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Chapter I

Introduction

SAP2000, ETABS and SAFE are software packages from Computers and Struc-
tures, Inc. for structural analysis and design. Each package is a fully integrated sys-
tem for modeling, analyzing, designing, and optimizing structures of a particular
type:

* SAP2000 for general structures, including bridges, stadiums, towers, industrial
plants, offshore structures, piping systems, buildings, dams, soils, machine
parts and many others

» ETABS for building structures
* SAFE for floor slabs and base mats

At the heart of each of these software packages is a common analysis engine, re-
ferred to throughout this manual as SAP2000. This engine is the latest and most
powerful version of the well-known SAP series of structural analysis programs.
The purpose of this manual is to describe the features of the SAP2000 analysis en-
gine.

Throughout this manual the analysis engine will be referred to as SAP2000, al-
though it applies also to ETABS and SAFE. Not all features described will actually
be available in every level of each program.
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Analysis Features

The CSI analysis engine offers the following features:

Static and dynamic analysis

Linear and nonlinear analysis

Dynamic seismic analysis and static pushover analysis

Vehicle live-load analysis for bridges

Geometric nonlinearity, including P-delta and large-displacement effects
Staged (incremental) construction

Creep, shrinkage, and aging effects

Buckling analysis

Steady-state and power-spectral-density analysis

Frame and shell structural elements, including beam-column, truss, membrane,
and plate behavior

Cable and Tendon elements

Two-dimensional plane and axisymmetric solid elements
Three-dimensional solid elements

Nonlinear link and support elements
Frequency-dependent link and support properties
Multiple coordinate systems

Many types of constraints

A wide variety of loading options
Alpha-numeric labels

Large capacity

Highly efficient and stable solution algorithms

These features, and many more, make CSI programs the state-of-the-art for struc-
tural analysis. Note that not all of these features may be available in every level of
SAP2000, ETABS and SAFE.

2 Analysis Features
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Structural Analysis and Design

The following general steps are required to analyze and design a structure using
SAP2000, ETABS and SAFE:

1. Create or modify a model that numerically defines the geometry, properties,
loading, and analysis parameters for the structure

2. Perform an analysis of the model
3. Review the results of the analysis
4. Check and optimize the design of the structure

This is usually an iterative process that may involve several cycles of the above se-
quence of steps. All of these steps can be performed seamlessly using the SAP2000,
ETABS, and SAFE graphical user interfaces.

About This Manual

This manual describes the theoretical concepts behind the modeling and analysis
features offered by the SAP2000 analysis engine that underlies the SAP2000,
ETABS and SAFE structural analysis and design software packages. The graphical
user interface and the design features are described in separate manuals for each
program.

It is imperative that you read this manual and understand the assumptions and pro-
cedures used by these software packages before attempting to use the analysis fea-
tures.

Throughout this manual the analysis engine may be referred to as SAP2000, al-
though it applies also to ETABS and SAFE. Not all features described will actually
be available in every level of each program.

Each Chapter of this manual is divided into topics and subtopics. All Chapters be-
gin with a list of topics covered. These are divided into two groups:

 Basic topics — recommended reading for all users

Structural Analysis and Design 3
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» Advanced topics — for users with specialized needs, and for all users as they
become more familiar with the program.

Following the list of topics is an Overview which provides a summary of the Chap-
ter. Reading the Overview for every Chapter will acquaint you with the full scope
of the program.

Typographical Conventions

Throughout this manual the following typographic conventions are used.

Bold for Definitions

Bold roman type (e.g., example) is used whenever a new term or concept is de-
fined. For example:

The global coordinate system is a three-dimensional, right-handed, rectangu-
lar coordinate system.

This sentence begins the definition of the global coordinate system.

Bold for Variable Data

Bold roman type (e.g., example) is used to represent variable data items for which
you must specify values when defining a structural model and its analysis. For ex-
ample:

The Frame element coordinate angle, ang, is used to define element orienta-
tions that are different from the default orientation.

Thus you will need to supply a numeric value for the variable ang if it is different
from its default value of zero.

Italics for Mathematical Variables

Normal italic type (e.g., example) is used for scalar mathematical variables, and
bold italic type (e.g., example) is used for vectors and matrices. If a variable data
item is used in an equation, bold roman type is used as discussed above. For exam-
ple:

0<da<db<lL

4 Typographical Conventions
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Here da and db are variables that you specify, and L is a length calculated by the
program.

Italics for Emphasis

Normal italic type (e.g., example) is used to emphasize an important point, or for
the title of a book, manual, or journal.

Capitalized Names

Capitalized names (e.g., Example) are used for certain parts of the model and its
analysis which have special meaning to SAP2000. Some examples:

Frame element
Diaphragm Constraint
Frame Section

Load Pattern

Common entities, such as “joint” or “element” are not capitalized.

Bibliographic References

References are indicated throughout this manual by giving the name of the
author(s) and the date of publication, using parentheses. For example:

See Wilson and Tetsuji (1983).
It has been demonstrated (Wilson, Yuan, and Dickens, 1982) that ...

All bibliographic references are listed in alphabetical order in Chapter “Refer-
ences” (page 447).

Bibliographic References 5
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Chapter I

Objects and Elements

The physical structural members in a structural model are represented by objects.
Using the graphical user interface, you “draw” the geometry of an object, then “as-
sign” properties and loads to the object to completely define the model of the physi-
cal member. For analysis purposes, SAP2000 converts each object into one or more
elements.

Basic Topics for All Users
* Objects
* Objects and Elements
* Groups

Objects

The following object types are available, listed in order of geometrical dimension:

* Point objects, of two types:

— Joint objects: These are automatically created at the corners or ends of all
other types of objects below, and they can be explicitly added to represent
supports or to capture other localized behavior.

Objects 7
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— Grounded (one-joint) support objects: Used to model special support
behavior such as isolators, dampers, gaps, multi-linear springs, and more.

* Line objects, of four types
— Frame objects: Used to model beams, columns, braces, and trusses
— Cable objects: Used to model slender cables under self weight and tension
— Tendon objects: Used to prestressing tendons within other objects

— Connecting (two-joint) link objects: Used to model special member be-
havior such as isolators, dampers, gaps, multi-linear springs, and more.
Unlike frame, cable, and tendon objects, connecting link objects can have
zero length.

