( )

+ × −( ) − × −( )

 ×

=

−

kNm

Therefore, the eccentricity corresponding to point 1 is:

	
e

M
N

1
Rd.1

Rd.1

126 8 mm= = .

Point 2: The balanced failure point
Point 2 corresponds to first yielding in the non-prestressed tensile steel, 
i.e. εsd(2) = εyd = 0.00218, and therefore the design force in the tensile non-
prestressed steel is:

	 Fsd(2) = 2250 × 435 × 10–3 = 979 kN

The depth to the neutral axis at point 2 is therefore:

	
x d=

+
=

+
× =ε

ε ε
cu3

cu3 yd
s(2) mm

0 0035
0 0035 0 00218

730 450
.

. .

The corresponding curvature is κud2 = εcu3/x = 7.78 × 10–6 mm−1. The com-
pressive force in the concrete is (Equation 13.3):

	 Fcd 5673 kN= × × × × − − =1 0 26 67 0 8 450 600 2250 1000. . ( . )

With x = 450 mm, the strain in the non-prestressed compressive rein-
forcement is:

	
ε εsd(1) yd296= × − = >0 0035 450 70

450
0 00

. ( )
.
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and from Equation 13.6:

	 Fsd(1) = 2250 × 435 × 10–3 = 979 kN

With the strain in Ap(1) still in the elastic range, the force Fptd(1) is obtained 
from Equations 13.12, 13.14 and 13.16:

	

F A
x d
x

Eptd(1) p(1) pe(1)
p(1)

ce(1) p= −
−

+






= ×

ε ε
0 0035

1 000

. ( )

, 00 00615
0 0035 450 140

450
0 000137 195 000 10 3.

. ( )
. ,− × − +




× ×

=

−

7556 kN

Equations 13.13 and 13.15 give:

	

ε ε εpud(2) pe(2)
p(2)

ce(2) 615 163= +
−

+ = + +
0 0035

0 00 0 00 0 0
. ( )

. . .
d x
x

000

0 00

137

792= .

which is greater than the design yield strain in Figure 13.4b and, from that 
figure, we get σpud(2) = 1391 MPa. From Equation 13.17:

	 Fptd(2) 1391 kN= × × =−1391 1000 10 3

With the strain in bottom steel As(1) much greater than fyd, Fsd(2) = 979 kN.
The design resistance corresponding to the balanced point (point 2) is 

obtained from Equations 13.1 and 13.2:

	 NRd.2 5673 979 756 1391 979 3526 kN= + − − − =

and the design moment resistance at the balanced load point is calculated 
using Equation 13.2:

	

MRd.2 = × − ×





 + × −( ) − × −( )


5673 400

0 8 450
2

979 400 70 756 400 140
.



+ × −( ) + × −( )



 ×

=

−1391 660 400 979 730 400 10

0

3

2 59 kNm
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The eccentricity corresponding to point 2 is:

	
e

M
N

2
Rd.2

Rd.2

584 mm= =

Point 3: Pure bending
For equilibrium of the section in pure bending (i.e. bending without axial 
force), the magnitude of the resultant compression is equal to the magnitude 
of the resultant tension and NRd = 0. A trial-and-error approach to determine 
the depth to the neutral axis indicates that:

	 x = 196.0 mm

and the compressive force in the concrete is (Equation 13.3):

	 Fcd 2422 kN= × × × × − − × =−1 0 26 67 0 8 196 0 600 2250 1000 10 3. . ( . . )

From Equation 13.4:

	
ε εsd(1) yd225= × − = >0 0035 196 70

196
0 00

. ( )
.

and therefore Fsd(1) = 2250 × 435 × 10–3 = 979 kN.
Equations 13.12, 13.14 and 13.16 give:

Fptd(1) = × − × − +




×1 000 0 00615

0 0035 196 140
196

0 000137 1, .
. ( )

. 995 000 10

0

3, ×

=

−

1, 31 kN

Equations 13.13 and 13.15 give:

	
ε ε εpud(2) pe(2)

p(2)
ce(2)  1457= +

× −
+ =

0 0035
0 0

. ( )
.

d x
x

which is greater than the design yield strain (0.00713) in Figure 13.4b and 
therefore σpud(2) = 1391 MPa and Fptd(2) = 1391 × 1000 × 10−3 = 1391 kN.

The design resistance corresponding to point 3 is obtained from Equations 
13.1 and 13.2:

	 NRd.3 2422 979 1 31 1391 979= + − − − =0 0
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and the design moment resistance is calculated using Equation 13.2:

	

MRd.3 = × − ×





 + × −( ) − × −( )

2422 400
0 8 196

2
979 400 70 1031 400 140

.




+ × −( ) + × −( )

×

=

−1391 660 400 979 730 400 10 3

1519 kNm

Point 4: Axial tension
The capacity of the section in tension is dependent only on the steel strength. 
Therefore, taking fyd = 435 MPa and fpd = 1391 MPa, as indicated in Figure 
13.4b, the axial tensile strength is:

	 N A A f A A fRd.4 s1 s2 yd p1 p2 pd 474  kN= + + + =( ) ( ) 0

Figure 13.5 shows the strength interaction curve for the cross-section 
(solid line).

In addition, Figure 13.5 also illustrates the interaction curve for a cross-
section with the same dimensions, material properties and steel quantities 
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Figure 13.5 � Strength interaction curve (Example 13.1).
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13.3.3  Biaxial bending and compression

When a cross-section is subjected to axial compression and bending about 
both principal axes, such as the section shown in Figure 13.6a, the strength 
interaction diagram can be represented by the three-dimensional surface 
shown in Figure 13.6b. The shape of this surface may be defined by a set 
of contours obtained by taking horizontal slices through the surface. A 
typical contour is shown in Figure 13.6b. Each contour is associated with 
a particular axial force N. The equation of the contour represents the rela-
tionship between Mx and My at that particular value of axial force. In 
EN 1992-1-1 [2], the design expression given in Equation 13.19 is specified 
to model the shape of these contours. The form of Equation 13.19 was 
originally proposed by Bresler [3].

(both non-prestressed and prestressed), but without any effective prestress, 
i.e. Pm,t(1) = Pm,t(2) = 0. A comparison between the two curves indicates the 
effect of prestress. In this example, the prestressing steel induced an effective 
prestress of 5 MPa over the column cross-section. Evidently, the prestress 
reduces the axial load carrying capacity by about 16% (at point 0) but slightly 
increases the bending strength of the cross-section in the primary tension 
region (i.e. between points 2 and 3).

yy

z

z

P

ez

ey

N

A

(a)

(b)

N

NRd.0

NRd

MRd.z
MRd.yMy

Mz

Typical contour

Figure 13.6 � Biaxial bending and compression. (a) Cross-section. (b) Strength interaction 
diagram.
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If the factored design actions NEd, MEd.x and MEd.y fall inside the design 
interaction surface, then the cross-section is adequate. According to 
EN 1992-1-1 [2], a cross-section subjected to biaxial bending should satisfy 
the following equation:

	

M
M

M
M

a a

Ed.z

Rd.z

Ed.y

Rd.y









 +









 ≤ 1 0. 	 (13.19)

where MEd.z(MEd.y) is the design moment about z-axis (y-axis), including 
second-order effects, and MRd.z(MRd.y) is the design moment resistance calcu-
lated separately about z-axis (y-axis) under the design axial force NEd. The 
factored design moments MEd.z and MEd.y are magnified to account for slen-
derness, if applicable (see Section 13.4). The index a is a factor that depends 
on the axial force and the shape of the cross-section. For a circular or ellipti-
cal cross-section, a = 2.0. For a rectangular cross-section, a is given in Table 13.1, 
where NRd.0 is the design axial resistance given in Equation 13.18.

Biaxial bending is not a rare phenomenon. Most columns are subjected 
to simultaneous bending about both principal axes. In general, biaxial 
bending need not be considered where the eccentricity about one axis is less 
than 0.1 times the column dimension in the direction of that eccentricity or 
when the ratio of the eccentricities ez/ey falls outside the range is 0.2 to 5, 
where ez = MEd.y/NEd and ey = MEd.z/NEd. In each of these situations, the cross-
section can be designed in uniaxial bending and compression with each 
bending moment considered separately.

13.4  SLENDERNESS EFFECTS

13.4.1  Background

The strength of a short column is equivalent to the strength of the most 
heavily loaded cross-section and, for a given eccentricity, may be deter-
mined from the strength interaction curve (or surface). The strength of a 
long column (or slender column) depends not only on the resistance of the 
cross-section but also on the length of the member and its support condi-
tions. A discussion of the behaviour of a slender pin-ended column was 
presented in Section 13.2 and the increase in secondary moments due to 

Table 13.1  �Index a in Equation 13.19

NEd/NRd.0 0.1 0.7 1.0
a 1.0 1.5 2.0
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slenderness effects was illustrated in Figure 13.1. In general, as the length 
of a compression member increases, strength decreases.

To predict accurately the second-order effects in structures as they 
deform under load requires an iterative non-linear computer analysis, and 
this generally involves considerable computational effort. For the design 
of concrete compression members, simplified procedures are available to 
account for slenderness effects and one such procedure is presented here. 
A more detailed study of geometric non-linearity and instability in struc-
tures is outside the scope of this book.

The critical buckling load NB of an axially loaded, perfectly straight, pin-
ended elastic column was determined by Euler and is given by:

	
N

EI
l

B =
π2

2 	 (13.20)

where l is the length of the Euler column between its pinned ends. In prac-
tice, concrete columns are rarely, if ever, pinned at their ends. A degree of 
rotational restraint is usually provided at each end of a column by the sup-
porting beams and slabs, or by a footing. In some columns, translation of 
one end of the column with respect to the other may also occur in addition 
to rotation. Some columns are completely unsupported at one end, such 
as a cantilevered column. The buckling load of these columns may differ 
considerably from that given by Equation 13.20.

In general, for design purposes, the critical buckling load of real columns 
is expressed in terms of the effective length l0. EN 1992-1-1 [2] defines l as 
the clear height of the column between end restraints and may be taken as 
the unsupported length of the column, i.e. the distance between the faces of 
members providing lateral support to the column. Where column capitals 
or haunches are present, l is usually measured to the lowest extremity of the 
capital or haunch. The ratio l0/l is an effective length factor that depends on 
the support conditions of the column and equals 1.0 for a pin-ended Euler 
column. The buckling load of a concrete column is therefore:

	
N

EI
l

B
0

= π2

2 	 (13.21)

For the determination of NB for cracked reinforced concrete columns, it is 
reasonable to take EI as the ratio of moment to curvature at the strength 
limit state condition of the column.

In structures that are laterally braced, the ends of columns are not able 
to translate appreciably relative to each other, i.e. sidesway is prevented. 
Many concrete structures are braced, with stiff vertical elements such 
as shear walls, elevator shafts and stairwalls providing bracing for more 
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flexible columns and ensuring that the ends of columns are not able to 
translate appreciably relative to each other. If the attached elements at each 
end of a braced column provide some form of rotational restraint, the criti-
cal buckling load will be greater than that of a pin-ended column (given in 
Equation 13.20) and the effective length l0 in Equation 13.21 is less than l. 
The effective lengths specified in EN 1992-1-1 [1] for braced columns are 
shown in Figure 13.7a. The effective length of any column is the length 
associated with single curvature buckling, i.e. the distance between the 
points of inflection in the deflected column, as shown in Figures 13.7a and 
13.8a. For the column shown in Figure 13.7a(iv), the supports are neither 
pinned nor fixed. The effective length depends on the relative flexural stiff-
ness of the column and the supporting elements at each end of the column 
(such as floor beams and slabs).

For columns in unbraced structures, where one end of the column can 
translate relative to the other (i.e. sidesway is not prevented), the effec-
tive length l0 is greater than l, sometimes much greater, as shown in 
Figure 13.8b. The buckling load of an unbraced column is therefore sig-
nificantly less than that of a braced column. Values of l0 specified in EN 
1992-1-1 [2] for unbraced columns under various support conditions are 
shown in Figure 13.7b.

A braced column is a compression member located within a storey of 
a building in which horizontal displacements do not significantly affect 
the moments in the column. EN 1992-1-1 [2] defines a braced column as 

(i) l0 = 2.0 l (ii) l0 = 1.0 l (iii) l0 > 2.0 l
(b) 

l

(i) l0 = 1.0 l (ii) l0 = 0.7 l (iii) l0 = 0.5 l (iv) 0.5 l < l0 < 1.0 l
(a)

l0
l0 l0 ll0

Figure 13.7 � Effective lengths l0 [2]. (a) Braced columns. (b) Unbraced columns.
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a column in a structure which is assumed not to contribute to the overall 
horizontal stability of the structure. The lateral actions applied at the ends 
of such a column are resisted by masonry infill panels, shear walls, lateral 
bracing or the like.

A compression member may be assumed to be braced, if it is located in 
a storey where the bracing elements (shear walls, masonry infills, bracing 
trusses and other types of bracing) have a total stiffness, resisting lateral 
movement of the storey, of at least six times the sum of the stiffnesses of all 
the columns within the storey.

For compression members in regular frames, the effective length for the 
braced column shown in Figure 13.7a(iv) is given in EN 1992-1-1 [2] as:

	
l l
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	 (13.22)

and the effective length for the unbraced column in Figure 13.7b(iii) may 
be calculated using [2]:
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The terms k1 and k2 are the relative flexibilities of the rotational restraints 
at ends 1 and 2, respectively, given by:

	
k

M
EI
l
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



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








θ
. 	 (13.24)

and θ is the rotation of the restraining members under end column moment 
M and EI is the bending stiffness of the compression member. Where the 

(a) (b)

Nc1 Nc1 Nc2Nc2

l l0

l0

Figure 13.8 � Effective lengths in a braced and an unbraced portal frame. (a) Braced 
frame. (b) Unbraced frame.
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column is continuous through the node at one or both ends of the column, 
the term EI/l in Equation 13.24 should be replaced by [(EI/l)a + (EI/l)b] for 
the two columns a and b above and below the node. For rigid rotational 
restraint (i.e. a fixed end support) the factor k = 0, while for zero rotational 
restraint (i.e. a pinned support) k = ∞. As fully rigid restraint is not pos-
sible, EN 1992-1-1 [2] recommends that in design k1 and k2 are not taken 
less than 0.1.

For the determination of the rotation θ, the effects of cracking of the 
restraining members should be considered if they are cracked at the ulti-
mate limit state.

In the case of slender prestressed concrete columns, the question arises as 
to whether the longitudinal prestressing force P reduces the critical buck-
ling load. In general, a concrete column prestressed with internally bonded 
strands or post-tensioned with tendons inside ducts within the member is 
no more prone to buckling than a reinforced concrete column of the same 
size and stiffness and under the same support conditions. As a slender, 
prestressed concrete column displaces laterally, the tendons do not change 
position within the cross-section and the eccentricity of the line of action 
of the prestressing force does not change. The prestressing force cannot, 
therefore, generate secondary moments. However, if a member is externally 
prestressed so that the line of action of the prestressing force remains con-
stant, then prestress can induce secondary moments and hence affect the 
buckling load.

13.4.2  Slenderness criteria

The slenderness ratio λ of a column is the ratio of the effective length l0 and 
the radius of gyration of the uncracked cross-section i:

	
λ = l

i
0 	 (13.25)

EN 1992-1-1 [2] permits secondary moments in a column to be ignored if 
the slenderness ratio of an isolated member is less than λlim, where:

	
λlim = 20. . .A BC

n
	 (13.26)

where A = 1/(1 + 0.2φef); B = +1 2ω; C = 1.7 − rm; n = NEd/(Acfcd); φef is 
the effective creep ratio given by φef = φ(∞, t0)M0Eqp/M0Ed; φ(∞, t0) is the 
final creep coefficient; M0Eqp is the first-order moment caused by the quasi-
permanent service load combination; M0Ed is the first-order moment caused 
by the ultimate design load combination; ω is the mechanical reinforcement 
ratio given by ω = Asfyd/(Acfcd); As is the area of longitudinal reinforcement 
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in the column; rm is the ratio of first-order end moments (rm = M01/M02) 
and M M02 01≥ . If the column is bent in single curvature (i.e. M01 and M02 

produce tension on the same side of the column), rm is taken to be positive 
and C ≤ 1.7. If the column is bent in double curvature, rm is negative and 
C > 1.7. In Equation 13.26, if φef is not known, A = 0.7 may be assumed; 
if ω is unknown, B may be taken as 1.1; and if rm is unknown, C = 0.7 is 
a conservative assumption. For unbraced members generally, C = 0.7. For 
braced members, where the primary moments arise predominantly from 
transverse loading or initial imperfections, C = 0.7.