* Area objects: Shell elements (plate, membrane, and full-shell) used to model
walls, floors, and other thin-walled members; as well as two-dimensional sol-
ids (plane-stress, plane-strain, and axisymmetric solids).

* Solid objects: Used to model three-dimensional solids.
As a general rule, the geometry of the object should correspond to that of the physi-

cal member. This simplifies the visualization of the model and helps with the de-
sign process.

Objects and Elements

8

If you have experience using traditional finite element programs, including earlier
versions of SAP2000, ETABS or SAFE, you are probably used to meshing physi-
cal models into smaller finite elements for analysis purposes. Object-based model-
ing largely eliminates the need for doing this.

For users who are new to finite-element modeling, the object-based concept should
seem perfectly natural.

When you run an analysis, SAP2000 automatically converts your object-based
model into an element-based model that is used for analysis. This element-based
model is called the analysis model, and it consists of traditional finite elements and
joints (nodes). Results of the analysis are reported back on the object-based model.

You have control over how the meshing is performed, such as the degree of refine-
ment, and how to handle the connections between intersecting objects. You also
have the option to manually mesh the model, resulting in a one-to-one correspon-
dence between objects and elements.

Objects and Elements
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In this manual, the term “element” will be used more often than “object”, since
what is described herein is the finite-element analysis portion of the program that
operates on the element-based analysis model. However, it should be clear that the
properties described here for elements are actually assigned in the interface to the
objects, and the conversion to analysis elements is automatic.

Groups

A group is a named collection of objects that you define. For each group, you must
provide a unique name, then select the objects that are to be part of the group. You
can include objects of any type or types in a group. Each object may be part of one
of more groups. All objects are always part of the built-in group called “ALL”.

Groups are used for many purposes in the graphical user interface, including selec-
tion, design optimization, defining section cuts, controlling output, and more. In
this manual, we are primarily interested in the use of groups for defining staged
construction. See Topic “Staged Construction” (page 79) in Chapter ‘“Nonlinear
Static Analysis” for more information.

Groups 9
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Coordinate Systems

Each structure may use many different coordinate systems to describe the location
of points and the directions of loads, displacement, internal forces, and stresses.
Understanding these different coordinate systems is crucial to being able to prop-
erly define the model and interpret the results.

Basic Topics for All Users
* Overview
* Global Coordinate System
» Upward and Horizontal Directions
* Defining Coordinate Systems

* Local Coordinate Systems

Advanced Topics
* Alternate Coordinate Systems

* Cylindrical and Spherical Coordinates
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Overview

Coordinate systems are used to locate different parts of the structural model and to
define the directions of loads, displacements, internal forces, and stresses.

All coordinate systems in the model are defined with respect to a single global coor-
dinate system. Each part of the model (joint, element, or constraint) has its own lo-
cal coordinate system. In addition, you may create alternate coordinate systems that
are used to define locations and directions.

All coordinate systems are three-dimensional, right-handed, rectangular (Carte-
sian) systems. Vector cross products are used to define the local and alternate coor-
dinate systems with respect to the global system.

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. The up-
ward direction is used to help define local coordinate systems, although local coor-
dinate systems themselves do not have an upward direction.

The locations of points in a coordinate system may be specified using rectangular
or cylindrical coordinates. Likewise, directions in a coordinate system may be
specified using rectangular, cylindrical, or spherical coordinate directions at a
point.

Global Coordinate System

12

The global coordinate system is a three-dimensional, right-handed, rectangular
coordinate system. The three axes, denoted X, Y, and Z, are mutually perpendicular
and satisfy the right-hand rule.

Locations in the global coordinate system can be specified using the variables x, y,
and z. A vector in the global coordinate system can be specified by giving the loca-
tions of two points, a pair of angles, or by specifying a coordinate direction. Coor-
dinate directions are indicated using the values £X, +Y, and +Z. For example, +X
defines a vector parallel to and directed along the positive X axis. The sign is re-
quired.

All other coordinate systems in the model are ultimately defined with respect to the
global coordinate system, either directly or indirectly. Likewise, all joint coordi-
nates are ultimately converted to global X, Y, and Z coordinates, regardless of how
they were specified.

Overview
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Upward and Horizontal Directions

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. Local
coordinate systems for joints, elements, and ground-acceleration loading are de-
fined with respect to this upward direction. Self-weight loading always acts down-
ward, in the —Z direction.

The X-Y plane is horizontal. The primary horizontal direction is +X. Angles in the
horizontal plane are measured from the positive half of the X axis, with positive an-
gles appearing counterclockwise when you are looking down at the X-Y plane.

If you prefer to work with a different upward direction, you can define an alternate
coordinate system for that purpose.

Defining Coordinate Systems

Each coordinate system to be defined must have an origin and a set of three,
mutually-perpendicular axes that satisfy the right-hand rule.

The origin is defined by simply specifying three coordinates in the global coordi-
nate system.

The axes are defined as vectors using the concepts of vector algebra. A fundamental
knowledge of the vector cross product operation is very helpful in clearly under-
standing how coordinate system axes are defined.

Vector Cross Product

A vector may be defined by two points. It has length, direction, and location in
space. For the purposes of defining coordinate axes, only the direction is important.
Hence any two vectors that are parallel and have the same sense (i.e., pointing the
same way) may be considered to be the same vector.

Any two vectors, ¥, and V), that are not parallel to each other define a plane that is
parallel to them both. The location of this plane is not important here, only its orien-
tation. The cross product of ¥, and ¥V, defines a third vector, V,, that is perpendicular
to them both, and hence normal to the plane. The cross product is written as:

Vi=VixVj

Upward and Horizontal Directions 13
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The length of V, is not important here. The side of the V-V, plane to which ¥, points
is determined by the right-hand rule: The vector V, points toward you if the acute
angle (less than 180°) from ¥ to V, appears counterclockwise.

Thus the sign of the cross product depends upon the order of the operands:

Vix Vi=—Vix V;

Defining the Three Axes Using Two Vectors

A right-handed coordinate system R-S-T can be represented by the three mutually-
perpendicular vectors V,, V,, and V, respectively, that satisfy the relationship:

Vi=Vex Vs
This coordinate system can be defined by specifying two non-parallel vectors:

* An axis reference vector, Vg, that is parallel to axis R

* A plane reference vector, Vp, thatis parallel to plane R-S, and points toward the
positive-S side of the R axis

The axes are then defined as:

Vr:Va
Vt: er Vp
Vs: VtX Vr

Note that V, can be any convenient vector parallel to the R-S plane; it does not have
to be parallel to the S axis. This is illustrated in Figure 1 (page 15).

Local Coordinate Systems

14

Each part (joint, element, or constraint) of the structural model has its own local co-
ordinate system used to define the properties, loads, and response for that part. The
axes of the local coordinate systems are denoted 1, 2, and 3. In general, the local co-
ordinate systems may vary from joint to joint, element to element, and constraint to
constraint.

There is no preferred upward direction for a local coordinate system. However, the
upward +Z direction is used to define the default joint and element local coordinate
systems with respect to the global or any alternate coordinate system.

Local Coordinate Systems
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V, is parallel to R axis
Vp is parallel to R-S plane

V,=V,
Ve=V,x Vp
Ve=Vix V,

Vp

Plane R-S
Cube is shown for

visualization purposes

Global

Figure 1
Determining an R-S-T Coordinate System from Reference Vectors Vq and Vp

The joint local 1-2-3 coordinate system is normally the same as the global X-Y-Z
coordinate system. However, you may define any arbitrary orientation for a joint
local coordinate system by specifying two reference vectors and/or three angles of
rotation.

For the Frame, Area (Shell, Plane, and Asolid), and Link/Support elements, one of
the element local axes is determined by the geometry of the individual element.
You may define the orientation of the remaining two axes by specifying a single
reference vector and/or a single angle of rotation. The exception to this is one-joint
or zero-length Link/Support elements, which require that you first specify the lo-
cal-1 (axial) axis.

The Solid element local 1-2-3 coordinate system is normally the same as the global
X-Y-Z coordinate system. However, you may define any arbitrary orientation for a
solid local coordinate system by specifying two reference vectors and/or three an-
gles of rotation.

The local coordinate system for a Body, Diaphragm, Plate, Beam, or Rod Con-
straint is normally determined automatically from the geometry or mass distribu-
tion of the constraint. Optionally, you may specify one local axis for any Dia-

Local Coordinate Systems 15



CSI Analysis Reference Manual

phragm, Plate, Beam, or Rod Constraint (but not for the Body Constraint); the re-
maining two axes are determined automatically.

The local coordinate system for an Equal Constraint may be arbitrarily specified;
by default it is the global coordinate system. The Local Constraint does not have its
own local coordinate system.

For more information:

* See Topic “Local Coordinate System” (page 24) in Chapter “Joints and De-
grees of Freedom.”

* See Topic “Local Coordinate System” (page 85) in Chapter “The Frame Ele-
ment.”

» See Topic “Local Coordinate System” (page 154) in Chapter “The Shell Ele-
ment.”

* See Topic “Local Coordinate System” (page 179) in Chapter “The Plane Ele-
ment.”

* See Topic “Local Coordinate System” (page 189) in Chapter “The Asolid Ele-
ment.”

* See Topic “Local Coordinate System” (page 202) in Chapter “The Solid Ele-
ment.”

e See Topic “Local Coordinate System” (page 215) in Chapter “The Link/Sup-
port Element—Basic.”

* See Chapter “Constraints and Welds (page 49).”

Alternate Coordinate Systems

16

You may define alternate coordinate systems that can be used for locating the
joints; for defining local coordinate systems for joints, elements, and constraints;
and as a reference for defining other properties and loads. The axes of the alternate
coordinate systems are denoted X, Y, and Z.

The global coordinate system and all alternate systems are called fixed coordinate
systems, since they apply to the whole structural model, not just to individual parts
as do the local coordinate systems. Each fixed coordinate system may be used in
rectangular, cylindrical or spherical form.

Associated with each fixed coordinate system is a grid system used to locate objects
in the graphical user interface. Grids have no meaning in the analysis model.

Alternate Coordinate Systems
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Each alternate coordinate system is defined by specifying the location of the origin
and the orientation of the axes with respect to the global coordinate system. You
need:

* The global X, Y, and Z coordinates of the new origin

* The three angles (in degrees) used to rotate from the global coordinate system
to the new system

Cylindrical and Spherical Coordinates

The location of points in the global or an alternate coordinate system may be speci-
fied using polar coordinates instead of rectangular X-Y-Z coordinates. Polar coor-
dinates include cylindrical CR-CA-CZ coordinates and spherical SB-SA-SR coor-
dinates. See Figure 2 (page 19) for the definition of the polar coordinate systems.
Polar coordinate systems are always defined with respect to a rectangular X-Y-Z
system.

The coordinates CR, CZ, and SR are lineal and are specified in length units. The co-
ordinates CA, SB, and SA are angular and are specified in degrees.

Locations are specified in cylindrical coordinates using the variables cr, ca, and cz.
These are related to the rectangular coordinates as:

cr=ﬂx2 -|—y2

-1
ca =tan

- |

CZ=17

Locations are specified in spherical coordinates using the variables sb, sa, and sr.
These are related to the rectangular coordinates as:

2+y2

z

sb=tan’!

-1
sa = tan

sr=\/x2 +y2 +z2

|

Cylindrical and Spherical Coordinates 17
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18

A vector in a fixed coordinate system can be specified by giving the locations of
two points or by specifying a coordinate direction at a single point P. Coordinate
directions are tangential to the coordinate curves at point P. A positive coordinate
direction indicates the direction of increasing coordinate value at that point.

Cylindrical coordinate directions are indicated using the values *CR, =CA, and
+CZ. Spherical coordinate directions are indicated using the values £SB, £SA, and
+SR. The sign is required. See Figure 2 (page 19).

The cylindrical and spherical coordinate directions are not constant but vary with
angular position. The coordinate directions do not change with the lineal coordi-
nates. For example, +SR defines a vector directed from the origin to point P.

Note that the coordinates Z and CZ are identical, as are the corresponding coordi-
nate directions. Similarly, the coordinates CA and SA and their corresponding co-
ordinate directions are identical.