In addition, if Equation 13.27 is satisfied, global second-order effects 
may be ignored in buildings where: (1) the plan layout is reasonably sym-
metrical; (2) global shear deformations are negligible; (3) the columns are 
braced by bracing members with negligible rotation at the base and whose 
stiffness is reasonably constant over the height of the structures; and (4) the 
gravity load increases by about the same amount per storey.
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∑0 31
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. 	 (13.27)

where FV,Ed is the total vertical load on both braced and unbraced members; 
ns is the number of storeys; L is the total height of the building above the 
base where moment is restrained; Ecd = Ecm/1.2 is the design value of 
the elastic modulus of concrete and Ic is the second moment of areas of the 
bracing member(s) based on the uncracked concrete section(s). Where the 
bracing elements are uncracked at the ultimate limit state, the limiting value 
of FV,Ed given on the right hand side of Equation 13.27 may be doubled.

Notwithstanding the requirements mentioned earlier, EN 1992-1-1 [2] 
permits second-order effects to be ignored if they are less than 10% of the 
corresponding first-order effects. The code also permits the effects of creep 
to be ignored in the determination of secondary moments if the following 
three conditions are satisfied:

	 φ(∞, t0) ≤ 2.0;  λ ≤ 75  and  M0Ed/NEd ≥ h	 (13.28)

where M0Ed is the first-order moment and h is the depth of the column 
cross-section at right angles to the axis of bending.

For columns subjected to biaxial bending, the slenderness criteria should 
be checked separately for each direction.

13.4.3  Moment magnification method

In lieu of a detailed second-order analysis to determine the effects of short-
term and time-dependent deformation on the magnitude of moment and 
forces in slender structures, EN 1992-1-1 [2] specifies a moment magnifier 
method to account for slenderness effects in columns. The idea behind the 
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moment magnification method is based on the concept of using a factor 
to magnify the column moments to account for the change in geometry of 
the structure and the resulting secondary actions. The axial load and the 
magnified moment are then used in the design of the column cross-section. 
The effect of second-order (secondary) moments on the strength of a slender 
column is shown on the strength interaction curve in Figure 13.9. Line OA 
is the loading line corresponding to an initial eccentricity e on a particular 
cross-section. If the column is short, the second-order moments are insignif-
icant, the loading line is straight and the design strength or resistance of the 
column corresponds to the design axial force at A (NRd,short). If the column is 
slender, the second-order moments increase at a faster rate than the applied 
axial force and the loading line becomes curved, as shown. The strength of 
the slender column is the axial force corresponding to point B (NRd,slender), 
where the curved loading line meets the strength interaction curve. The loss 
of strength due to second-order moments is indicated in Figure 13.9.

The total moment at failure MEd is the sum of the first-order moment 
M0Ed (=Ne) obtained from a linear analysis and the second-order moment 
M2 and may be expressed as:
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	 (13.29)

where the terms inside the square brackets are used to magnify the primary 
moment to account for slenderness effects. In Equation 13.29, NB is the 
buckling load (see Equation 13.21) based on nominal stiffness EI which 
may be taken to be MRd/κRd at the balanced failure point on the strength 

Moment, M

Axial load, N

A

B

First-order (primary) moment(M0Ed)

NRd.short

NRd.slender

Loss of strength due
to slenderness

O

Second-order moment (M2)

Figure 13.9 � Strength interaction curve for a cross-section in a slender column.
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interaction diagram multiplied by 1/(1 + A) to account for the effects of 
creep; A is defined under Equation 13.26; NEd is the design axial force on 
the column and β depends on the distribution of first- and second-order 
moments along the column, the magnitude and direction of the first-order 
design moments at each end of the columns M01 and M02, the deflected 
shape of the column, which in turn depends on whether the column is 
braced or unbraced, and the rotational restraint at each end of the column.

For isolated members with constant cross-section and axial load, the 
second-order moment may be assumed to have a sine-shaped distribution. 
In this case:

	 β π= 2
0/c 	 (13.30)

and c0 is a constant that depends on the distribution of first-order moments 
along the column. For constant first-order moments, c0 = 8; for a parabolic 
distribution of moments, c0 = 9.6 and for a symmetric triangular distribu-
tion, c0 = 12.

For columns not subjected to transverse loads, where M01 and M02 are 
not the same, the first-order moment diagram may be approximated by an 
equivalent constant first-order moment M0e given by:

	 M M M M0e = + ≥0 6 0 4 0 402 01 02. . . 	 (13.31)

where M M02 01≥ . The end moments M01 and M02 both have the same sign, 
if they both produce tension on the same side of the column; otherwise, 
they have opposite signs. With this equivalent moment, c0 = 8 in Equation 
13.30. For columns bent in double curvature, i.e. M01 and M02 have oppo-
site signs, the value of c0 = 8 also applies.

For columns other than isolated members with constant cross-section 
and axial load and for columns subjected to transverse loads, it is reason-
able to assume that β = 1.0 and, in this case, Equation 13.29 reduces to:
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Ed
0Ed

Ed B/
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−1 ( )
	 (13.32)

EXAMPLE 13.2

Consider a 10 m long pin-ended column in a braced structure. The column 
cross-section is shown in Figure 13.4a and the material properties and steel 
quantities are as outlined in Example 13.1. The strength interaction curve for 
the cross-section was calculated in Example 13.1 and illustrated in Figure 13.5. 
The column is laterally supported at close centres to prevent displacement 
perpendicular to the weak axis of the section but is unsupported between its 
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ends in the direction perpendicular to the strong axis. The column is loaded 
by a design compressive force NEd = 3500 kN at a constant eccentricity e to 
produce compression and uniaxial bending about the strong axis. Establish 
two loading lines for the column corresponding to initial eccentricities of 
e = 100 and 400 mm and determine the strength of the slender column NRd in 
each case. Assume that the ratio of the quasi-permanent service load to the 
design load is 0.6 and that φ(∞, t0) = 2.5.

Since the column is braced and pinned at each end, the effective length 
associated with buckling about the strong axis is l0 = 10 m (see Figure 13.7a). 
The effective length about the weak axis is small due to the specified closely 
spaced lateral supports. With:

	
n

N
A f

= = ×
× ×

=Ed

c cd

3500 10
800 600 26 67

0 273
3

.
.

	 φef = φ(∞, t0) × 0.6 = 1.5

	 ω =
+

= × + ×
× ×

=
( ) ( )

.
.

A f A f
A f

s yd p pd

c cd

4500 435 2000 1391
800 600 26 67

0 377

	 rm = 1.0

the constants in Equation 13.26 are A = 1/(1 + 0.2φef) = 0.77, B = + =1 2ω 132. ,  
C = 1.7 − rm = 0.7 and therefore from Equation 13.26:

	
λlim = × × × =20 0 77 1 32 0 7

0 273
27 2

. . .

.
.

The radius of gyration of the uncracked cross section is i I A= =/ mm231 , 
and for bending about the strong axis, the slenderness ratio is (Equation 13.25):

	
λ = =10 000

43 3
,

.
231

This is greater than λlim and therefore the column is slender.
For this column, c0 = 8 and from Equation 13.30:

	 β π= =2 8 1 234/ .

Using the results from Example 13.1 at the balanced failure point, we get:

	
EI

M
A

=
+

= ×
× × +

= ×−
Rd.2

Rd.2

Nmm
κ ( ) . ( . )

.
1

2059 10
7 78 10 1 0 77

1 50 10
6

6
14 22
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The bucking load is given by Equation 13.21:

	
NB 14,8  kN= × × × =−π2 14

2
31 50 10

10 000
10 00

.
,

The loading line for each initial eccentricity is obtained by calculating the 
total moment MED from Equation 13.29 for a series of values of axial force 
NED and plotting the points (NED, MED) on a graph of axial force and moment.

Sample calculations are provided for the points on the loading lines cor-
responding to an axial force NEd = 3500 kN.

The first-order moment when e = 100 mm is:

	 M0Ed = 3500 × 103 × 100 × 10–6 = 350 kNm

From Equation 13.29:

	
MEd 484 kNm= × +

− −








 =350 1

1 234
14 800 3 500 1

.
( , , )

The first-order moment when e = 400 mm is:

	 M0Ed = 3500 × 103 × 400 × 10–6 = 1400 kNm

From Equation 13.29:

	
MEd

/
1,935 kNm= × +

−








 =1 400 1

1 234
14 800 3 500 1

,
.

( , , )

Other points on the loading line are tabulated below.

NEd 
(kN) 

Moment magnifier 

1
1

++
−−

β
( )N NB Ed/









 

e = 100 mm e = 400 mm 

MEd 
(kNm)

MEd 
(kNm)

2000 1.193 239 954
3000 1.314 394 1577
4000 1.457 583 2331
5000 1.630 815 3260
6000 1.841 1105 —
7000 2.107 1475 —
8000 2.452 1962 —
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The loading lines are plotted on Figure 13.10, together with the strength inter-
action curve reproduced from Figure 13.5. The strength of each column is 
the axial load corresponding to the intersection of the loading line and the 
strength interaction curve. The design resistance NRd, and hence the maxi-
mum factored design load NEd that can be applied to the slender column (and 
meet the strength design requirements of EN 1992-1-1 [2]), is obtained from 
the point where the loading line crosses the strength interaction curve. Note the 
significant reduction of strength in both columns due to slenderness. For the 
initial eccentricity e = 100 mm, the design resistance of the slender column is 
NRd = 7480 kN (compared to the cross-sectional strength of 10,050 kN). For 
the initial eccentricity e = 400 mm, the design resistance of the slender column 
is NRd = 3450 kN (compared to the cross-sectional strength of 5020 kN).

Slenderness causes a far greater reduction in strength in the primary com-
pression region when the initial eccentricity is small than when eccentricity 
is large and bending predominates. Note also that for very slender columns 
with large eccentricities, the curved loading line crosses the strength interac-
tion curve in the primary tension region and this is the same region in which 
prestress provides some additional strength (see Figure 13.5). There is some 
advantage in prestressing slender columns.
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Figure 13.10 � Loading lines and strength of the slender columns (Example 13.2).



Compression and tension members  591

13.5 � REINFORCEMENT REQUIREMENTS 
FOR COMPRESSION MEMBERS

EN 1992-1-1 [2] specifies design requirements related to the quantity and 
distribution of reinforcement in columns. The area of longitudinal rein-
forcement in a column As should not be less than As,min, where:

	
A

N
f

As,min
.

.= 0 1
0 002Ed

yd
cor whichever is greater	 (13.33)

and should not be greater than 0.04Ac in regions outside lap locations. This 
upper limit may be exceeded if the amount and disposition of the reinforce-
ment will not prevent the proper placement and compaction of the concrete 
at splice locations and at the junctions with other members and if the full 
design resistance is achieved at the ultimate limit state. It is good practice 
to ensure that at least one longitudinal bar is placed in each corner of the 
column of a rectangular cross-section and at least four longitudinal bars 
are required in columns of circular cross-section.

In addition to longitudinal reinforcement, transverse reinforcement in 
the form of closed ties or spirals (helical reinforcement) is required in col-
umns. The behaviour of a column loaded to failure depends on the nature 
of the transverse reinforcement. If the column contains no transverse 
reinforcement, when the strength of the cross-section is reached, failure 
will be brittle and sudden. Transverse reinforcement imparts a measure 
of ductility to reinforced and prestressed concrete columns by providing 
restraint to the highly stressed longitudinal steel and by confining the 
inner core of compressive concrete. Ductility is a critical design require-
ment for the columns in buildings located in earthquake-prone regions, 
where the ability to absorb large amounts of energy without failure is 
needed. Spirally reinforced columns, in particular, exhibit considerable 
ductility at failure. In addition to imparting ductility, the transverse rein-
forcement also carries any diagonal tensile forces associated with shear 
and torsion, if these actions are carried in addition to axial compression 
and bending.

The detailing requirements for both the longitudinal and transverse rein-
forcements in columns are outlined in Section 14.6.

13.6 � TRANSMISSION OF AXIAL FORCE 
THROUGH A FLOOR SYSTEM

With the increasing use of high-strength concrete in the columns in buildings, 
problems may arise when a high column load is required to pass through a 
lower-strength concrete floor slab. Ospina and Alexander [4] showed that 
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the strength and behaviour of column–slab joints are significantly affected 
by the load on the slab. The negative bending in a slab at a column location 
produces tension at the top of the slab. With compressive confinement only 
provided to the slab–column joint at the bottom of the slab where compres-
sive struts enter the joint.

Satisfactory transmission of the column forces through the joint will 
usually occur, and the full column strength may be assumed in design 
provided the strength of the concrete in the slab ( )fck slab is greater than or 
equal to 75% of the strength of the concrete in the column ( )fck col and pro-
vided the longitudinal reinforcement in the column is continuous through 
the joint. For greater differences in column and slab strengths, calcula-
tions are required to determine whether additional longitudinal reinforce-
ment is required through the joint. The effective strength of the concrete 
within the joint region at the column–slab intersection ( )fck eff is a function 
of the strengths of the column and slab concrete, the geometry of the 
connection and its location in the structure (i.e. a corner, edge or interior 
column).

For interior columns, restrained on four sides by beams of approximately 
equal depth or by a slab, the effective concrete strength within the joint 
may be taken as [4]:

	
( ) .

.
( )

.
( )f

h b
f

h b
fck eff

c
ck slab

c
ck col

/ /
= −








 +1 33

0 33 0 25
	 (13.34)

except that ( )fck eff need not be less than 1 33. ( )fck slab and should not be greater 
than the smaller of ( )fck col and 2 5. ( )fck slab. In Equation 13.34, h is the overall 
thickness of the slab at the joint and bc is the smaller column cross-sectional 
dimension.

For edge columns restrained on two opposing sides by beams of approxi-
mately equal depth or by a slab:

	
( ) .

.
( )

.
( )f

h b
f

h b
fck eff

c
ck slab

c
ck col

/ /
= −








 +1 1

0 3 0 2
	 (13.35)

except that ( )fck eff need not be less than 1 33. ( )fck slab and should not be greater 
than the smaller of ( )fck col and 2 0. ( )fck slab.

For corner columns restrained on two adjacent sides by beams of approx-
imately equal depth or by a slab:

	 ( ) . ( ) ( )f f fck eff ck slab ck col= ≤1 33 	 (13.36)
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When ( )fck eff < ( )fck col, an increased area of longitudinal reinforcement may 
be placed through the joint to effectively replace the reduction in capac-
ity from the influence of the weaker concrete. In this case, additional tie 
reinforcement should also be placed through the connection to confine the 
weaker concrete and provide ductility to the joint that is under a high stress 
relative to its cylinder strength.

Another procedure sometimes used in construction is that of puddling, 
in which column strength concrete is placed within the slab–column con-
nection and the surrounding region. The puddled column concrete should 
occupy the full slab thickness and extend beyond the face of the column by 
a distance greater than 600 mm and twice the depth of the slab or beam 
at the column face, whichever is greater. Special care has to be taken to 
avoid placement of the weaker slab concrete within the joint region. Proper 
vibration of the column and slab concretes is needed for optimal melding 
at the faces of the two materials. Since both column and slab concrete are 
to be cast simultaneously, with two different concrete strength grades on 
site during one pour, a high level of on-site supervision and quality control 
is necessary.

13.7  TENSION MEMBERS

13.7.1  Advantages and applications

Prestressed concrete tension members are simple elements used in a wide 
variety of situations. They are frequently used as tie-backs in cantilevered 
construction, anchors for walls and footings, tie and chord members in 
trusses, hangers and stays in suspension bridges, walls of tanks and con-
tainment vessels and many other applications.