Cylindrical and Spherical Coordinates
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+CZ
Z,CZ A

+CA

+CR

Cylindrical

Coordinates ¢z

Cubes are shown for
visualization purposes

Spherical
Coordinates

Figure 2
Cylindrical and Spherical Coordinates and Coordinate Directions

Cylindrical and Spherical Coordinates

19



CSI Analysis Reference Manual

20 Cylindrical and Spherical Coordinates



Chapter IV

Joints and Degrees of Freedom

The joints play a fundamental role in the analysis of any structure. Joints are the
points of connection between the elements, and they are the primary locations in
the structure at which the displacements are known or are to be determined. The
displacement components (translations and rotations) at the joints are called the de-
grees of freedom.

This Chapter describes joint properties, degrees of freedom, loads, and output. Ad-
ditional information about joints and degrees of freedom is given in Chapter “Con-
straints and Welds” (page 49).

Basic Topics for All Users
* Overview
* Modeling Considerations
* Local Coordinate System
* Degrees of Freedom
* Restraint Supports
* Spring Supports
» Joint Reactions

» Base Reactions

2|
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Masses

Force Load

Degree of Freedom Output
Assembled Joint Mass Output
Displacement Output

Force Output

Advanced Topics

Advanced Local Coordinate System
Nonlinear Supports

Distributed Supports

Ground Displacement Load
Generalized Displacements

Element Joint Force Output

Overview

22

Joints, also known as nodal points or nodes, are a fundamental part of every struc-
tural model. Joints perform a variety of functions:

All elements are connected to the structure (and hence to each other) at the
joints
The structure is supported at the joints using Restraints and/or Springs

Rigid-body behavior and symmetry conditions can be specified using Con-
straints that apply to the joints

Concentrated loads may be applied at the joints

Lumped (concentrated) masses and rotational inertia may be placed at the
joints

All loads and masses applied to the elements are actually transferred to the
joints

Joints are the primary locations in the structure at which the displacements are
known (the supports) or are to be determined

All of these functions are discussed in this Chapter except for the Constraints,
which are described in Chapter “Constraints and Welds” (page 49).

Overview
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Joints in the analysis model correspond to point objects in the structural-object
model. Using the SAP2000, ETABS or SAFE graphical user interface, joints
(points) are automatically created at the ends of each Line object and at the corners
of each Area and Solid object. Joints may also be defined independently of any ob-
ject.

Automatic meshing of objects will create additional joints corresponding to any el-
ements that are created.

Joints may themselves be considered as elements. Each joint may have its own lo-
cal coordinate system for defining the degrees of freedom, restraints, joint proper-
ties, and loads; and for interpreting joint output. In most cases, however, the global
X-Y-Z coordinate system is used as the local coordinate system for all joints in the
model. Joints act independently of each other unless connected by other elements.

There are six displacement degrees of freedom at every joint — three translations
and three rotations. These displacement components are aligned along the local co-
ordinate system of each joint.

Joints may be loaded directly by concentrated loads or indirectly by ground dis-
placements acting though Restraints or spring supports.

Displacements (translations and rotations) are produced at every joint. Reaction
forces moments acting on each support joint are also produced.

For more information, see Chapter “Constraints and Welds” (page 49).

Modeling Considerations

The location of the joints and elements is critical in determining the accuracy of the
structural model. Some of the factors that you need to consider when defining the
elements, and hence the joints, for the structure are:

* The number of elements should be sufficient to describe the geometry of the
structure. For straight lines and edges, one element is adequate. For curves and
curved surfaces, one element should be used for every arc of 15° or less.

* Element boundaries, and hence joints, should be located at points, lines, and
surfaces of discontinuity:

— Structural boundaries, e.g., corners and edges
— Changes in material properties

— Changes in thickness and other geometric properties

Modeling Considerations 23



CSI Analysis Reference Manual

— Support points (Restraints and Springs)

— Points of application of concentrated loads, except that Frame elements
may have concentrated loads applied within their spans

* In regions having large stress gradients, i.e., where the stresses are changing
rapidly, an Area- or Solid-element mesh should be refined using small ele-
ments and closely-spaced joints. This may require changing the mesh after one
or more preliminary analyses.

* More that one element should be used to model the length of any span for
which dynamic behavior is important. This is required because the mass is al-
ways lumped at the joints, even if it is contributed by the elements.

Local Coordinate System

Each joint has its own joint local coordinate system used to define the degrees of
freedom, Restraints, properties, and loads at the joint; and for interpreting joint out-
put. The axes of the joint local coordinate system are denoted 1, 2, and 3. By default
these axes are identical to the global X, Y, and Z axes, respectively. Both systems
are right-handed coordinate systems.

The default local coordinate system is adequate for most situations. However, for
certain modeling purposes it may be useful to use different local coordinate sys-
tems at some or all of the joints. This is described in the next topic.

For more information:

* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Advanced Local Coordinate System” (page 24) in this Chapter.

Advanced Local Coordinate System

24

By default, the joint local 1-2-3 coordinate system is identical to the global X-Y-Z
coordinate system, as described in the previous topic. However, it may be neces-
sary to use different local coordinate systems at some or all joints in the following
cases:

» Skewed Restraints (supports) are present

» Constraints are used to impose rotational symmetry

Local Coordinate System



Chapter IV Joints and Degrees of Freedom

» Constraints are used to impose symmetry about a plane that is not parallel to a
global coordinate plane

* The principal axes for the joint mass (translational or rotational) are not aligned
with the global axes

+ Joint displacement and force output is desired in another coordinate system

Joint local coordinate systems need only be defined for the affected joints. The
global system is used for all joints for which no local coordinate system is explicitly
specified.

A variety of methods are available to define a joint local coordinate system. These
may be used separately or together. Local coordinate axes may be defined to be par-
allel to arbitrary coordinate directions in an arbitrary coordinate system or to vec-
tors between pairs of joints. In addition, the joint local coordinate system may be
specified by a set of three joint coordinate angles. These methods are described in
the subtopics that follow.

For more information:

* See Chapter “Coordinate Systems” (page 11).
» See Topic “Local Coordinate System” (page 24) in this Chapter.

Reference Vectors

To define a joint local coordinate system you must specify two reference vectors
that are parallel to one of the joint local coordinate planes. The axis reference vec-
tor, V,, must be parallel to one of the local axes (/ = 1, 2, or 3) in this plane and

have a positive projection upon that axis. The plane reference vector, V,, must

have a positive projection upon the other local axis (j = 1, 2, or 3, but / #j) in this
plane, but need not be parallel to that axis. Having a positive projection means that
the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the local axis.

Together, the two reference vectors define a local axis, /, and a local plane, i-j.
From this, the program can determine the third local axis, &, using vector algebra.

For example, you could choose the axis reference vector parallel to local axis 1 and
the plane reference vector parallel to the local 1-2 plane (/= 1,7 =2). Alternatively,
you could choose the axis reference vector parallel to local axis 3 and the plane ref-
erence vector parallel to the local 3-2 plane (/ =3, j =2). You may choose the plane
that is most convenient to define using the parameter local, which may take on the
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values 12, 13, 21, 23, 31, or 32. The two digits correspond to / and j, respectively.
The default is value is 31.

Defining the Axis Reference Vector

To define the axis reference vector for joint j, you must first specify or use the de-
fault values for:
* A coordinate direction axdir (the default is +Z)

» A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating
joint j itself). If both are zero, this option is not used.

For each joint, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvecb. If this vector is of finite
length, it is used as the reference vector V,,

2. Otherwise, the coordinate direction axdir is evaluated at joint j in fixed coordi-
nate system csys, and is used as the reference vector V,,

Defining the Plane Reference Vector

To define the plane reference vector for joint j, you must first specify or use the de-
fault values for:
* A primary coordinate direction pldirp (the default is +X)

» A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating joint
j itself). If both are zero, this option is not used.
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For each joint, the plane reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis /, it is used as the reference vector V,

2. Otherwise, the primary coordinate direction pldirp is evaluated at joint j in
fixed coordinate system csys. If this direction is not parallel to local axis /, it is
used as the reference vector V,

3. Otherwise, the secondary coordinate direction pldirs is evaluated at joint j in
fixed coordinate system csys. If this direction is not parallel to local axis /, it is
used as the reference vector V.,

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis / if the sine of the angle between
them is less than 107,

Determining the Local Axes from the Reference Vectors

The program uses vector cross products to determine the local axes from the refer-
ence vectors. The three axes are represented by the three unit vectors V;, V, and V3,
respectively. The vectors satisfy the cross-product relationship:

Vl =V2 ><V3

The local axis V; is given by the vector V, after it has been normalized to unit
length.

The remaining two axes, VJ- and V., are defined as follows:

» [If/and; permute in a positive sense, i.e., local = 12, 23, or 31, then:
Vi =V;xV, and
Vj =V, xV;

» [f/and; permute in a negative sense, i.e., local =21, 32, or 13, then:
Vi =V, xV; and
V, =V, xV,

An example showing the determination of the joint local coordinate system using
reference vectors is given in Figure 3 (page 28).
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V, is parallel to axveca-axvecb
Vp is parallel to plveca-plvecb

V§= V%
V2=V3xV, Allvectors normalized to unit length.
V1= VbX V3

Vs v,

plveca Plane 3-1

axveca

Global
axvecb

Figure 3
Example of the Determination of the Joint Local Coordinate System
Using Reference Vectors for local=31

Joint Coordinate Angles

The joint local coordinate axes determined from the reference vectors may be fur-
ther modified by the use of three joint coordinate angles, denoted a, b, and ¢. In
the case where the default reference vectors are used, the joint coordinate angles de-
fine the orientation of the joint local coordinate system with respect to the global
axes.

The joint coordinate angles specify rotations of the local coordinate system about
its own current axes. The resulting orientation of the joint local coordinate system
is obtained according to the following procedure:

1. The local system is first rotated about its +3 axis by angle a
2. The local system is next rotated about its resulting +2 axis by angle b
3. The local system is lastly rotated about its resulting +1 axis by angle ¢

The order in which the rotations are performed is important. The use of coordinate
angles to orient the joint local coordinate system with respect to the global system is
shown in Figure 4 (page 29).
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Step 1: Rotation about
local 3 axis by angle a

Step 2: Rotation about new

local 2 axis by angle b

Step 3: Rotation about new

local 1 axis by angle ¢

AZ3

S

ud

Figure 4

Use of Joint Coordinate Angles to Orient the Joint Local Coordinate System
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The deflection of the structural model is governed by the displacements of the
joints. Every joint of the structural model may have up to six displacement compo-
nents:

» The joint may translate along its three local axes. These translations are de-
noted Ul, U2, and U3.

* The joint may rotate about its three local axes. These rotations are denoted R1,
R2, and R3.

These six displacement components are known as the degrees of freedom of the
joint. In the usual case where the joint local coordinate system is parallel to the
global system, the degrees of freedom may also be identified as UX, UY, UZ, RX,
RY and RZ, according to which global axes are parallel to which local axes. The
joint local degrees of freedom are illustrated in Figure 5 (page 31).

In addition to the regular joints that you explicitly define as part of your structural
model, the program automatically creates master joints that govern the behavior of
any Constraints and Welds that you may have defined. Each master joint has the
same six degrees of freedom as do the regular joints. See Chapter “Constraints and
Welds” (page 49) for more information.

Each degree of freedom in the structural model must be one of the following types:

* Active — the displacement is computed during the analysis

* Restrained — the displacement is specified, and the corresponding reaction is
computed during the analysis

* Constrained — the displacement is determined from the displacements at other
degrees of freedom

* Null — the displacement does not affect the structure and is ignored by the
analysis

» Unavailable — the displacement has been explicitly excluded from the analy-
sis

These different types of degrees of freedom are described in the following subtop-
ics.

Degrees of Freedom
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u3

\\(R1

U1 u2

Figure 5
The Six Displacement Degrees of Freedom in the Joint Local Coordinate System

Available and Unavailable Degrees of Freedom

Youmay explicitly specify the global degrees of freedom that are available to every
joint in the structural model. By default, all six degrees of freedom are available to
every joint. This default should generally be used for all three-dimensional struc-
tures.

For certain planar structures, however, you may wish to restrict the available de-
grees of freedom. For example, in the X-Y plane: a planar truss needs only UX and
UY; a planar frame needs only UX, UY, and RZ; and a planar grid or flat plate
needs only UZ, RX, and RY.