The use of reinforced concrete members in direct tension has obvious 
drawbacks. Cracking causes a large and sudden loss of stiffness and crack 
control may be difficult. Cracks occur over the entire cross-section and 
corrosion protection of the steel must be carefully considered in addition 
to aesthetic difficulties. By prestressing the concrete, however, a tension 
member is given strength and rigidity otherwise unobtainable from either 
the concrete or the steel acting alone. Provided that cracking does not occur 
in the concrete, the prestressing steel is protected from the environment and 
the tension member is suitable for its many uses. Compared with compres-
sion members, tension members usually have a high initial level of prestress.

The deformation of a prestressed concrete tension member can be care-
fully controlled. In situations where excessive elongation of a tension mem-
ber may cause strength or serviceability problems, prestressed concrete is a 
design solution worth considering.
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13.7.2  Behaviour

The analysis of a prestressed concrete direct tension member is straight-
forward. Both the prestressing force and the external tensile loads are 
generally concentric with the longitudinal axis of the member, and hence 
bending stresses are minimised.

Prior to cracking of the concrete, the prestressing steel and the concrete 
act in a composite manner and behaviour may be determined by consider-
ing a transformed cross-section. If required, a transformed section obtained 
using the effective modulus for concrete (Equation 4.23) may be used to 
include the time-dependent effects of creep and shrinkage.

Consider a tension member concentrically prestressed with an effective 
prestressing force Pm,t. The cross-section is symmetrically reinforced with 
an area of bonded prestressing steel Ap and non-prestressed steel As. The 
transformed area of the tie is therefore:

	 A A A A A A A= + + = + − + −c p p s s g p p s sα α α α( ) ( )1 1 	 (13.37)

where αp and αs are the modular ratios Ep/Ecm and Es/Ecm, respectively. 
The uniform stress in the concrete σc due to the prestressing force and the 
applied external load N is:

	
σc

m,t

c

= − +
P
A

N
A

	 (13.38)

and the stress in the bonded prestressing steel is:

	
σ

α
p

m,t

p

p= +
P
A

N
A

	 (13.39)

For most applications, it is necessary to ensure that cracking does 
not occur at service loads. To provide a suitable margin against crack-
ing under day-to-day loads and to ensure that cracks resulting from an 
unexpected overload close completely when the overload is removed, it is 
common in design to insist that the concrete stress remains compressive 
under normal in-service conditions. By setting σ = 0 in Equation 13.38 
and rearranging, an upper limit to the external tensile force is established 
and is given by:

	
N P

A
A

P≤ = + +( )m,t
c

m,t p p s s1 α ρ α ρ 	 (13.40)

where ρp = Ap/Ac and ρs = As/Ac.
If a tensile member is stressed beyond the service load range, cracking 

should be deemed to occur when the concrete stress reaches the lower 
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characteristic tensile strength fctk,0.05 in Table 4.2. If the tensile force at first 
cracking is Ncr, then from Equation 13.38:
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f Acr
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c
ctk,0.05= +









 	 (13.41)

At a cracked section, when N = Ncr, the concrete carries no stress and the 
tension is carried only by the reinforcement and tendons (As and Ap), and 
the stress in non-prestressed steel is:
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s p p s/
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A A E E( )
	 (13.42)

and the stress in the prestressing steel is:
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Substituting Equation 13.41 into Equation 13.43 gives:
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This is usually limited to a maximum of about fp0.1k/1.2 in order to obtain 
a minimum acceptable margin of safety between first cracking and ultimate 
strength. A conservative estimate of the minimum area of prestressing steel 
in a tension member can be obtained from Equation 13.44 by ignoring the 
area of non-prestressed reinforcement as follows:
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	 (13.45)

The design axial tensile resistance of the member is equal to the tensile 
strength of the steel and is given by:

	 N A f A fRd.t p pd s yd= + 	 (13.46)

and, in design, this must exceed the design axial tension NEd.
The axial deformation of a prestressed tension member at service loads 

depends on the load history (i.e. the times at which the prestressing force(s) 
and the external loads are applied) and the deformation characteristics of 
the concrete. Stage stressing can be used to carefully control longitudinal 
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deformation. The axial deformation (shortening) of a tension member at 
any time t caused by an initial prestress Pm0 applied to the concrete at a par-
ticular time t0 and by shrinkage of the concrete (εcs assumed to also begin 
at t0) may be approximated by:

	
e

P l
A E

l
P.cs

 m0

c c,eff.0 ep.0 p es.0 s

cs

ep.0 p e

=
+ +

+
+ +( ) (1 1α ρ α ρ

ε
α ρ α ss.0 sρ )

	 (13.47)

where l is the length of the member, ρp= Ap/Ac, ρs= As/Ac, Ec,eff.0 is the 
effective modulus of the concrete obtained from Equation 4.23 using the 
creep coefficient associated with the age of the concrete at first loading 
(t0), αep.0 = Ep/Ec,eff.0 and αes.0 = Es/Ec,eff.0.

The axial elongation at any time caused by an external tensile force N 
applied at time t1 may be estimated by:

	
e

Nl
A E

N
c c,eff.1 ep.1 p es.1 s

=
+ +( )1 α ρ α ρ

	 (13.48)

where Ec,eff.1 is the effective modulus of the concrete using the creep coef-
ficient associated with the age of the concrete when the force N is first 
applied (t1), αep.1 = Ep/Ec,eff.1 and αes.1 = Es/Ec,eff.1.

A detailed analysis of the time-dependent deformation of a tension mem-
ber subjected to any load history can be made using the procedures out-
lined by Gilbert and Ranzi [5].

A satisfactory preliminary design of a tension member usually results if 
the prestressing force is initially selected so that, after losses, the effective 
prestress is between 10% and 20% higher than the maximum in-service 
tension. If the compressive stress in the concrete at transfer is limited to 
about 0.4fck(t0), the minimum gross area of the cross-section Ag can be 
determined. The area of steel required to impart the necessary prestress 
is next calculated. The resulting member can then be checked for strength 
and serviceability, and details modified, if necessary.

EXAMPLE 13.3

Consider the vertical post-tensioned tension member acting as a tie-back 
for the cantilevered roof of a grandstand, shown in Figure 13.11. In the criti-
cal loading case, the tension member must transfer a design working dead 
load of 800 kN and a live load of 200 kN to the footing which is anchored 
to rock.
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The material properties are:

	 fck = 40 MPa; Ecm = 35,000 MPa; fck(t0) = 30 MPa; Ecm(t0) = 33,000 MPa;

	 fpk = 1,860 MPa; Ep = 195,000 MPa and therefore αp = 5.57 and αp,0 = 5.91.

In accordance with the preceding discussion, an effective prestress that is 
10% higher than the maximum applied tension is assumed:

	 Pm,t = 1.1 × (800 + 200) = 1100 kN

Owing to the small residual compression existing under sustained loads, 
the time-dependent loss of prestress is usually relatively small. In this short 
member, draw-in losses at transfer are likely to be significant. For the pur-
poses of this example, the time-dependent losses are assumed to be 12% and 
the short-term losses are taken to be 15%.

The force immediately after transfer and the required jacking force are 
therefore:

	
P P Pm0 max j125  kN and 147  kN= = = = =1100

0 88
0

1250
0 85

0
. .

If the maximum steel stress at jacking is 0.9 fp0.1k = 1440 MPa (see Equation 
5.1), then the area of prestressing steel is:

	
Ap

21 21 mm≥ × =1470 10
1440

0
3

Try eleven 12.5 mm diameter strands (Ap = 1023 mm2) post-tensioned 
within a 60 mm diameter duct located at the centroid of the cross-section.

Tension member
10 m

Figure 13.11 � Tie-back member to be designed (Example 13.3).
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The design resistance of the member is calculated using Equation 13.46:

	 N A fRd.t p pd 1423 kN= = × =1023 1391

The design axial force is:

	 NEd 138  kN= × + × =1 35 800 1 5 200 0. .

which is less than the design strength and is therefore satisfactory. If addi-
tional strength had been necessary, non-prestressed steel could be included 
to increase NRd.t to the required level.

If the concrete stress at transfer is limited to 0.4 fck(t0) = 12 MPa, the area 
of concrete on the cross-section Ac must satisfy:

	
A

P
f t

c
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3

0 4
1 250 10

12
0 00

. ( )
,

Try a 350 mm by 350 mm square cross-section with a centrally located 
60 mm duct. Therefore, before the duct is grouted:

	 Ac
2119,7  mm= × − × × =350 350 0 25 60 002( . )π

Under the effective prestress, after all losses and after the duct is fully 
grouted, the area of the transformed section is obtained using Equation 13.37:

	 A = × + − × =350 350 5 57 1 1 023 0( . ) , 127,18 mm2

and

	 A A Ac g p
2121,48  mm= − = 0

The uniform stress in the concrete under the full service load is given by 
Equation 13.38:

	
σc 119 MPa= − × + × = −1100 10

121 480
1 000 10
127 180

3 3,
,

,
,

.

and the stress in the tendon is given by Equation 13.39:

	
σp 1,119 MPa= × + × × =1100 10

1 023
5 57 1 000 10

127 180

3 3,
,

. ,
,
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Both stresses are satisfactory and cracking will not occur at service loads, 
even if the losses of prestress have been slightly underestimated.

The minimum area of steel required to ensure a factor of safety of 1.2 at 
cracking is checked using Equation 13.45:
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,

and the area of steel Ap = 1023 mm2 adopted here is insufficient.
If we include four 16 mm diameter reinforcing bars (As = 804 mm2, Es = 

200,000 MPa, αs = 5.71 and αp = 5.57), the revised transformed area (Equation 
13.37) is A = 130,960 mm2, the revised concrete area is Ac = 120,670 mm2 and 
Equation 13.44 gives:
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= 825 MPa

which is less than fp0.1k/1.2 and therefore the margin of safety between first 
cracking and ultimate strength is satisfactory. The prestressed and non-
prestressed reinforcement ratios are ρp = Ap/Ac = 0.00848 and ρs = As/Ac = 
0.00666, respectively.

If the final creep coefficients associated with the age at transfer t0 and the 
age when the external load is first applied t1 are φ(∞, t0) = 2.5 and φ(∞, t1) = 
2.0, then Equation 4.23 gives the appropriate effective moduli:

	
E Ec,eff.0 c,eff.19,43  MPa and 11,6=

+
= =

+
=33 000

1 2 5
0

35 000
1 2 0

,
.

,
.

77  MPa0

and therefore αep.0 = 20.68, αes.0 = 21.21, αep.1 = 16.71 and αes.1 = 17.14.
If the final shrinkage strain is εcs = 650 × 10–6, the shortening of the mem-

ber caused by prestress and shrinkage is obtained using Equation 13.47:
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and the elongation caused by N is given by Equation 13.48:

	
eN = × ×

× × + × + ×
1 000 10 10 000

120 670 11 670 1 16 71 0 00848 17 14 0

3, ,
, , ( . . . .. )

.
00666

= 5 65 mm
 

The net effect is a shortening of the member by:

	 e e e= − = − =P.cs N  mm13 28 5 65 7 63. . .
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Chapter 14

Detailing
Members and connections

14.1  INTRODUCTION

Detailing of a concrete structure is more than simply the preparation of 
working drawings that show the structural dimensions and the size and 
location of the reinforcing bars and tendons. It involves the communica-
tion of the engineer’s ideas and specifications from the design office to the 
construction site and encompasses each aspect of the design process from 
preliminary analysis to final design. It involves the translation of a good 
structural design from the computer or calculation pad into the final struc-
ture. The most sophisticated or up-to-date methods of analysis and design 
are of little value if they remain in the calculations and do not find their 
way into the structure.

Detailing of the structural elements and the connections between them, 
perhaps more than any other single factor, decides the success or failure of 
a concrete structure. Good detailing ensures that the reinforcement and the 
concrete interact efficiently to provide satisfactory performance throughout 
the complete range of loading. Successful detailing requires experience, as 
well as a sound understanding of structural and material behaviour and 
an appreciation of appropriate construction practices and methodologies.

Too often detailing is the last thing considered by the engineer, or worse, 
not seriously considered at all. Yet it is critical if full strength and adequate 
ductility are to be achieved and if in-service performance is to be satis-
factory. It should be remembered that reinforcement details that ensure 
satisfactory behaviour under service load conditions may not provide good 
collapse characteristics and, conversely, details that provide adequate 
strength and ductility do not necessarily ensure serviceability. Detailing 
must be considered when designing for both the ultimate and service limit 
state conditions.

In this chapter, guidelines for successful detailing of the structural ele-
ments and connections in prestressed concrete structures are outlined and, 
where necessary, the requirements of EN 1992-1-1 [1] that have been intro-
duced in previous chapters are revisited. The reasons for providing rein-
forcement and the sources of tension in concrete structures (some of which 



602  Design of Prestressed Concrete to Eurocode 2

may not be immediately obvious) are also discussed. The importance of 
adequate anchorage for reinforcement is stressed and appropriate details 
are recommended. Many of the principles for successful detailing were pre-
sented by Park and Paulay [2] who, in turn, gained their inspiration from 
the pioneering work of Leonhardt and his colleagues [3–7].

14.2  PRINCIPLES OF DETAILING

14.2.1  When is steel reinforcement required?

The detailing requirements of a reinforcement bar or tendon depend on the 
reasons for its inclusion in the structure. It is only after the purpose of the 
steel bar or tendon is identified that the detailing requirements can be speci-
fied. Reinforcement and tendons are provided in concrete structures for a 
variety of reasons, including:

	 1.	to carry the internal tensile forces that are determined from analy-
sis, i.e. to provide tensile strength in regions of the structure where 
tensile strength is required and to impart ductility where ductility is 
required;

	 2.	to control cracking (and in the case of prestressing tendons, to con-
trol or eliminate cracking), i.e. to ensure that the cracks caused by 
bending, axial tension, bursting and spalling stresses and shrinkage 
or temperature changes are serviceable;

	 3.	to carry compressive forces in regions where the concrete alone is 
inadequate (e.g. in columns and in the compressive zone of heavily 
reinforced beams);

	 4.	to provide restraint to bars in compression, i.e. to prevent lateral 
buckling of compressive reinforcing bars prior to reaching their full 
strength;

	 5.	to provide confinement to the compressive concrete in the core of 
columns, in beams and within connections and other disturbed 
regions, thereby increasing both the strength and deformability of 
the concrete;

	 6.	to provide protection against spalling, for example, the fire mesh some-
times used in the protective concrete cover over fabricated steel sections;

	 7.	to limit long-term deformation by providing restraint to creep and 
shrinkage of the concrete; and

	 8.	to provide temporary support for other reinforcement during con-
struction prior to and during the concreting operation.

A single reinforcing bar or tendon may be required for one or more of 
the reasons mentioned earlier. The ability of the bar or tendon to accom-
plish its task or tasks depends on how it is detailed and that is very much 
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associated with the quality of its anchorage. When the location of a bar or 
tendon is determined, the question of how best to detail the steel can only 
be answered after its anchorage requirements are assessed. Anchorage 
and stress development in conventional reinforcement are discussed in 
more detail in Section 14.3 and the anchorages of tendons were discussed 
in Chapter 8.

14.2.2  Objectives of detailing

When detailing reinforcement and tendons, the objectives are the same as 
the broad objectives in structural design and aim at:

	 1.	achieving the required design resistance at each cross-section in each 
member and at all connections, i.e. making sure the structure is 
strong enough;

	 2.	preventing problems under the day-to-day in-service conditions that 
may impair the serviceability of the structure;

	 3.	allowing ease of construction; and
	 4.	maintaining economy.

To achieve these objectives, it is worthwhile to remember a number of gen-
eral principles. When detailing for strength, the location and direction of 
all internal tensile forces should be determined by establishing the load path 
for the structure. Adequately anchored reinforcement or tendons should 
be used wherever a tensile force is required for equilibrium. The concrete 
should be assumed to carry no tension. The possible collapse mechanisms 
of the structure should be identified and adequate reinforcement should be 
specified to prevent premature collapse.

When detailing for serviceability, it is again essential that the loca-
tion and direction of all internal tensile forces are determined. Often, 
this is not easy. The location of shrinkage- and temperature-induced 
tension may not be easily recognised or intuitively obvious. By provid-
ing restraint, the bonded reinforcement itself can create tensile forces 
which may crack the surrounding concrete. When the sources of tension 
are identified and the magnitudes and locations of the tensile forces are 
determined, prestressing tendons can be used to reduce or eliminate the 
tension in the concrete or, alternatively, cracking can be permitted and 
adequate quantities of appropriately anchored reinforcement, with suit-
able bond characteristics, must be provided to maintain stiffness after 
cracking and to provide crack control.