The degrees of freedom that are not specified as being available are called unavail-
able degrees of freedom. Any stiffness, loads, mass, Restraints, or Constraints that
are applied to the unavailable degrees of freedom are ignored by the analysis.

The available degrees of freedom are always referred to the global coordinate sys-
tem, and they are the same for every joint in the model. If any joint local coordinate
systems are used, they must not couple available degrees of freedom with the un-
available degrees of freedom at any joint. For example, if the available degrees of
freedom are UX, UY, and RZ, then all joint local coordinate systems must have one
local axis parallel to the global Z axis.
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Restrained Degrees of Freedom

If the displacement of a joint along any one of its available degrees of freedom is
known, such as at a support point, that degree of freedom is restrained. The known
value of the displacement may be zero or non-zero, and may be different in differ-
ent Load Patterns. The force along the restrained degree of freedom that is required
to impose the specified restraint displacement is called the reaction, and is deter-
mined by the analysis.

Unavailable degrees of freedom are essentially restrained. However, they are ex-
cluded from the analysis and no reactions are computed, even if they are non-zero.

See Topic “Restraint Supports” (page 34) in this Chapter for more information.

Constrained Degrees of Freedom

Any joint that is part of a Constraint or Weld may have one or more of its available
degrees of freedom constrained. The program automatically creates a master joint
to govern the behavior of each Constraint, and a master joint to govern the behavior
of each set of joints that are connected together by a Weld. The displacement of a
constrained degree of freedom is then computed as a linear combination of the dis-
placements along the degrees of freedom at the corresponding master joint.

If a constrained degree of freedom is also restrained, the restraint will be applied to
the constraint as a whole.

See Chapter “Constraints and Welds” (page 49) for more information.

Active Degrees of Freedom

All available degrees of freedom that are neither constrained nor restrained must be
either active or null. The program will automatically determine the active degrees
of freedom as follows:

» Ifany load or stiffness is applied along any translational degree of freedom at a
joint, then all available translational degrees of freedom at that joint are made
active unless they are constrained or restrained.

 If any load or stiffness is applied along any rotational degree of freedom at a
joint, then all available rotational degrees of freedom at that joint are made ac-
tive unless they are constrained or restrained.

» All degrees of freedom at a master joint that govern constrained degrees of
freedom are made active.

Degrees of Freedom
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A joint that is connected to any element or to a translational spring will have all of
its translational degrees of freedom activated. A joint that is connected to a Frame,
Shell, or Link/Support element, or to any rotational spring will have all of its rota-
tional degrees of freedom activated. An exception is a Frame element with only
truss-type stiffness, which will not activate rotational degrees of freedom.

Every active degree of freedom has an associated equation to be solved. If there are
N active degrees of freedom in the structure, there are N equations in the system,
and the structural stiffness matrix is said to be of order N. The amount of computa-
tional effort required to perform the analysis increases with .

The load acting along each active degree of freedom is known (it may be zero). The
corresponding displacement will be determined by the analysis.

If there are active degrees of freedom in the system at which the stiffness is known
to be zero, such as the out-of-plane translation in a planar-frame, these must either
be restrained or made unavailable. Otherwise, the structure is unstable and the solu-
tion of the static equations will fail.

For more information:

* See Topic “Springs” (page 34) in this Chapter.

» See Topic “Degrees of Freedom” (page 84) in Chapter “The Frame Element.”

* See Topic “Degrees of Freedom” (page 140) in Chapter “The Cable Element.”
* See Topic “Degrees of Freedom” (page 151) in Chapter “The Shell Element.”

» See Topic “Degrees of Freedom” (page 179) in Chapter “The Plane Element.”
* See Topic “Degrees of Freedom” (page 189) in Chapter “The Asolid Element.”
* See Topic “Degrees of Freedom” (page 201) in Chapter “The Solid Element.”

* See Topic “Degrees of Freedom” (page 215) in Chapter “The Link/Support El-
ement—DBasic.”

» See Topic “Degrees of Freedom” (page 264) in Chapter “The Tendon Object.”

Null Degrees of Freedom

The available degrees of freedom that are not restrained, constrained, or active, are
called the null degrees of freedom. Because they have no load or stiffness, their dis-
placements and reactions are zero, and they have no effect on the rest of the struc-
ture. The program automatically excludes them from the analysis.
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Joints that have no elements connected to them typically have all six degrees of
freedom null. Joints that have only solid-type elements (Plane, Asolid, and Solid)
connected to them typically have the three rotational degrees of freedom null.

Restraint Supports

If the displacement of a joint along any of its available degrees of freedom has a
known value, either zero (e.g., at support points) or non-zero (e.g., due to support
settlement), a Restraint must be applied to that degree of freedom. The known
value of the displacement may differ from one Load Pattern to the next, but the de-
gree of freedom is restrained for all Load Patterns. In other words, it is not possible
to have the displacement known in one Load Pattern and unknown (unrestrained) in
another Load Pattern.

Restraints should also be applied to any available degrees of freedom in the system
at which the stiffness is known to be zero, such as the out-of-plane translation and
in-plane rotations of a planar-frame. Otherwise, the structure is unstable and the so-
lution of the static equations will complain.

Restraints are always applied to the joint local degrees of freedom U1, U2, U3, R1,
R2, and R3. Examples of Restraints are shown in Figure 6 (page 35).

In general, you should not apply restraints to constrained degrees of freedom. How-
ever, if you do, the program will attempt to automatically rewrite the constraint
equations to accommodate the restraint. It is usually better to use spring supports at
constrained degrees of freedom.

If a restraint is applied to an unavailable degree of freedom, it is ignored and no re-
action is computed.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Topic “Restraint Displacement Load” (page 42) in this Chapter.

Spring Supports

34

Any of the six degrees of freedom at any of the joints in the structure can have trans-
lational or rotational spring support conditions. These springs elastically connect
the joint to the ground. Spring supports along restrained degrees of freedom do not
contribute to the stiffness of the structure.
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Figure 6
Examples of Restraints
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Springs may be specified that couple the degrees of freedom at a joint. The spring
forces that act on a joint are related to the displacements of that joint by a 6x6 sym-
metric matrix of spring stiffness coefficients. These forces tend to oppose the dis-
placements.