Complex reinforcement details should be drawn to a suitably large scale 
to ensure that they are practical, i.e. to ensure that the reinforcement can be 
fixed and that the concrete can be placed and compacted adequately.

Some of the sources of tension in concrete structures, some obvious and 
some not so obvious, are discussed in the following section.
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14.2.3  Sources of tension

The sources of tension in concrete structures are numerous and the follow-
ing list is by no means exhaustive. However, the list does illustrate the wide 
variety of reasons why concrete structures crack and why successful detail-
ing requires a sound understanding of structural behaviour. A significant 
amount of on-site experience also helps.

14.2.3.1  Tension caused by bending (and axial tension)

The primary roles of the longitudinal tensile reinforcement in a flexural 
member are to provide strength and ductility and to ensure crack control 
under service conditions.

14.2.3.2  Tension caused by load reversals

Temporary propping or bad handling during construction frequently 
causes tension in regions where tension may not normally be expected. In 
Figures 14.1a and b, two common instances of temporary propping are illus-
trated and these should be anticipated in design. Impact and rebound loading 
also causes tension. For example, considerable prestress is required in driven 
concrete piles to overcome the tension in the concrete caused by rebound. 

Temporary prop during 
construction

Construction loads

Bottom steel required(a)

(c) Full-depth cracking may occur

Top steel required

Temporary prop during 
construction(b) 

Figure 14.1 � Examples where reversals of loads and internal actions may occur. 
(a) Cantilever. (b) Simple span. (c) Impact and rebound loading.
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In slender members subjected to dynamic loads, such as precast stair treads, 
impact and rebound may cause tension on both sides of the member and 
result in full-depth cracking, as illustrated in Figure 14.1c.

14.2.3.3  Tension caused by shear and torsion

We have seen in Chapter 7 that diagonal tension caused by shear stresses 
causes inclined cracking in the webs of reinforced and prestressed concrete 
beams. Adequately anchored transverse reinforcement is required to carry 
this tension after inclined cracking has occurred. Some commonly used 
details for the anchorage of stirrups are examples of poor detailing and 
these are discussed in more detail in Section 14.5.4.

14.2.3.4  Tension near the supports of beams

The longitudinal tensile reinforcement required near the supports of beams is 
greater than indicated by the bending moment diagram. Consider the beam 
support shown in Figure 14.2a and the analogous truss of Figure 14.2b show-
ing the flow of internal forces that transmit the applied loads to the support, 
i.e. the internal load path. The tensile force required to be carried by the lon-
gitudinal steel at the bottom of an inclined crack is equal to the compressive 
force at the top of the crack. This is clearly shown by the truss analogy which 
is a useful and convenient idealisation in any study of detailing.

Shrinkage and thermal shortening also causes tension in beams with 
restrained ends. Considerable reinforcement may therefore be required 
throughout the beam length specifically to control the resulting direct ten-
sion cracking.

For the anchorage of positive moment reinforcement at a simple support 
of a beam, EN 1992-1-1 [1] requires that at least 25% of the area of the 
positive moment reinforcement required in the span should be anchored 
for a length (lbd) past the line of contact between the beam and the support 
(as shown in Figure 14.2a). See Section 14.3.2 for the determination of the 

R

(b)
R

Ft Ft

Fc

θv

Fclbd

z (= 0.9d)

(a)

Figure 14.2 � Tension at the discontinuous support of a beam. (a) Elevation at simple sup-
port. (b) Internal flow of forces – truss analogy.
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anchorage length lbd. For a beam with shear reinforcement at right angles 
to the member axis (i.e. α = 90°), the anchored tensile reinforcement must 
be able to develop the tensile force FE resulting from the transfer of the 
design shear force plus any axial force that develops due to any other source 
(including torsion and restraint to shrinkage or temperature change):

	 FE = │VEd│ cot θv + NEd	 (14.1)

where VEd is the design shear force at the face of the support, θv is the truss 
angle (as shown in Figure 14.2b) and NEd is the axial force to be added to 
or subtracted from the tensile force │VEd│cot θv.

For the anchorage of positive moment reinforcement at a continuous or 
flexurally restrained support of a beam, at least 25% of the area of the positive 
moment reinforcement required in the span should be anchored for a length 
past the near face of the support of at least 10 bar diameters (for straight 
bars). When additional reinforcement is provided to resist positive moment 
at an intermediate support (due to considerations of robustness, resistance to 
progressive collapse if the support is removed due to impact or blast, support 
settlement and more), it should be anchored in accordance with Figure 14.3.

14.2.3.5  Tension within the supports of beams or slabs

Shortening of beams and slabs occurs due to prestressing and due to shrink-
age and drops in temperature, and this can cause tension and subsequent 
cracking in the supports if the longitudinal movement is restrained. For 
example, if adequate sliding joints are not introduced between a concrete 
slab and supporting masonry walls, shrinkage of the slab may cause con-
siderable distress to the brickwork. Some illustrative examples are shown in 
Figure 14.4. This type of problem also frequently occurs in the supports of 
post-tensioned beams and slabs during the stressing operation if provision 
is not made for the elastic shortening of the beam or slab to be accom-
modated at the support. These sorts of problems are best avoided by the 
introduction of suitable movement joints.

≥10

lbdlbd

(where    is the diameter of the longitudinal bar) 

Figure 14.3 � Anchorage of additional bottom steel at a support [1].
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14.2.3.6  Tension within connections

Tension occurs within connections where there is a sudden change in 
direction of the internal forces. The design of connections is covered in 
more detail in Section 14.7. One connection, in which significant tension 
is often overlooked by designers, is where a secondary beam is supported 
by a primary girder, as shown in Figure 14.5. Most of the reaction from 
the secondary beam flows into the bottom region of the primary girder via 
diagonal compression. It is essential that this force finds an effective sup-
port. Additional stirrups are required within the connection in the primary 
girder to transfer this hanging load from the bottom to the top of the girder 
(see also Section 14.5.5).

14.2.3.7  Tension at concentrated loads

The transverse tension caused by the dispersion of a concentrated load, 
such as exists behind the bearing plate in a post-tensioning anchorage (see 
Figure 14.6a), was discussed in Chapter 8. A similar situation exists at the 

Cracking due to inadequate
slip joint between slab and

supporting brick wall

Cracking within the supports

Figure 14.4 � Cracking caused by tension within supports.

Hanger
reinforcement 
to carry tension

Primary girder Compression struts

Reaction from secondary beam applied here

Secondary beam

Figure 14.5 � Primary girder supporting secondary beam.
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anchorage of a reinforcing bar, such as the bend shown in Figure 14.6b 
or the hook shown in Figure 14.6c. A concentrated force is applied to the 
concrete where the bar changes direction, as shown. As the concentrated 
force disperses, a transverse tension exists in the concrete that may cause 
splitting of the concrete in the plane of the hook or bend, particularly if the 
radius of curvature of the bend is small.

14.2.3.8 � Tension caused by directional changes 
of internal forces

Wherever a reinforcement bar changes direction or a loaded concrete 
member is not straight, internal forces are generated in the surrounding 
concrete. Where these forces are compressive and concentrated over a 
small area, splitting may occur due to transverse tension, as discussed in 
the previous section. Where the force is tensile, cracking may occur and 
additional reinforcement may be required. These internal tensile forces 
are often neglected when the structural member is being detailed and 
are a common cause of unsightly cracking, structural weakness and even 
premature failure.

Consider the haunched region of a beam shown in Figure 14.7a. In order 
to maintain equilibrium at the bend in the reinforcement, a tensile reactive 
force R is exerted on the concrete (as the bar tries to straighten). If the force 
R overcomes the tensile strength of the concrete, cracking along the bar 

Transverse tension(c)

Transverse tension

Longitudinal
crack

(a) 

Potential splitting in 
plane of bend due to 

transverse tension

(b)

Figure 14.6 � Tension due to concentrated loads. (a) Post-tensioned anchorage zone. 
(b) Bent bar. (c) Hooked anchorage.
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will occur. The steel will straighten resulting in the loss of concrete cover, 
structural integrity and strength.

Transverse reinforcement in the form of stirrups may be provided to carry 
the force R, thereby overcoming the problem, as shown in Figure 14.7b. 
However, a better solution may be to eliminate the problem altogether by 
anchoring each reinforcement bar with straight extensions so that no trans-
verse force is generated (see Figure 14.7c).

The same principle applies when the internal compressive force changes 
direction, as illustrated in Figure 14.8. Adequately anchored transverse 
reinforcement must be provided in the web to carry the resultant force R.

In a curved member, such as that shown in Figure 14.9, the continuously 
changing direction of the internal compressive and tensile forces (caused by 
bending) creates a distributed transverse tensile force in the web. Stirrups 
at regular centres are required to carry these tensile forces. The transverse 
tension per unit length qt produced by the tensile force in the longitudinal 
reinforcement is:

	
q

F
r

A f
r

t
t

m

s yd

m

= = 	 (14.2)

Stirrups

(a)

R

(b)

Ft

Ft

lbd

Ft

(c)

T

Figure 14.7 � Haunched region of a beam. (a) Without transverse reinforcement. (b) With 
transverse reinforcement. (c) Lapped longitudinal reinforcement.

R
Potential crack in web

FcFc

Figure 14.8 � Transverse tension due to direction change of internal compression.
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and the required stirrup spacing is:

	
s

A f
q

A
A

f
f

r= =sw ywd

t

sw

s

ywd

yd
m	 (14.3)

where fywd and fyd are the design yield stresses of the stirrups and the lon-
gitudinal reinforcement, respectively; Asw is the total area of stirrup legs 
within the length s and As and rm are the cross-sectional area and the radius 
of curvature of the curved longitudinal bars or tendons, respectively.

14.2.3.9  Other common sources of tension

Other sources of tension include, among others, the internal restraint to 
shrinkage of the concrete by the bonded reinforcement or the external 
restraint to shrinkage by the supports of a structural member; restraint of 
deformation caused by temperature changes, including heat of hydration; 
restraint to load-independent movement caused by formwork or more per-
manent cladding and settlement of supports.

14.3  ANCHORAGE OF DEFORMED BARS

14.3.1  Introductory remarks

When a non-prestressed reinforcement bar is required for strength, it is 
assumed that the stress in the bar at the critical section can not only reach 
the yield stress, but can be sustained at this level as deformation increases. 
If the yield stress is to be reached at a particular cross-section, the rein-
forcing bar must be anchored on either side of the critical section. Stress 
development can be obtained by embedment of the steel in concrete so that 
stress is transferred past the critical section by bond, or by some form of 
mechanical anchorage. Codes of practice specify a minimum length, called 
the development length or anchorage length, over which a straight bar in 

Fc

Ft
rm

As

qt Asw at spacing s

Ft

Fc

Figure 14.9 � Transverse tension in a curved member.
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tension must be embedded in the concrete in order to develop its yield stress. 
The provision of anchorage lengths in excess of the specified development 
length for every bar at a critical section or peak stress location ensures that 
anchorage or bond failures do not occur before the design strength at the 
critical section is achieved.

At an anchorage of a deformed bar, the deformations bear on the sur-
rounding concrete and the bearing forces Fb are inclined at an angle β to the 
bar axis as shown in Figure 14.10a [8]. The perpendicular components of 
the bearing forces exert a radial force on the surrounding concrete. Tepfers 
[9,10] described the concrete in the vicinity around the bar as acting like a 
thick-walled pipe as shown in Figure 14.10b and the radial forces exerted 
by the bar cause tensile stresses that may lead to splitting cracks radiating 
from the bar if the tensile strength of the concrete is exceeded. Bond failure 
may be initiated by these splitting cracks within the anchorage length of 
an anchored bar (Figures 14.10c and d) or within a lapped tension splice 
(Figure 14.10e).

Transverse reinforcement across the splitting planes (Ast in Figures 
14.10c and e) delays the propagation of splitting cracks and improves bond 
strength. Compressive pressure transverse to the plane of splitting delays 
the onset of cracking in the anchorage region thereby improving bond 
strength.

For a reinforcing bar of diameter ϕ, if the design value of the bond stress 
is fbd, the bond force that can develop over the required anchorage length 
lb,rqd is π ϕlb,rqdfbd and this force must not be less than the design force in the 
bar σsdAs = σsdπϕ2/4. That is πϕlb,rqdfbd ≥ σsdπϕ2/4 and therefore:

	
l

f
b,rqd

sd

bd

≥ φ σ
4

	 (14.4)

Ast Ast

(c)
(d)

(e)Splitting cracks

Tensile stresses(b)(a)

Fb Fb Fb

FbFbFb
Ft

β

Figure 14.10 � Splitting failures around developing bars. (a) Forces exerted on concrete 
by a deformed bar in tension [8]. (b) Tensile stresses in concrete [9]. 
(c) Horizontal splitting due to insufficient bar spacing. (d) Vertical splitting 
due to insufficient cover. (e) Splitting (bond) failure at a lapped splice.
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The design value of the average ultimate bond stress fbd in Equation 14.4 
is proportional to the tensile strength of concrete and, in EN 1992-1-1, is 
specified as:

	 f fbd ctd= 2 25 1 2. η η 	 (14.5)

where fctd is design value of the concrete tensile strength (given by 
Equation 4.12), except that fctk,0.05 should not be taken higher than the value 
specified for C60/75 concrete (i.e. 3.1 MPa) because of the brittle nature 
of high-strength concretes and because of the limited experimental data 
available for the anchorage of deformed bars in high-strength concrete. The 
coefficient η1 in Equation 14.5 depends on the position of the bar during 
concreting and consequently the quality of the bond: η1 = 1.0 when the bond 
quality is ‘good’; and η1 = 0.7 in all other cases and for bars in elements built 
with slip forms. Bond quality is deemed to be ‘good’ for a horizontal bar 
within 250 mm from the soffit of the member and, for members greater than 
600 mm in depth, any horizontal bar located outside the top 300 mm of 
concrete. The coefficient η2 in Equation 14.5 depends on the bar diameter: 
η2 = 1.0 when ϕ ≤ 32 mm and η2 = (132 − ϕ)/100 when ϕ > 32 mm.

Reinforcing bars may be spliced together by welding or by a mechanical 
anchorage or by overlapping the bars by a specified length l0 as shown in 
Figure 14.11. In this latter anchorage, known as a lapped splice, each bar 
must be able to develop the yield stress within the lap length, and the design 
force in the bar on either side of the splice (Asσsd) must be safely carried 

(b)

a

Plan
l0

sb

cd = min(0.5a, c)
Fs

Fs

Fs

Fs

Fs

Fs

Fs

Fs

≥ 2φ and 20 mm

≥ 0.3l0

(a)

Section c

cd = min(0.5a, c)

φ
a

Plan

l0

sbFs

Fs

Fs

Fs

Figure 14.11 � Contact and non-contact lapped splices. (a) 100% of bars spliced at the same 
location. (b) 50% of bars spliced at the same location (staggered splices).
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across the splice without bond failure. Both contact splices (sb = 0) and non-
contact lapped splices (sb > 0) are frequently used.

The mechanism of bond transfer at a lapped splice is different from that 
at a single anchored bar with no adjacent bar developing stress in close 
proximity, so in general where the bars at a lapped splice are required to 
develop the yield stress, the specified lap length is greater than the develop-
ment length.

14.3.2  Design anchorage length

According to EN 1992-1-1 [1], the design anchorage length for anchoring 
the force Fs = σsd As in a bar assuming a constant bond stress fbd may be 
calculated from:

	 lbd = α1 α2 α3 α4 α5 lb,rqd ≥ lb,min	 (14.6)

The coefficients α1, α2, α3, α4 and α5 are given in Table 14.1 and the basic 
anchorage length lb,rqd is given by Equation 14.4. For straight anchorages and 
for the hooked, cogged or mechanically welded bars shown in Figure 14.12 
when cd ≤ 3ϕ, α1 = 1.0. For the anchorages shown in Figure 14.12, α1 = 0.7 
when cd > 3ϕ. The coefficient α2 depends on the concrete minimum cover 
cd as given in Figure 14.13.

The beneficial effects of confinement by transverse steel within the anchor-
age length are accounted for by α3 which is determined as 1.0 − Kλ (but 
0.7 ≤ α3 ≤ 1.0). The term λ is given by λ = (ΣAst − ΣAst.min)/As, where ΣAst 

Table 14.1  �Anchorage coefficients α1, α2, α3, α4 and α5

Type of anchorage 

Reinforcement bar 

In tension In compression

Straight α1 = 1.0 α1 = 1.0
Other than straight α1 = 0.7 if cd > 3ϕ α1 = 1.0
(see Figure 14.12b through d) otherwise, α1 = 1.0

Straight α2 = 1 − 0.15(cd − ϕ)/ϕ α2 = 1.0
but 0.7 ≤ α2 ≤ 1.0

Other than straight α2 = 1 − 0.15(cd − 3ϕ)/ϕ α2 = 1.0
(see Figure 14.12b through d) but 0.7 ≤ α2 ≤ 1.0

All types α3 = 1 − Kλ α3 = 1.0
but 0.7 ≤ α3 ≤ 1.0

All types
(see Figure 14.12d)

α4 = 0.7 α4 = 0.7

All types α5 = 1.0 − 0.04p —
but 0.7 ≤ α5 ≤ 1.0
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is the cross-sectional area of the transverse reinforcement along the design 
anchorage length lbd; ΣAst.min is the cross-sectional area of the minimum 
transverse reinforcement, which may be taken as 0.25As for beams and 0 
for slabs; As is the cross-sectional area of a single bar of diameter ϕ being 
anchored; and K is a factor that accounts for the position of the bars being 
anchored with respect to the transverse reinforcement, with values given in 
Figure 14.14.

The coefficient α4 accounts for the influence of one or more transverse 
bars of diameter ϕt (≥0.6ϕ) welded to the bar being anchored and α5 = 
1.0 − 0.04p (but 0.7 ≤ α5 ≤ 1.0), where p is transverse compressive pressure 
(in MPa) at the ultimate limit state along lbd perpendicular to the plane of 
splitting. The average design ultimate bond stress reduces when transverse 

(a)
lb.eq

α
did/2

≥ 5φ

φFs

(b)
lb.eq

α

≥ 5φ

φFs

did/2

(d)
lb.eq

φ
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≥ 5φ φt ≥ 0.6φ

(c)
lb.eq

did

φ
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Figure 14.12 � Bent, hooked, looped or welded anchorages [1]. (a) Equivalent anchorage 
length for standard bend (90° ≤ α < 150°). (b) Equivalent anchorage length 
for standard hook (α ≥ 150°). (c) Equivalent anchorage length for standard 
loop. (d) Equivalent anchorage length for welded transverse bar. Notes: 
did ≥ 4ϕ when ϕ ≤ 16 mm; did ≥ 7ϕ when ϕ > 16 mm.
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c1

c1
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a

Figure 14.13 � Concrete confinement dimension, cd [1]. (a) Straight bars, cd = min(a/2, c1, c). 
(b) Bent or hooked bars, cd = min(a/2, c1). (c) Looped bars, cd = c.
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tensile stress exists at the anchorage (i.e. when p is negative). Although this 
is not accounted for in EN 1992-1-1 [1], it is recommended here that, if 
transverse tensile stress exists, it should be considered in the determination 
of the development length by the inclusion of α5 (= 1.0 − 0.04p) greater than 
1.0 in Equation 14.6.

The product (α2α3α5) must not be less than 0.7.
The minimum anchorage length in Equation 14.6 is specified as

lb,min > max {0.3lb,rqd, 10ϕ, 100 mm} for anchorages in tension
lb,min > max {0.6lb,rqd, 10ϕ, 100 mm} for anchorages in compression

As a simple alternative to Equation 14.6 for the anchorages shown in 
Figure 14.12, the equivalent anchorage lengths lb,eq may be taken as α1lb,reqd 
for the bent, hooked or looped anchorages shown in Figure 14.12a, b and 
c, and the equivalent anchorage lengths may be taken as α4lb,reqd for the 
welded anchorage of Figure 14.12d.

The anchorage of a bar in compression is provided by end bearing of 
the bar, as well as bond between the concrete and the steel bar along the 
development length. However, bends and hooks do not contribute to com-
pression anchorages.

EXAMPLE 14.1

Calculate the anchorage length required for the two terminated 28 mm diame-
ter bars centrally located in the bottom of the beam shown in Figure 14.15. Take 
fyk = 500 MPa; fck = 35 MPa, cover to the 28 mm bars c = 40 mm and the clear 
spacing between the bottom bars is a = 60 mm. The beam contains 12 mm diam-
eter single stirrups at 150 mm centres throughout. The cross-sectional area of 
one 28 mm diameter bar is As = 616 mm2 and one 12 mm bar is Ast = 113 mm2.

It is assumed that the two terminated bars are required to develop the 
design yield stress at a distance d from the point of maximum moment in 

K= 0 .1 K= 0 .05 K= 0

As, φ
As, φ Ast, φtAst, φtAs, φ Ast, φt

Figure 14.14 � Values of K for anchored bars in beams and slabs [1].
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the direction of increasing shear, i.e. σsd = fyd = 435 MPa (tension), and may 
therefore be terminated at a distance (lbd + d) from the point load P as shown 
in Figure 14.15.

For these bottom bars in tension, Equation 14.5 gives:

	 f fbd ctd 2 25 1 1 147 3 3  MPa= = × × × =2 25 0 0 01 2. . . . . .ηη

and from Equation 14.4:

	
lb,rqd 923 mm≥ =28

4
435
3 30.

From Table 14.1, for these straight 28 mm diameter bars:

	 α1 = 1.0

With the concrete confinement dimension cd = a/2 = 30 mm (see Figure 
14.13a), we have:

	 α2 = 1.0 − 0.15(30 − 28)/28 = 0.99

The minimum number of stirrups that can be located within length lb,rqd 
is 7. Therefore:

	 ΣAst = 7 × 113 = 791 mm2

Taking ΣAst.min = 0.25As = 154 mm2, the parameter λ is:

	 λ = (791 − 154)/616 = 1.03

From Figure 14.14, K = 0.05 (for each of the two interior bars) and therefore:

	 α3 = 1.0 − 0.05 × 1.03 = 0.95

Elevation

P P
A

A

12 mm stirrups at 150 mm ctrs

Two terminated bars
Section A–A

lbd + d

Figure 14.15 � Development length of 28 mm diameter bottom bars.
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14.3.3  Lapped splices

Because of the relatively poor anchorage conditions that prevail at a 
lapped splice (at least two adjacent bars are anchored in close proximity), 
the lap length l0 specified in EN 1992-1-1 [1] is larger than the anchor-
age length (lbd) for a single bar. Laps should normally be staggered and 
should not be placed in critical regions unless absolutely necessary (e.g. 
not at plastic hinge locations). At the ends of the splice where the bars 
terminate in a tension zone, a discontinuity exists and transverse cracks 
are usually initiated. These cracks may trigger the splitting cracks shown 
in Figure 14.10e. Lapped splices should therefore be staggered where pos-
sible so that no free ends line up at the same section, unless the bars are 
further apart than 12ϕ [2]. In addition, laps at any section should be 
arranged symmetrically. Notwithstanding, EN 1992-1-1 [1] does permit 
up to 100% of bars in tension to be lapped at the same location provided 
the bars are all in one layer and provided the requirements outlined in the 
following paragraph are satisfied. Where the bars are in several layers, 
the maximum percentage should be reduced to 50%. All secondary (or 
distribution) reinforcement and all bars in compression may be lapped at 
one section.

Referring to Figure 14.11, according to EN 1992-1-1 [1], the clear dis-
tance between lapped bars sb should not exceed 4ϕ or 50 mm, whichever 
is the smaller, except that if sb is larger than 4ϕ or 50 mm, the lap length 
should be increased to l0 + sb, where l0 is given by Equation 14.7. In addi-
tion, EN 1992-1-1 [1] requires that the longitudinal distance between two 
adjacent laps should not be less than 0.3l0 and the clear distance between 
adjacent bars should not be less than 2ϕ or 20 mm.

The design lap length l0 is:

	 l0 = α1 α2 α3 α5 α6 lb,rqd ≥ l0,min	 (14.7)

It is assumed that there are no welded cross-bars within the anchorage 
length and that in this location the transverse pressure perpendicular to the 
anchored bar (p) is zero. Hence, α4 = 1.0 and α5 = 1.0.

From Equation 14.6:

	 lbd = 1.0 × 0.99 × 0.95 × 1.0 × 1.0 × 923 = 868 mm

Of course, the strength of the beam must be checked at the point where the 
two bars are terminated (at lbd+ d from the constant peak moment region, as 
shown in Figure 14.15).
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where the basic anchorage length lb,rqd is given by Equation 14.4 and:

	 l0,min = max {0.3α6lb,rqd, 15ϕ, 200 mm}	 (14.8)

The coefficients α1, α2, α3 and α5 are given in Table 14.1, but for the calcula-
tion of α3, ΣAst.min is taken as As(σsd/fyd), where As is the area of one lapped 
bar. The coefficient α6 depends on ρ1 the percentage of bars lapped within 
0.65l0 from the centre of the lap length under consideration and is given by 
α6 = (ρ1/25)0.5, but not exceeding 1.5 and not less than 1.0. Values of α6 are 
given in Table 14.2.

When the diameter of the lapped bars is greater than or equal to 20 mm, 
the total area of transverse reinforcement required to carry the transverse 
tension forces that develop in the lap zone (ΣAst) should not be less than the 
area of one lapped bar (i.e. ΣAst ≥ As). The transverse reinforcement should 
be placed perpendicular to the direction of the lapped bars and between the 
lapped bars and the concrete surface. The transverse reinforcement should 
be located towards the ends of the lap as shown in Figure 14.16. When 
more than 50% of the longitudinal reinforcement is lapped at one point 
and the distance between laps is less than 10ϕ, the transverse reinforcement 
should be in the form of links (stirrups) or U bars anchored into the body 
(the web) of the cross-section.

When the diameter of the lapped bars is less than 20  mm, or the 
percentage of lapped bars at a section is less than 25%, no additional 
transverse reinforcement is required other than that which may be present 
for other reasons, such as distribution reinforcement, shear reinforcement 
and so on.

Table 14.2  �Lap length coefficient α6

Percentage of lapped bars ρ1 <25% 33% 50% >50% 

α6 1.0 1.15 1.4 1.5

(a)

≤ 150 mm

ΣAst/2
l0/3

ΣAst/2
l0/3

Fs
Fs

Fs

(b)
l0/3 l0/3

≤150 mm

ΣAst/2 ΣAst/2

Fs

4φ4φl0

l0

Figure 14.16 � Location of transverse reinforcement at lapped splices. (a) Bars in tension. 
(b) Bars in compression.
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14.4 � STRESS DEVELOPMENT AND COUPLING 
OF TENDONS

A discussion of the anchorage of the tendons in a pretensioned mem-
ber was presented in Section 8.2 and the minimum anchorage length 
specified in EN 1992-1-1 [1] of a pretensioned tendon from its end to 
the critical cross-section where the design stress is required was given in 
Equation 8.5.

When tendons are coupled, the coupler should be capable of developing 
the characteristic breaking force of the tendon and should be positioned so 
that no more than 50% of the tendons are coupled at any one cross-section. 
In general, couplers should not be located near intermediate supports. For 
post-tensioned tendons, where bonded construction is required couplers 
should be enclosed in grout-tight housings to facilitate grouting the duct 
(see Figure 3.11).

14.5  DETAILING OF BEAMS

14.5.1 � Anchorage of longitudinal 
reinforcement: General

As mentioned earlier, a prerequisite for good detailing is favourable bond 
and anchorage conditions for each reinforcing bar and each tendon. The 
stress conditions surrounding a bar anchorage have considerable effect on 
the quality of bond. Where possible, bars should be anchored in regions 
where compressive stresses act in a transverse or normal direction to the bar. 
Bond strength increases considerably when normal pressure is present [11]. 
This increase is more pronounced for larger diameter bars. In Figure 14.17, 
it can be seen that the anchorage conditions for the bottom reinforcement at 
the support are more favourable than for the top reinforcement and conse-
quently a shorter anchorage length is required.

Favourable anchorage
Section

Unfavourable anchorage Transverse tension

Possible
cracks

Normal pressure Elevation

Figure 14.17 � Anchorage of longitudinal reinforcement in a continuous beam.
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When bottom reinforcement is terminated away from the support, the 
diagonal compression in the web improves the anchorage, provided of 
course that there is sufficient web reinforcement to carry the diagonal force 
back to the top of the beam. The anchorage conditions of the terminating 
bars may be further improved by bending them into the web, as shown in 
Figure 14.18. This also reduces the possibility of premature shear failure at 
the discontinuity caused by the terminating flexural reinforcement.

The transverse tension that may cause splitting in the plane of a hooked 
anchorage (as illustrated in Figure 14.6) can be overcome at a beam support 
simply by tilting the hook (or better still, laying the hook in a near hori-
zontal plane) to expose it to the normal reaction pressure at the support, as 
shown in Figure 14.19.

If the bearing length at a support is small and close to the free end of 
a member, a sliding shear failure may occur along a steep inclined crack, 
as shown in Figure 14.20. In such a case, additional small diameter bars 
may be required at right angles to the potential failure plane to provide a 

Fc Fc

Ft

Ft Ft

Figure 14.18 � Anchorage of terminating bottom reinforcement.

Tilted anchorage Near horizontal anchorage Diagonal compression

Reaction pressure

Sections and elevations

Plan

Reaction pressure

Figure 14.19 � Hooked anchorages – preferred positions.
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clamping action between the crack surfaces and thereby prevent sliding and 
failure. These additional bars must be fully developed on both sides of the 
failure surface. In some instances, where the length available for anchorage 
is small, cross-bars may be welded to the terminating bar to ensure that it 
can develop its required strength. Such mechanical anchorages are com-
monly used in precast elements and in regions of high concentrated loads 
such as corbels, brackets and other support points. Typical examples are 
illustrated in Figure 14.21.

In short-span members, where load is carried to the support by arch 
action, it is essential that all bottom reinforcing bars (the tie of the arch) are 
fully developed at each support. To avoid bond failure in situations where 
the development length of each bottom bar is restricted, closely spaced 
transverse reinforcement in the form of stirrups can be used to bind the 
surfaces of a potential horizontal splitting crack in the plane of the rein-
forcement and vertical splitting cracks developing from the anchored bar 
through the cover concrete (see Figure 14.22).

Apart from the reasons discussed earlier and illustrated in Figure 14.17, the 
anchorage conditions for top bars are always less favourable than for bottom 

Potential 
failure

Inclined 
clamping bars

Figure 14.20 � Detail when support length is short.

Welded
cross-bar

End plate

(a) (b) (c)

Recessed 
angle

Figure 14.21 � Mechanical anchorages. (a) Welded cross-bar. (b) Welded end plate 
(headed bar). (c) Bar welded to recessed angle.
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bars because of increased sedimentation and poorer compaction of the con-
crete. Detailing for top bars therefore requires particular attention. If the top 
tensile reinforcement in a T-beam over an interior support is concentrated 
over the web in a multilayered arrangement, a deterioration of bond strength 
may occur resulting in increased crack widths and generally less favourable 
anchorage conditions. It is better to place some of the top steel in the slab 
flange adjacent to the web. This improves crack control and provides better 
access to concrete vibrators within the beam web. The measured crack widths 
in two beams tested by Leonhardt et al. [7] are compared in Figure 14.23. EN 
1992-1-1 [1] requires that, at interior supports, the total area of tensile rein-
forcement in the top of the cross-section be spread over the effective width of 
the flange, with part of the tensile steel concentrated over the web width and 
inside the stirrup cage in order to develop an efficient truss action.

Compressive strut

Tie                           
Do not terminate any bottom bars

Binding
reinforcement

Anchorage is
critical

Member
centre line

Figure 14.22 � Anchorage in short-span members.
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Figure 14.23 � Comparison of crack widths in T-beams [7].
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In monolithic construction, a beam in the region of an exterior sup-
port will be subject to an end moment even if a simple support has been 
assumed in design. This is as a result of the stiffness of the support and 
the inevitable partial fixity that exists at the connection. EN 1992-1-1 [1] 
requires that the section at the support be designed for a negative bend-
ing moment of magnitude equal to at least 15% of the maximum bending 
moment in the span.