Spring stiffness coefficients may be specified in the global coordinate system, an
Alternate Coordinate System, or the joint local coordinate system.

In a joint local coordinate system, the spring forces and moments F, F,, F, M, M,
and M, at a joint are given by:

F [ul ulu2 ulu3 wlrl wlr2 ulrd](y (Eqn. 1)
F, 2 w2uld u2rl w2r2 w2rd||u,
Fy u3  udrl u3r2 udrd||u;
M, T rl  rir2 rir3| | n
M, sym. r2 r2r3||n
M, L r3 |(n

where u, u,, u, r, r,and r, are the joint displacements and rotations, and the terms
ul, ulu2, u2, ... are the specified spring stiffness coefficients.

In any fixed coordinate system, the spring forces and moments ¥, F,, F, M, M and
M_ at a joint are given by:

F, [ux uxuy uxuz uxrx uxry uxrz||u,
F, uy uyuz uyrx uyry uyrz u,
F.o| ~ Uz  uzZrx uzry uzrz||u,
M, rX IXry TIrXrz||r,
M, sym. ry ryrz||r,
M, i rz | |7,

where u, u, u, r, r, and r_are the joint displacements and rotations, and the terms
ux, uxuy, uy, ... are the specified spring stiffness coefficients.

For springs that do not couple the degrees of freedom in a particular coordinate sys-
tem, only the six diagonal terms need to be specified since the off-diagonal terms
are all zero. When coupling is present, all 21 coefficients in the upper triangle of the
matrix must be given; the other 15 terms are then known by symmetry.

If the springs at a joint are specified in more than one coordinate system, standard
coordinate transformation techniques are used to convert the 6x6 spring stiffness
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matrices to the joint local coordinate system, and the resulting stiffness matrices are
then added together on a term-by-term basis. The final spring stiffness matrix at
each joint in the structure should have a determinant that is zero or positive. Other-
wise the springs may cause the structure to be unstable.

The displacement of the grounded end of the spring may be specified to be zero or
non-zero (e.g., due to support settlement). This spring displacement may vary
from one Load Pattern to the next.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Topic “Spring Displacement Load” (page 43) in this Chapter.

Nonlinear Supports

In certain versions of the program, you may define nonlinear supports at the joints
using the Link/Support Element. Nonlinear support conditions that can be modeled
include gaps (compression only), multi-linear elastic or plastic springs, viscous
dampers, base isolators, and more.

This Link/Support element can be used in two ways:

* You can add (draw) a one-joint element, in which case it is considered a Sup-
port Element, and it connects the joint directly to the ground.

* The element can also be drawn with two joints, in which case it is considered a
Link Element. You can use a Link Element as a support if you connect one end
to the structure, and restrain the other end.

Both methods have the same effect, but using the two-joint Link Element allows
you to apply Ground Displacement load at the restrained end, which you cannot do
with the one-joint Support Element.

Multiple Link/Support elements can be connected to a single joint, in which case
they act in parallel. Each Link/Support element has its own element local coordi-
nate system that is independent of the joint local coordinate system.

Restraints and springs may also exist at the joint. Of course, any degree of freedom
that is restrained will prevent deformation in the Link/Support element in that di-
rection.

See Chapters “The Link/Support Element — Basic” (page 213) and “The Link/Sup-
port Element — Advanced” (page 235) for more information.
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Distributed Supports

Y ou may assign distributed spring supports along the length of a Frame element, or
over the any face of an area object (Shell, Plane, Asolid) or Solid element. These
springs may be linear, multi-linear elastic, or multi-linear plastic. These springs are
converted to equivalent one-joint Link/Support elements acting at the joints of the
element, after accounting for the tributary length or area of the element.

Because these springs act at the joints, it may be necessary to mesh the elements to
capture localized effects of such distributed supports. The best way to do this is
usually to use the automatic internal meshing options available in the graphical user
interface. This allows you to change the meshing easily, while still being able to
work with large, simpler model objects.

It is not possible to assign distributed restraint supports directly. However, when
using automatic internal meshing, you may optionally specify that the meshed ele-
ments use the same restraint conditions that are present on the parent object.

For more information, see Topics “Restraint Supports” (page 34), “Spring Sup-
port” (page 34), “Nonlinear Supports” (page 37) in this Chapter, and also Chapter
“Objects and Elements” (page 7.)

Joint Reactions

The force or moment along the degree of freedom that is required to enforce any
support condition is called the reaction, and it is determined by the analysis. The
reaction includes the forces (or moments) from all supports at the joint, including
restraints, springs, and one-joint Link/Support elements. The tributary effect of any
distributed supports is included in the reaction.

If a two-joint Link/Support element is used, the reaction will be reported at the
grounded end of the element.

For more information, see Topics “Restraint Supports” (page 34), “Spring Sup-
port” (page 34), “Nonlinear Supports” (page 37), and “Distributed Supports” (page
38) in this Chapter.

Base Reactions

Base Reactions are the resultant force and moment of all the joint reactions acting
on the structure, computed at the global origin or at some other location that you
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choose. This produces three force components and three moment components. The
base forces are not affected by the chosen location, but the base moments are. For
seismic analysis the horizontal forces are called the base shears, and the moments
about the horizontal axes are called the overturning moments.

Base reactions are available for all Load Cases and Combos except for Mov-
ing-Load Load Cases. The centroids (center of action) are also available for each
force component of the base reactions. Note that these are the centroids of the reac-
tions, which may not always be the same as the centroids of the applied load caus-
ing the reaction.

For more information, see Topic “Joint Reactions” (page 38) in this Chapter.

Masses

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
Normally, the mass is obtained from the elements using the mass density of the ma-
terial and the volume of the element. This automatically produces lumped (uncou-
pled) masses at the joints. The element mass values are equal for each of the three
translational degrees of freedom. No mass moments of inertia are produced for the
rotational degrees of freedom. This approach is adequate for most analyses.

It is often necessary to place additional concentrated masses and/or mass moments
of inertia at the joints. These can be applied to any of the six degrees of freedom at
any of the joints in the structure.

For computational efficiency and solution accuracy, SAP2000 always uses lumped
masses. This means that there is no mass coupling between degrees of freedom at a
joint or between different joints. These uncoupled masses are always referred to the
local coordinate system of each joint. Mass values along restrained degrees of free-
dom are ignored.