14.5.2 � Maximum and minimum requirements 
for longitudinal steel

In Section 5.12.1, the minimum amount of reinforcement required for 
crack control in each part of a cross-section (according to EN 1992-1-1) 
was given in Equation 5.192. In addition, EN 1992-1-1 [1] requires that the 
area of longitudinal reinforcement in a beam must be greater than or equal 
to As,min given by:

	
A

f
f

b ds,min
ctm

yk
t= 0 26. 	 (14.9)

but not less than 0.0013btd, where bt is the mean width of the tensile zone 
and fctm is the mean tensile strength of the concrete specified in Table 4.2.

The area of tensile or compressive reinforcement should not exceed 
As,max = 0.04Ac outside lap locations.

For post-tensioned members with permanently unbonded tendons or 
external prestressing cables, the design bending resistance should be greater 
than 1.15 times the cracking moment.

If reinforcing bars in concrete structures are too closely spaced, the con-
crete may not be able to be placed and compacted satisfactorily and this may 
compromise the bond between the bars and the concrete and the appear-
ance of the finished concrete. If the bars are spaced too widely apart, cracks 
may become unsightly and cause serviceability problems. EN 1992-1-1 [1] 
requires that the clear distance between individual parallel bars (both hori-
zontally and vertically) should be not less than the maximum of the bar 
diameter ϕ, (dg + 5 mm) and 20 mm, where dg is the maximum size of the 
aggregate. Lapped bars, however, are permitted to be in contact with each 
other within the lap.

Where bars in a beam are placed in separate horizontal layers, the bars in 
each layer should be located directly above or below the bars in the adjacent 
layers. Sufficient space is required between the resulting columns of bars to 
permit access for concrete vibrators so that the concrete can be well com-
pacted around all bars.

For crack control in reinforced concrete, it is good practice to ensure 
that the spacing between the bonded reinforcement bars does not exceed 
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about 300 mm. In the maximum moment regions of slabs, EN 1992-1-1 [1] 
states that the spacing of the principal reinforcement should not exceed 
2h or 250  mm, whichever is smaller and the spacing of the secondary 
reinforcement should not exceed 3h or 400 mm, whichever is smaller. In 
one-way slabs, the area of secondary (or distribution) reinforcement placed 
at right angles to the principal reinforcement should not be less than 20% 
of the area of the principal reinforcement.

14.5.3  Curtailment of longitudinal reinforcement

The longitudinal reinforcement required in a beam at a particular cross-
section must be designed to carry the tensile force arising from the maxi-
mum design bending moment at that section (Ftd = MEd/z), plus the additional 
force ΔFtd = V(cot θv − cot α) arising from the inclined cracks (as discussed 
in Section 7.2.5 and illustrated in Figure 7.7). If the member is also subject 
to a design axial tensile force NEd this should also be included in the deter-
mination of Ftd. This force (Fs = MEd/z + NEd + ΔFtd) may be estimated by 
shifting the moment envelope by a distance a1 given by [1]:

	 a1 = z(cot θv − cot α)/2	 (14.10)

where the symbols have been defined in Figure 7.7. These forces are plotted 
on the beam axis in Figure 14.24.

Hatched area = tensile force
from moment envelope

(MEd/z + NEd)

Acting tensile force Fs

a1

Resisting tensile force FRs

lbd

lbd

lbd

lbd
lbdlbd

lbd

∆Ftd

∆Ftd

a1lbd
Acting tensile

force Fs

Resisting tensile
force FRs

Figure 14.24 � Shift rule for the determination of tensile forces in longitudinal steel and 
curtailment of reinforcement [1].
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Figure 14.24 illustrates the so-called shift rule and also shows the appro-
priate cut-off points for the longitudinal bars. Within the anchorage lengths 
at each end of a terminating bar, a linear variation of force may be assumed 
within the bar varying from zero at the end of the bar to σsd at lbd from the 
end of the bar.

14.5.4  Anchorage of stirrups

The flow of internal forces in a beam can be idealised as a parallel chord 
truss. This truss analogy was discussed in Section 7.2.3 and is illustrated in 
Figure 14.25. The compressive top chord and the diagonal web strut are the 
concrete portions of the truss, while the tensile bottom chord and vertical 
web ties must of course be steel reinforcement. The diagonal compression 
(in the concrete web strut) can only be resisted at the bottom of the beam at 
the intersection of the horizontal and vertical reinforcement, i.e. at the pin 
joints of the analogous truss. It is evident that the tension in the vertical tie 
is constant over its entire height (i.e. from the pin joint at the bottom chord 
to the pin joint at the top chord). Therefore, adequate anchorage of the stir-
rups must be provided at every point along the vertical leg of the stirrup. 
After all, when calculating the shear strength provided by the stirrups, it 
is assumed that every vertical stirrup leg crossed by an inclined crack is at 
yield, irrespective of whether the inclined crack crosses the stirrup at its 
mid-depth or close to its top or bottom.

EN 1992-1-1 [1] requires that the shear reinforcement should form an 
angle α of between 45° and 90° to the longitudinal axis of the member. The 
anchorage of the vertical or inclined legs of a stirrup may be achieved by a 
standard hook or cog (see Figure 14.12) or by welding of the fitment to the 
longitudinal bar or by a welded splice. The requirements for stirrup anchor-
ages in EN 1992-1-1 [1] are given in Figure 14.26.

Stirrups hooks and cogs should be located in the compression zone where 
anchorage conditions are most favourable. At overloads, when diagonal 
cracks may have formed, the compression zone may be relatively small. 
Stirrup hooks should therefore be as close to the compression edge as cover 

Compressive top chord (concrete)

Vertical ties (stirrups)
Inclined web struts

(concrete)

θv

Tensile bottom chord (As)

Figure 14.25 � The truss analogy.
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requirements allow. Stirrups depend on this transverse pressure for anchor-
age of the hooks or cogs. It is common practice to locate the stirrup hooks 
near the top surface of a beam even in negative moment regions. When the 
top surface is in tension, the discontinuity created by a stirrup and its anchor-
age may act as a crack initiator. A primary crack therefore frequently occurs 
in the plane of the stirrup hook and anchorage is lost. As a consequence, in 
these regions, the beam may possess less than its required shear strength.

It is good practice to show the location of the stirrup hooks on the struc-
tural drawings and not to locate the hooks in regions where transverse 
cracking might compromise the anchorage of the stirrup. Stirrup hooks 
should always be located around a larger diameter longitudinal bar that 
disperses the concentrated force at the anchorage and reduces the likeli-
hood of splitting in the plane of the anchorage. Longitudinal bars are in 
fact required in each corner of a closed stirrup to distribute the concen-
trated force applied to the concrete at the corner. It is essential that the 
stirrup and stirrup hook fit snugly and are in contact with the longitudinal 
bars in each corner of the stirrup.

The shear reinforcement calculated as being necessary at any cross-
section should be provided for a distance h from that cross-section in 
the direction of decreasing shear, where h is the depth of the cross-section. 
The first fitment at each end of a span should be located within 50 mm 
of the face of the support and the shear reinforcement should extend as 
close to the compression face and the tension face of the member as cover 
requirements and the proximity of other reinforcement and tendons permit.

In Figure 14.27, some satisfactory and some unsatisfactory stirrup 
arrangements are shown. Stirrup hooks should be bent through an angle of 
at least 135°. A 90° bend (a cog) will become ineffective should the cover be 
lost, for any reason, and will not provide adequate anchorage. In general, 
90° fitment cogs should not be used when the cog is located within 50 mm 
of any concrete surface.

(a) (b) (c) (d)

5φ, but
≥50 mm

10φ, but
≥70 mm

≥2φ,
≥20 mm
≤50 mm

≥10 mm ≥10 mm

≥0.7φ

≥1.4φ

φ φ φ φ

Figure 14.26 � Permissible stirrup anchorages [1]. (a) Hooked anchorage. (b) Cogged 
anchorage. (c) Welded anchorage-two cross-bars. (d) Welded anchorage-
single cross-bar.
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In addition to carrying diagonal tension produced by shear, and con-
trolling inclined web cracks, closed stirrups also provide increased duc-
tility by confining the compressive concrete. The open stirrups shown in 
Figure 14.27b are commonly used, particularly in post-tensioned beams 
where the opening at the top of the stirrup facilitates the placement and 
positioning of the post-tensioning duct along the member. This form of 
stirrup does not provide confinement for the concrete in the compression 
zone and is undesirable in heavily reinforced beams where confinement 
of the compressive concrete may be required to improve the ductility of 
the member. It is good practice to use adequately anchored closed stirrups 
(Figure 14.27c) even in areas of low shear, particularly when the longitu-
dinal tensile steel quantities are relatively high and cross-section ductility 
is an issue.

EN 1992-1-1 [1] permits lapped joints on the vertical legs of a stirrup 
near the surface of the web of a beam, such as shown in Figure 14.27b, pro-
vided the stirrup is not required to carry torsion. When a beam is subject 
to torsion, diagonal cracks exist on each face and the cracks spiral around 
the beam. Open stirrups of the type shown in Figure 14.27b are unsuitable. 
There is no point at which all stirrups can be effectively anchored since 
the spiral cracking may occur in the plane of a stirrup hook. It is likely 
therefore that a number of stirrup anchorages are lost as the ultimate load 
is approached if conventional hooks are used. This can be accounted for 
in design by closing up the stirrup spacing somewhat, thereby allowing 
for some lost anchorages. Ideally closed stirrups with welded anchorages 
should be used where torsion is significant.

In regions of high shear, it is desirable to use multi-leg stirrups when 
more than two longitudinal tensile bars are used. Park and Paulay [2] sug-
gest that a truss joint should be formed at each longitudinal bar, i.e. the 
number of vertical stirrup legs should ideally equal the number of longitu-
dinal bars and tendons. This is often not practical, but multi-leg stirrups 

(a) (b) 

Tensile lapped 
splice

(c)

Compressive side

Tensile side

Figure 14.27 � Stirrup shapes. (a) Incorrect. (b) Satisfactory in some situations. (c) Desirable.
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should be used in members with wide webs to avoid the undesirable distri-
bution of diagonal compression shown in Figure 14.28, where the untied 
interior longitudinal bars with no nearby vertical stirrup leg cannot effec-
tively resist diagonal compression and are therefore relatively inefficient in 
receiving bond forces.

Multi-leg stirrups are also far better for controlling the longitudinal split-
ting cracks (known as ‘dowel cracks’) that precipitate bond failure of the 
longitudinal bars in the shear span and are illustrated in Figure 14.29. The 
formation and propagation of this dowel crack usually triggers the sudden 
catastrophic shear failure that may occur in a heavily loaded shear span in 
a prestressed or reinforced concrete beam.

Closely spaced inclined stirrups (although in some instances not practical) 
are the most efficient form of shear reinforcement both in terms of strength and 
crack control. Vertical stirrups also perform well. Bent-up longitudinal bars 

Cracks

Compression strut

Ftw

Fcw Fcw

Ftw

Rigid Flexible

(a) (b)

Figure 14.28 � Undesirable distribution of diagonal compression due to wide stirrups [2]. 
(a) Elevation. (b) Cross-section.

Dowel crack

Figure 14.29 � Shear failure triggered by bond failure of longitudinal bars.
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(once commonplace, now rarely used) are relatively inefficient. Figure 14.30 
shows the effect of various stirrup types on the control of inclined cracks in 
the web of beams measured by Leonhardt et al. [7].

Wherever longitudinal bars are terminated in a tension zone, primary 
cracks are likely to occur at the discontinuity. These cracks tend to be 
wider than adjacent primary cracks and, if they become inclined due to 
the presence of shear, may lead to premature shear failure (probably due 
to a reduction in aggregate interlock). In the vicinity of terminating tensile 
reinforcement in a beam in bending and shear, it is good practice not to 
terminate more than 25% of the tensile reinforcement at any location. It is 
also good practice to ensure that the stirrup spacing determined as neces-
sary at a termination point be reduced by at least 25% for a distance equal 
to the overall depth of the cross-section (h) along the terminated bar.

The shear reinforcement ratio ρw is defined in EN 1992-1-1 [1] as:

	
ρ

α
ρw

sw

w
w,min

sin
= ≥A

sb( )
	 (14.11)

where Asw is the area of shear reinforcement at each stirrup location 
(i.e.  the sum of the areas of each leg of the stirrup assembly), s is the 
spacing along the longitudinal axis of the member between each stirrup 
assembly, bw is the width of the web of the cross-section, α is the angle 
between the shear reinforcement and the longitudinal axis and ρw,min is 
the minimum shear reinforcement ratio given by:
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Figure 14.30 � Crack control provided by various types of transverse reinforcement [2].
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EN 1992-1-1 [1] also imposes a limit sl,max on the maximum spacing 
between stirrups (or stirrup assemblies) measured along the longitudinal 
axis of the member where:

	 sl,max = 0.75d(1 + cot α)	 (14.13)

and the maximum transverse spacing of the legs of a stirrup st,max is speci-
fied as:

	 st,max = 0.75d ≤ 600 mm	 (14.14)

Stirrups used to resist torsion must be closed and should be at right 
angles to the member axis (i.e. α = 90°). EN 1992-1-1 [1] requires that at 
least one longitudinal bar be placed at each corner of the stirrup, with the 
remaining longitudinal bars required for torsion distributed around and 
inside the stirrup with a spacing not exceeding 350 mm. The longitudinal 
spacing of the torsion stirrups should not exceed the smaller of u/8 (where 
u is the circumference of the cross-section), sl,max (Equation 14.13) and the 
smallest dimension of the cross-section (bw or h).

14.5.5  Detailing of support and loading points

When the support is at the soffit of a beam or slab, as shown in 
Figure 14.31a, the diagonal compression passes directly into the support 
as shown. However, when the support is at the top of the beam, as shown 
in Figure 14.31b, the diagonal compression must be carried back up to the 
support via an internal tie as shown. It is essential that adequately anchored 
reinforcement be included to act as the tension tie and the reinforcement 
must pass into and be anchored within the support.

Consider the suspended slab supported from above by the upturned 
beam shown in Figure 14.32a. The horizontal component of the diagonal 
compression being delivered at the support of the slab must be resisted by 

(a) Support (b)

Support

Internal
tie

Figure 14.31 � Support points. (a) Support at soffit. (b) Support at top of beam.



Detailing  631

the bottom slab steel. The vertical component of the diagonal compression 
(i.e. the reaction from the slab) must be carried in tension up to the top of 
the upturned beam. This tension force must be carried across the unrein-
forced surface indicated in Figure 14.32a. The concrete on this surface may 
not be able to carry this tension and, if cracking occurs, premature and 
catastrophic failure could occur. The detail shown in Figure 14.32b over-
comes the problem. The diagonal compression from the slab is now resisted 
by the stirrups in the upturned beam. No longer is there an unreinforced 
section of concrete required to carry tension. The vertical and horizontal 
members of the analogous truss have been effectively connected.

Consider the beam-to-beam connection shown in Figure 14.33. The reac-
tion from the secondary beam FEd is delivered to the primary girder at the 
level of the bottom steel. This reaction should be carried by stirrups in the 
primary beam (hanger or suspension reinforcement) surrounding the prin-
cipal reinforcement of the primary beam up to the top of the girder where 
it can be resolved into diagonal compression in a similar way to that of any 
other load applied to the top of the girder. EN 1992-1-1 [1] permits some of 
these stirrups to be located outside the volume of concrete that is common 
to both beams. The suspension reinforcement is additional to the transverse 
reinforcement required for shear in the primary girder. For the reasons dis-
cussed in the previous paragraph, the bottom reinforcement in the second-
ary beam should always pass over the bottom reinforcement in the primary 
girder. The reinforcement details of the primary girder together with its 
truss analogy are shown in Figures 14.33b and c.

The area of additional suspension reinforcement Asr required to carry the 
factored reaction FEd may be obtained from:

	
A

F
f
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Ed

yd

= 	 (14.15)

where fyd is the design yield stress of the hanger reinforcement.

(a) (b)

Unreinforced
surface

Figure 14.32 � Suspended slab supported from above by upturned beam. (a) Incorrect 
detail. (b) Correct detail.
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When a load is applied to the underside of a concrete beam, some 
mechanical device must be used to transfer the hanging load to the top of 
the beam. Some typical devices are illustrated in Figure 14.34. When inter-
nal rods are used, plain round bars or bolts are suitable since bond is not 
required to transfer the load to the top of the girder.

To form an internal hinge, particularly in precast construction, a half 
joint or dapped-end joint, as shown in Figure 14.35a, is frequently used. 
At such a connection, careful detailing is essential. Only half the beam 
depth is available and the internal forces are generally relatively large. The 
two alternative strut-and-tie models shown in Figures 14.35b and c are 

(c) FEd

Primary
girder

FEd

Suspension
reinforcement

(a)

Secondary
beamCompression strut in 

secondary beam

Suspension reinforcement(b)

Stirrups
for shear

Figure 14.33 � Beam-to-beam connection. (a) Section through primary girder. (b) Primary 
girder – elevation. (c) Primary girder – truss analogy.
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(b)

(a)

Figure 14.34 � Mechanical means to support hanging loads. (a) External yoke. (b) Internal 
rods.

(c) Reinforcement detail

(a)

(b) Reinforcement detail

Suspension
reinforcement

Hairpin 
reinforcement

Figure 14.35 � Half joint details. (a) Half joint. (b) Strut-and-tie model (No. 1). (c) Strut-
and-tie model (No. 2).
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outlined in EN 1992-1-1 [1]. Corresponding reinforcement details are also 
shown in these figures.

The anchorage of all bars must be considered carefully. The bottom rein-
forcement at the right-hand side of the joint in both details usually requires 
a hook or a 90° cog for adequate anchorage. The suspension reinforcement 
in Figure 14.35b must carry the full tension in the vertical tie and should 
be located as close to the connection as cover and spacing requirements 
permit. The short cantilevered portions are designed as corbels (which are 
discussed in more detail in Section 14.8). Horizontal hairpin reinforcement 
should extend past the re-entrant corners where a potential crack may 
develop. It is usual for the area of this horizontal reinforcement to be taken 
as at least half the area of the suspension reinforcement.

14.6  DETAILING OF COLUMNS AND WALLS

14.6.1  General requirements

Bond and anchorage conditions are generally more favourable in columns 
than in beams because transverse cracking is less likely. Nevertheless, sev-
eral points need to be considered when detailing columns.

The longitudinal column bars should be spliced in regions where trans-
verse cracking is unlikely. The ideal, but often impractical, splice location 
in many columns is at the mid-storey height, near the point of inflection 
where bending is small. In structures that may be subjected to earthquake 
loading, columns are often required to withstand large moments and pos-
sible plastic hinging at each end. Splices in these columns should always be 
near the mid-storey height, away from the peak moment region.

At a compressive lap, a large portion of the compression in the bar is 
transferred to the concrete by end bearing. In fact, before bond stresses 
can occur, the end bearing resistance of the bar must be overcome and 
some slip must occur. In tests reported by Leonhardt and Teichen [6], 
the concrete immediately under each of the spliced bars burst laterally 
before the ultimate load was reached. Additional transverse reinforce-
ment at the ends of spliced bars is therefore important to provide con-
finement for the heavily stressed concrete. An arrangement of transverse 
ties at a lapped splice suggested by Leonhardt and Teichen [6] is shown 
in Figure 14.36a.

If longitudinal bars are cranked to form an offset, as shown in 
Figure  14.36b, additional transverse ties must be included to carry the 
resulting transverse tension F. EN 1992-1-1 suggests that this effect may be 
ignored if the change in direction of the bar is less than 1 in 12.

Where a single layer of reinforcement is used in a thin wall, a trans-
verse tension splice, as shown in Figure 14.36c, should not be used. The 
internal couple resulting from the offset may lead to the cracking shown 
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and this could precipitate premature failure, particularly if the wall is 
subjected to lateral loading. Lapped splices in thin walls should be in the 
plane of the wall.

14.6.2  Transverse reinforcement in columns

Transverse reinforcement (or fitments) in the form of closed ties or helices 
are required in columns for three reasons:

	 1.	To provide restraint to the heavily stressed longitudinal reinforcement 
and thereby prevent outward buckling before the full strength of the 
bar is reached.

	 2.	To provide confinement to the concrete core and thereby improve both 
the strength and ductility of the column. This confinement occurs at 
the points where the ties change direction around the longitudinal 
bars and results from the tension induced in the ties as the concrete 
core dilates under axial compression.

	 3.	To act as shear reinforcement when diagonal tension cracks are 
possible.

While helical reinforcement is often used in piles and circular columns, 
closed ties are the most common form of lateral reinforcement used in rect-
angular columns. Typical tie arrangements are shown in Figure 14.37. Each 
main longitudinal bar is tied in two directions so as to effectively prevent 
outward buckling.
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Figure 14.36 � Lapped splices in columns and walls. (a) Additional fitments at compressive 
splice. (b) Tension at cranked bars. (c) Unsatisfactory tension splice in a 
thin wall.
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Lateral restraint should be provided for:

	 1.	each corner bar or bundle of bars in a cross-section;
	 2.	every other bar when bars are spaced at centres exceeding 150 mm; and
	 3.	at least every alternate bar, where bars are spaced at 150 mm or less.

For columns containing bundled bars, each bundle should be restrained.
Lateral restraint may be considered to be provided if the longitudinal 

reinforcement is placed within and in contact with a non-circular fitment 
and located:

	 1.	at a bend in the fitment, where the bend has an included angle of 135° 
or less, e.g. position A in Figure 14.38;

	 2.	between two 135° fitment hooks, e.g. position B in Figure 14.38; and
	 3.	inside a single 135° hook at the end of a fitment that is approximately 

perpendicular to the column face, e.g. position C in Figure 14.38.

Figure 14.37 � Typical tie (link) arrangements in rectangular columns.

Position ‘A’

Position ‘B’

Position ‘C’

Figure 14.38 � Lateral restraint to longitudinal bars.



Detailing  637

Although used in some circumstances, 90° fitment cogs are not recom-
mended here. In the case of circular fitments or helical reinforcement, the 
longitudinal reinforcement inside the helix may be deemed to be laterally 
restrained if the bars are equally spaced around the perimeter.

EN 1992-1-1 [1] specifies the minimum bar diameter for fitments and 
helical reinforcement tabulated below.

Longitudinal bar diameter (mm) 
Minimum bar diameter 

for fitment and helix (mm) 

Single bars up to 24 6
Single bars 24 to 32 8
Single bars 32 to 40 10

For bundles of bars, 10 mm is recommended as the minimum bar diameter 
for fitments and helical reinforcement.

The spacing of fitments, or the pitch of a helix, should not exceed scl,tmax, 
which may be taken as the smaller of 10ϕ, the lesser dimension of the col-
umn cross-section and 400 mm, where ϕ is the diameter of the longitudinal 
bar being restrained [1]. If the column has a circular cross-section, its diam-
eter is taken as the lesser dimension of the column cross-section. In regions 
of a column within a distance equal to the larger column dimension above 
or below a beam or slab, the maximum spacing requirement should be 
reduced by a factor of 0.6. In the case of a wall, the larger column dimen-
sion here is taken to be 4 times the wall thickness. Similarly, at lapped 
splices of longitudinal bars of diameter greater than 14 mm in columns, the 
maximum spacing requirement should be reduced by a factor of 0.6, with 
a minimum of 3 bars evenly spaced in the lap length [1].

One fitment, or the first turn of a helix, should be located not more than 
50 mm vertically above the top of a footing, or the top of a slab. Another 
fitment, or the final turn of a helix, should be located not more than 50 mm 
vertically below the soffit of a slab, except that in a column with a capital, 
the fitment or turn of the helical reinforcement shall be located at a level at 
which the area of the cross-section of the capital is not less than twice that 
of the column.

In situations where beams or brackets frame into a column from four 
directions and the column is restrained in all directions, the fitments or 
helical reinforcement may be terminated 50 mm below the highest soffit of 
the beams or brackets.

Where a splice is always in compression, the force in the longitudinal 
bar may be transmitted by end bearing. The mating ends of the bar must 
be square-cut and held in concentric contact by a sleeve. For such an end-
bearing splice, an additional fitment should be placed above and below 
each sleeve. The bars should be rotated to achieve the maximum possible 
area of contact between the ends of the bars.
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14.6.3  Longitudinal reinforcement in columns

EN 1992-1-1 [1] specifies that the minimum diameter of a longitudinal bar 
in a column is 8 mm and the minimum area of longitudinal reinforcement in 
a column should not be less than As,min, where:

	
A

N
f

s,min
Ed

yd

= 0 10.
	 (14.16)

and NEd is the design axial compressive force. The maximum area of lon-
gitudinal reinforcement As,max is 0.04 Ac outside the lap locations and 0.08 
Ac at laps. At least one longitudinal bar should be placed in each corner 
of a polygon-shaped cross-section, and a column of circular cross-section 
should have at least four, evenly spaced, longitudinal bars.

14.6.4  Requirements for walls

Walls are defined in EN 1992-1-1 [1] as members with a length to thickness 
ratio of 4 or more. The maximum and minimum requirements for vertical 
reinforcement are the same as the corresponding requirements for longi-
tudinal reinforcement in columns given in the preceding section. Vertical 
reinforcement should be located at each face of the wall and the spacing of 
the vertical bars should not exceed 3 times the wall thickness or 400 mm, 
whichever is less. For walls subjected to lateral loads (out-of-plane bend-
ing), the maximum spacing requirements for crack control in slabs apply 
and the upper limit on bar spacing should be reduced to 300 mm.

Horizontal reinforcement is also required running parallel to the faces of 
the wall on each surface of area not less than 25% of the area of vertical 
reinforcement or 0.001Ac whichever is greater. The spacing between hori-
zontal bars should not exceed 400 mm.

Where the area of vertical reinforcement in any part of a wall exceeds 
0.02Ac, transverse reinforcement in the form of ties (links) should be pro-
vided in accordance with the requirements for columns (see Section 14.6.2).

14.7  DETAILING OF BEAM–COLUMN CONNECTIONS

14.7.1  Introduction

Connections between structural members are often the weakest points in 
a structural system. Within connections, internal forces change direction 
abruptly and adequately anchored reinforcement must be inserted to carry 
all tension. Often the space available for anchorage of reinforcement is 
small and restricted, and due to extensive cracking within the connection 
at overloads, the anchorage conditions are particularly unfavourable.

Ideally, the strength of a connection should not govern the strength of the 
structure. Connections should therefore possess strength at least as great 
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as the members they join. Connections should also perform satisfactorily 
at service loads (controlled cracks and small rotations) and be easy to con-
struct. As will be seen, these requirements are often not easy to satisfy and 
detailing the reinforcement in connections requires careful attention.

The moments, shears and axial forces in a concrete structure are usu-
ally determined using elastic analyses. In such analyses, connections are 
usually assumed to be rigid, i.e. the ends of all members meeting at the 
connection are assumed to rotate by the same amount. In addition to being 
designed to carry the internal actions, the connections should respond with 
deformations at least similar to those assumed in the analysis. If the con-
nection is too flexible, span moments will exceed those given by the analysis 
causing increased deformations and, perhaps, premature failure in heavily 
reinforced members at overload where the ductility required for redistribu-
tion of internal actions may not be available.

The difficulty in predicting the load-deformation characteristics of 
connections is a major obstacle to the use of collapse load analysis for 
reinforced and prestressed concrete frames. Of course, in any connec-
tion, ductility is essential and the use of low ductility steel should not be 
contemplated.

14.7.2 � Knee connections (or two-member connections)

Two-member connections, such as those shown in Figure 14.39, are com-
monly used in concrete structures. It is often difficult to achieve 100% 
efficiency in such a connection (i.e. the strength of the connection is equal 
to the strength of the adjoining members), particularly when subjected to 
opening moments.

Figure 14.39 � Two-member connections.
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14.7.2.1  Closing moments

The load path in two-member connections subjected to closing moments 
is shown in Figure 14.40a and the crack pattern caused by increasing the 
applied load is illustrated in Figure 14.40b. Strut-and-tie models outlined 
in EN 1992-1-1 for beam–column connections subject to closing moments 
are shown in Figure 14.41. The strut-and-tie model for a closing moment 
connection where the beam and columns depths are within the range 
0.67 < h2/h1 < 1.5 is shown in Figure 14.41a, together with the correspond-
ing reinforcement layout. For such a load path, the code does not require 
any checks on transverse link reinforcement or anchorage lengths within 
the beam–column joint, provided that the tension reinforcement on top of 
the beam is bent around the corner and continuous.

The strut-and-tie model and reinforcement layout shown in Figure 14.41b 
is for a closing moment connection when h2/h1 < 0.67. According to EN 
1992-1-1 [1], for this model, the angle θ should be limited by 0.4 ≤ tanθ ≤ 
1.0 [1]. Transverse (horizontal) links are required to carry the internal ten-
sile forces Ftd1 in the horizontal ties within the connection. The anchorage 
length lbd for the tensile reinforcement carrying Ftd2 at the top of the column 
should be determined for the force ΔFtd = Ftd2 − Ftd1.

For the reinforcement details shown in Figure 14.41, the top tensile bars 
in the beam are easily developed provided the radius of bend is large enough 
to avoid splitting failure. If necessary, the inclusion of a larger diameter 
transverse bar tied inside the 90% bend in the top reinforcement could be 
used to distribute the concentrated force applied to the concrete at the bend 
and avoid the development of splitting cracks. The main tensile bars should 
be continuous around the corner.

14.7.2.2  Opening moments

In Figure 14.42a, the flow of internal forces in a two-member connection 
subjected to an opening moment is illustrated and the crack pattern in such 
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Figure 14.40 � Knee connection in closing bending. (a) Internal forces. (b) Crack pattern.
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Figure 14.41 � Two-member connections with closing moments – strut-and-tie models 
and reinforcement details. (a) Similar depths of beam and column. (b) Very 
different depths of beam and column h1 ≫ h2.

(a) (b)
M

M

M

M

Ft

Ft

√2Ft

Fc

Fc

Figure 14.42 � Knee connection in opening bending. (a) Internal forces. (b) Crack pattern.
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a connection as the applied loads are increased is shown in Figure 14.42b. 
For this connection to work efficiently, adequately anchored reinforce-
ment must be included to carry the diagonal tension across the connection. 
Numerous tests [12,13] have shown that the reinforcement details illus-
trated in Figure 14.43a and b are quite unsatisfactory. Unless diagonal rein-
forcement is included to carry the tension within the connection (as shown 
in Figure 14.43c), the connection will fail at some small fraction of the 
strength of the adjoining members.

Provided the diagonal stirrups in Figure 14.43c have an adequate cross-
sectional area and are fully anchored so that they can develop the full diago-
nal tension at the ultimate limit state, the detail shown can provide up to 
100% efficiency, particularly in lightly reinforced beams (i.e. with ρ = 
As/bd < 0.01). In general, the more lightly reinforced the members, the more 
efficient is the connection. The diagonal stirrups must fit snuggly around the 
longitudinal steel to effectively control the growth of cracks.

For frame corners subjected to opening moments, when the beam and 
column are of similar depths, EN 1992-1-1 [1] outlines the strut-and-tie 
models and reinforcement details shown in Figure 14.44. According to the 
code, the tensile longitudinal reinforcement should be either provided as a 
loop within the connection or as two overlapping U bars in combination 
with inclined links as shown. For larger knee connections carrying large 
opening moments, a diagonal bar and transverse links to prevent splitting 
should be considered (as shown in Figure 14.44b).

Park and Paulay [2] suggest that the detail shown in Figure 14.45 is suit-
able for relatively large knee connections. A haunch at the re-entrant corner 
will allow the inclusion of more diagonal flexural bars, reduce the magnitude 
of the internal tension and generally strengthen the connection.

14.7.3  Exterior three-member connections

The flow of internal forces in a typical exterior beam–column connection 
is illustrated in Figure 14.46a and the crack pattern under increasing load 
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Figure 14.43 � Unsatisfactory and potentially satisfactory reinforcement details. (a) Unsatis
factory. (b) Unsatisfactory. (c) Potentially satisfactory.
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Figure 14.44 � Strut-and-tie models and reinforcement details – opening bending  [1]. 
(a) Moderate opening moment, As/bh ≤ 0.02. (b) Large opening moment, 
As/bh > 0.02.
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Figure 14.45 � Suggested detail for large opening knee connections [2].
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is as shown in Figure 14.46b. The anchorage conditions of the longitudinal 
reinforcement in such a connection are particularly unfavourable. A typical 
reinforcement detail is shown in Figure 14.47. The top steel in the horizon-
tal beam enters the connection in a region subjected to transverse tension. 
The surrounding concrete may be cracked, particularly in frames subjected 
to high lateral loads, and being in the top of the beam the concrete is subject 
to sedimentation. Bond along the bar from the face of the column to the 
beginning of the 90° bend should not be relied on for anchorage.

The outer column bars in Figure 14.46b at the strength limit state may be 
required to be at yield in tension below the connection and at yield, or close 
to it, in compression above the connection. Code provisions for anchorage 
may not be able to be met here. Tightly fitting and closely spaced column 

(a) (b)

High bond
stress

Poor
anchorage

Figure 14.46 � Three-member connection. (a) Internal forces. (b) Crack pattern.

Larger diameter bar to distribute
bearing stresses in bend

Ties to carry diagonal tension, to
control vertical splitting and to

confine the concrete core

Figure 14.47 � Reinforcement detail for a three-member connection.
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ties within the connection are required to control the splitting cracks caused 
by the usually high bond stresses around these bars.

When an exterior three-member connection is subjected to reversals 
of load, such as may occur under seismic loading, the anchorage condi-
tions in such a connection are at their worst. Often mechanical anchor-
ages are required for the longitudinal reinforcement in the beams and a 
large amount of transverse steel is required within the connection. Park 
and Paulay [2] point out that under conditions of alternating plasticity, it is 
unwise to assume that the concrete within the connection will contribute 
to the shear strength. Confinement of this highly stressed concrete block by 
closely fitting vertical and horizontal ties is a prerequisite for adequate rein-
forcement anchorage. Care should be taken to ensure that the reinforce-
ment layout permits the placement and proper compaction of the concrete 
within the connection.

14.7.4  Interior four-member connections

Similar remarks apply to the interior connections in frames. If the beam 
moments equilibrate each other (or nearly so), i.e. the column moments 
are small compared to the beam moments (which is usually the case under 
gravity loads), no particular problems should arise. However, for frames 
carrying large lateral loads, the beam moments may be of opposite sign, as 
shown in Figure 14.48, and the anchorage conditions of the longitudinal 
bars are critical. Once again, closely spaced horizontal and vertical ties are 
required to carry diagonal tension across the connection, to control split-
ting cracks caused by high bond stresses, to control diagonal cracking, to 
confine the concrete core and, therefore, to improve the anchorage condi-
tions generally within the connection.

(a) (b) (c)

Figure 14.48 � Interior four-member connection. (a) Internal forces. (b) Crack pattern. 
(c) Reinforcement detail.
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14.8  DETAILING OF CORBELS

Corbels are short cantilevers that tend to act as non-flexural deep beams, 
rather than flexural members. Corbels carry reactions or concentrated 
loads into columns or walls as shown in Figure 14.49a and have shear 
span-to-depth ratios generally not greater than unity. From studies of stress 
trajectories in photoelastic models, Franz and Niedenhoff [14] verified the 
flow of internal forces shown. A typical reinforcement detail for a cor-
bel is shown in Figure 14.49b. The horizontal main primary reinforcement 
As,main is required to carry the tension from under the bearing pad back into 
the column and must therefore be fully anchored at both ends. It should 
be anchored in the supporting element on the far face, with the anchor-
age length measured from the position of the vertical column reinforce-
ment at the near face. In the corbel, the main tensile reinforcement must be 
anchored under the bearing plate with the anchorage length measured from 
the inner face of the plate. The main tensile reinforcement is sometimes 
looped horizontally to provide anchorage, rather than bent vertically as 
shown in Figure 14.49b. Often the main tensile reinforcement is welded to 
a cross-bar of at least the same diameter (as shown in Figure 14.49c and d) 
or directly to a steel end ring plate or another anchoring device to ensure 

(a) (b) (c)
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C Cross-bar to
distribute bearing
stresses in bend

Steel As,link,h to carry
Fwd and for crack

control (see
Figure 14.50)

Main or primary
tensile reinforcement

As,main

Welded
anchor bar
(see Figure

14.49d)

Primary tension
steel, As,main

(d)

Primary tensile reinforcement

Anchor
bar

tweld = db/2

tweld = db/2

ℓweld = ¾ db

ℓweld = ¾ db

db

db

Figure 14.49 � Reinforced concrete corbel details. (a) Flow of internal forces. 
(b) Reinforcement detail. (c) Welded primary tensile steel. (d) Satisfactory 
weld details [15].



Detailing  647

adequate anchorage. The welds should be designed to develop the yield 
strength of the primary tension reinforcement. A weld detail that has been 
used successfully in corbel tests is shown in Figure 14.49d [15]. Horizontal 
links (of cross-sectional area As,link,h) are usually included as shown in 
Figure 14.49b to control the inclined cracking which occurs from the top 
surface parallel to the compressive strut and to carry the web tension Fwd 
in the intermediate tie shown in the strut-and-tie model of Figure 14.50.

EN 1992-1-1 [1] suggests that corbels may be designed using strut-and-
tie models, such as that shown in Figure 14.50, where the inclination θ 
of the main compressive strut is limited by 1.0 ≤ tanθ ≤ 2.5. In no case, 
should As,link,h < 0.25 As,main. In addition, for heavily loaded corbels, where 
FEd > VRd,c and ac > 0.5hc, closed vertical links of total area As,link,v < 0.5 
FEd/fyd should be provided over the full depth of the corbel and evenly 
spaced between the inside edge of the bearing plate and the face of the 
column.

14.9  JOINTS IN STRUCTURES

14.9.1  Introduction

Joints are introduced into concrete structures for two main reasons:

	 1.	As stopping places in the concreting operation. The location of these 
construction joints depends on the size and production capacity of 
the construction site and work force.

hc d

FEd

ac

HEd

Ftd

Fwd

FEd

θ

Figure 14.50 � Strut-and-tie model of a corbel [1].
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	 2.	To accommodate deformation (expansion, contraction, rotation, 
settlement) without local distress or loss of integrity of the struc-
ture. Such joints include control joints (contraction joints), expan-
sion joints, structural joints (such as hinges, pin and roller joints), 
shrinkage strips and isolation joints. The location of these joints can 
usually be determined by consideration of the likely movements of 
the structure during its lifetime and the resulting effects on structural 
behaviour.

14.9.2  Construction joints

Construction joints are required in structures so that each concrete pour 
can be handled by the available workforce. Construction joints may be hor-
izontal in slabs or vertical in long walls. Typical construction joint details 
for slabs and walls are shown in Figure 14.51.

All reinforcement should be continuous across the joint. The keyed or 
dowelled joints of Figures 14.51b and c are of questionable value, particu-
larly in slabs with top and bottom reinforcement ratios exceeding about 
0.0035. If the surface of the hardened concrete at the joint is properly pre-
pared, friction and aggregate interlock on the concrete surface, together 
with the dowel action of the reinforcement, can provide shear strength at 
the joint as high as that of adjacent sections placed monolithically.

For a sound joint, after the first concrete pour, the exposed reinforce-
ment should be cleaned and the aggregate of the hardened concrete exposed 
by wire brushing or water or sand blasting. The hardened concrete should 
be thoroughly wetted before the new concrete is poured. For a waterproof 
construction joint, a continuous plastic or rubber waterstop or waterbar 
is essential. Compaction of the concrete around the waterstop should be 
thorough and careful.

(a)

(c)

(b)

Steel dowels to improve shear strength

Waterstop where water tightness is required

1st pour 2nd pour

Figure 14.51 � Construction joint details. (a) Butt joint. (b) Keyed joint. (c) Dowelled joint.
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If possible, construction joints should coincide with other joints 
(e.g. expansion or contraction joints) so as to minimise the total number of 
joints in the structure. Construction joints should be disguised (or otherwise 
hidden) or incorporated as architectural features. It is therefore necessary 
that the number and location of joints be decided well before the concrete 
trucks arrive onto the construction site. Ideally, construction joints should 
not be placed in regions of high moment or shear and should not occur 
where they could create stress concentrations.

14.9.3  Control joints (contraction joints)

When concrete is not free to contract, restraint to shrinkage and tempera-
ture changes produces tension that can, and frequently does, cause excessive 
cracking. Restraint to shrinkage and temperature changes can be handled in 
two different ways. Sufficient reinforcement can be inserted to control crack-
ing and cause a large number of very fine, serviceable cracks. Alternatively, 
control joints can be used in walls and slabs to concentrate the cracking into 
preformed grooves. The contraction of the concrete is taken up at the con-
trol joint and the restraint to shrinkage between cracks is largely removed.

A control joint is an intentionally introduced plane of weakness in a 
slab or wall. Control joints are spaced and positioned so that cracking 
and contraction take place only on these preselected straight lines. The 
joints should be close enough together so that shrinkage and temperature-
induced tension in the concrete between the joints remains small. Typical 
control joint details in reinforced concrete slabs and walls are shown in 
Figure 14.52. The joint must allow contraction of the concrete (i.e. it must 

Saw cut >0.25t and 20 mm

Discontinue every second bar if necessary so that p < 0.002

Discontinue every second bar if necessary so that p < 0.002

(a)

(c)

(b)

≈0.75t to 0.67t

≈0.75t to 0.67t

Debond dowel to ensure free contraction

(d)

t

Figure 14.52 � Control joint details. (a) Saw-cut joint in slab on ground. (b) Wall (t < 200 mm). 
(c) Wall (t ≥ 200 mm). (d) Dowelled joint.
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be able to open longitudinally), but must resist relative transverse move-
ment (i.e. it must allow for shear transfer, if required).

Control joints are formed by locally reducing the cross-sectional area of 
the slab or wall by about 25%–33%. Form inserts can be used to form the 
joint (as illustrated in Figures 14.52b and c) or a saw cut in the fresh con-
crete on the surface of a slab can be used to create the weakened plane. To 
ensure relatively free contraction at the joint after a crack has formed, the 
reinforcement crossing the joint should be no more than 0.002Ac, where Ac 
is the cross-sectional area of the concrete slab or wall at the joint.

If significant shear is to be transferred across the joint, dowels can be 
used to improve shear strength, as shown in Figure 14.52d. The dowels 
should be debonded on one side of the joint to allow free contraction.

Control joints should be located in regions of low moment since the 
flexural strength of a slab or wall is usually quite low at a joint. Water 
tightness is always a potential problem at a control joint and a continu-
ous flexible (expandable) waterstop should be used if a waterproof joint 
is required.

The position and spacing of control joints depends on many factors 
including the shrinkage characteristics of the concrete, the curing and 
exposure conditions, the external restraint (due to supports, adjacent parts 
of the structure or friction with the ground) and the structural layout. No 
hard and fast rules can be made. However, as a general rule, a joint should 
be located wherever an abrupt change in dimension of the structure occurs 
(thickness, width or height).

In the design of walls and slabs, the designer in general has a choice 
between joints at close spacings (3–5 m – see Reference [16]) with small 
quantities of reinforcement (about 0.002Ac) or joints at much wider 
centres and much larger quantities of reinforcement (at least 0.006Ac). 
Reinforcement quantities of about 0.002Ac are unable to control shrink-
age-induced cracking and therefore joints at close centres are required to 
reduce restraint and accommodate contraction.

If small quantities of reinforcement are specified in reinforced concrete 
slabs with joints at close centres, joint spacing of as little as 3 m may be 
necessary in dry environments or with high-shrinkage concretes. The first 
joint should be located no more than 3 m from a corner. The ratio of panel 
dimensions enclosed by joints in a wall or slab should be as close to 1.0 as 
possible but not greater than 1.5.

Short walls restrained at their base by a more massive footing are par-
ticularly prone to shrinkage cracking (Figure 14.53a), as are cantilevered 
balcony slabs (Figure 14.53b). Control joints at spacing similar to the wall 
height (or the span of a cantilevered balcony) are required to accommodate 
all the concrete contraction unless relatively large quantities of reinforce-
ment are specified. Additional reinforcement may be required along the 
balcony edge to prevent unsightly cracking at each joint location.
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14.9.4  Shrinkage strips

Shrinkage strips serve the same purpose as control joints. A strip of about 
1 m width across a building is left during concreting, thus allowing the con-
crete on either side of the strip to shrink freely. After several weeks, when 
a significant amount of the drying shrinkage has occurred, the strips are 
poured and continuity is established.

The reinforcement crossing a shrinkage strip is usually continuous but is 
lapped or bent horizontally as shown in Figure 14.54 to allow unrestrained 
contraction on either side of the strip.

In long multistorey framed structures without stiff columns or walls, 
shrinkage strips are often placed in slabs at about 40 m centre. When there 

Control joint
locations

(b)

Control joint locations

(a)

Figure 14.53 � Control joint locations. (a) Wall elevation. (b) Balcony plan.

Shrinkage
strip

Shrinkage
strip

Figure 14.54 � Alternative reinforcement details at shrinkage strips.
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are stiff columns or walls, strips are required at much closer centres. 
Vertical shrinkage strips may also be used in long walls.

14.9.5  Expansion joints

Expansion joints separate two adjacent parts of a structure into completely 
independent units. They allow for expansion of concrete during curing 
and due to temperature rises, such as may occur in a fire or simply due to 
changes in the ambient temperature. By their nature, expansion joints also 
serve as contraction joints. Expansion joints are frequently located on a 
column line with double columns and beams, as shown in Figure 14.55a. 
Half joints or dapped-end joints (Figure 14.55b) also act as expansion 
joints.

The use of expansion joints in buildings is somewhat controversial. The 
contraction caused by shrinkage is usually several times greater than the 
expansion caused by ambient temperature rises. Indeed, many large build-
ings have been built successfully without expansion joints. Notwithstanding 
this, it is good practice to include expansion joints at abrupt changes in 
the plan dimensions of a building, as shown in Figure 14.55c, to avoid the 
stress concentrations and cracking that would otherwise occur at these 
locations.

It is important that movement joints in the concrete structure be accom-
panied by and be compatible with movement joints in the finishes, partitions 
and cladding attached to it. Movement in the concrete structure should not 
impose loads on the attached non-structural elements.

14.9.6  Structural joints

Structural joints allow free movement (translation and/or rotation) between 
two parts of a structure. The half joint of Figure 14.55b allows unrestrained 

(b)

(c)

Joint
location

(a)
≥ 25 mm

Figure 14.55 � Expansion joint details. (a) Double column and beams. (b) Half joint. 
(c) Building plans – joint locations.
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translation along the axis of the member and unrestrained rotation and 
will serve the dual function of a structural hinge and an expansion/
contraction joint.

When a hinge is required at the base of a column or when moment is not 
to be transferred from one element to another, the hinge joints shown in 
Figure 14.56 may be used. The joints must be able to transmit the imposed 
axial force and shear. It is essential that the strength and strain capacity 
of the concrete within the hinge is increased as much as possible using 
closely spaced confinement reinforcement, usually in the form of helical 
reinforcement.

When a concrete beam or slab is supported by a masonry wall, it is pru-
dent to ensure that the concrete movements do not cause distress to the 
masonry. A sliding joint should always be used to break the bond between 
the concrete and the wall. Two layers of galvanised steel flashing (or equiva-
lent) usually provide a satisfactory sliding joint between a concrete slab and 
a load-bearing masonry wall.

Isolation joints separate different parts of a structure and ensure that 
deformation in one part of the structure does not impose loads on the 
other. Differential shortening of adjacent columns in framed structures can 
induce significant moments and shears into floor slabs and beams. Isolation 
joints are frequently used to separate portions of a structure with signifi-
cantly different sustained stress levels. For example, tower columns in a 
multistorey building may need to be separated from adjacent columns with 
lower stress levels due to differences in their long-term axial shortening. 
Structural members supporting vibrating machinery or pumps are usually 
isolated from the remainder of the structure. To avoid differential settle-
ment problems, slabs on ground are isolated from the walls and columns 
passing through them. In structures subjected to seismic loads, parts with 
dissimilar mass and stiffness are separated so that they are able to oscillate 
without hammering against each other.

Confinement steel

Elastic, easily
compressible

material

Mesnager
hinge

Figure 14.56 � Structural hinge joints [16].
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