Inertial forces acting on the joints are related to the accelerations at the joints by a
6x6 matrix of mass values. These forces tend to oppose the accelerations. In a joint
local coordinate system, the inertia forces and moments F, F,, F', M,, M, and M, at
a joint are given by:
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2 ul 0 0 0 0|/
F, w 0 0 0 iy
F u3 0 0 0|y
M [ 1 0 0/]#
M, sym. r2 0||#
M, L r3| |74

where iiy, iy, i3, 7], 7, and 75 are the translational and rotational accelerations at the
joint, and the terms ul, u2, u3, rl, r2, and r3 are the specified mass values.

Uncoupled joint masses may instead be specified in the global coordinate system,
in which case they are transformed to the joint local coordinate system. Coupling
terms will be generated during this transformation in the following situation:

* The joint local coordinate system directions are not parallel to global coordi-
nate directions, and

* The three translational masses or the three rotational mass moments of inertia
are not equal at a joint.

These coupling terms will be discarded by the program, resulting in some loss of
accuracy. For this reason, it is recommended that you choose joint local coordinate
systems that are aligned with the principal directions of translational or rotational
mass at a joint, and then specify mass values in these joint local coordinates.

Mass values must be given in consistent mass units (//g) and mass moments of in-
ertia must be in WL /g units. Here W is weight, L is length, and g is the acceleration
due to gravity. The net mass values at each joint in the structure should be zero or
positive.

See Figure 7 (page 41) for mass moment of inertia formulations for various planar
configurations.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Static and Dynamic Analysis” (page 289).
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Shape in
plan

Mass Moment of Inertia about vertical axis
(normal to paper) through center of mass

Formula

N

Rectangular diaphragm:
Uniformly distributed mass per unit area

MMIgy = M(b%+d?)

d Total mass of diaphragm = M (or w/g) 12
c.m. —
Y
c.m. . Trigngular diaphragm: . Use general
Uniformly distributed mass per unit area diaphragm formula
X X Total mass of diaphragm = M (or w/g)

Y

N
c.m. vy

Circular diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)

Md?

MMIigm =

c.m.

General diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)
Area of diaphragm = A
Moment of inertia of area about X-X = Iy
Moment of inertia of area about Y-Y = Iy

MMicm = M(I)/SIY)

Y
\
\

Y

[
y

e

c.m.

Line mass:
Uniformly distributed mass per unit length
Total mass of line = M (or w/g)

MMigm = M

2,

c.m.

Axis transformation for a mass:
If mass is a point mass, MMIg =0

MMl = MMIg + MD?

Figure 7

Formulae for Mass Moments of Inertia
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Force Load

The Force Load is used to apply concentrated forces and moments at the joints.
Values may be specified in a fixed coordinate system (global or alternate coordi-
nates) or the joint local coordinate system. All forces and moments at a joint are
transformed to the joint local coordinate system and added together. The specified
values are shown in Figure 8 (page 43).

Forces and moments applied along restrained degrees of freedom add to the corre-
sponding reaction, but do not otherwise affect the structure.

For more information:

» See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Load Patterns” (page 273).

Ground Displacement Load

The Ground Displacement Load is used to apply specified displacements (transla-
tions and rotations) at the grounded end of joint restraints and spring supports. Dis-
placements may be specified in a fixed coordinate system (global or alternate coor-
dinates) or the joint local coordinate system. The specified values are shown in
Figure 8 (page 43). All displacements at a joint are transformed to the joint local co-
ordinate system and added together.

Restraints may be considered as rigid connections between the joint degrees of
freedom and the ground. Springs may be considered as flexible connections be-
tween the joint degrees of freedom and the ground.

Ground displacements do not act on one-joint Link/Support Elements. To apply
ground displacements through a nonlinear support, use a two-joint Link/Support
element, restrain one end, and apply ground displacement to the restrained end.

It is very important to understand that ground displacement load applies to the
ground, and does not affect the structure unless the structure is supported by re-
straints or springs in the direction of loading!

Restraint Displacements

If a particular joint degree of freedom is restrained, the displacement of the joint is
equal to the ground displacement along that local degree of freedom. This applies
regardless of whether or not springs are present.
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u3
Joint Local Coordinates

Global Coordinates
Global
Origin

Figure 8
Specified Values for Force Load, Restraint Displacement Load,
and Spring Displacement Load

Components of ground displacement that are not along restrained degrees of free-
dom do not load the structure (except possibly through springs). An example of this
is illustrated in Figure 9 (page 44).

The ground displacement, and hence the joint displacement, may vary from one
Load Pattern to the next. If no ground displacement load is specified for a restrained
degree of freedom, the joint displacement is zero for that Load Pattern.

Spring Displacements

The ground displacements at a joint are multiplied by the spring stiffness coeffi-
cients to obtain effective forces and moments that are applied to the joint. Spring
displacements applied in a direction with no spring stiffness result in zero applied
load. The ground displacement, and hence the applied forces and moments, may
vary from one Load Pattern to the next.

In ajoint local coordinate system, the applied forces and moments F, F,, I, M, M,
and M, at a joint due to ground displacements are given by:
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i i

UZ =-1.000

Figure 9

U3 =-0.866

The vertical ground settlement, UZ = -1.000,
is specified as the restraint displacement.

z
The actual restraint displacement that is
GLOBAL imposed on the structure is U3 = -0.866.
X 3 The unrestrained displacement, U1, will be
1 determined by the analysis.

Example of Restraint Displacement Not Aligned with Local Degrees of Freedom

F [ul 0 0 0 0][ug
F w 0 0 0 uy
F; ud 0 0 0 ||ug
M [T 1 0 0|7
M, sym. r2 0|7
M, L r3 | | 7g3

(Eqn. 2)

where g1, Uy, U g3,741, 74 andr,s are the ground displacements and rotations, and
the terms ul, u2, u3, r1, r2, and r3 are the specified spring stiffness coefficients.

The net spring forces and moments acting on the joint are the sum of the forces and
moments given in Equations (1) and (2); note that these are of opposite sign. At a
restrained degree of freedom, the joint displacement is equal to the ground dis-

placement, and hence the net spring force is zero.

For more information:

* See Topic “Restraints and Reactions” (page 34) in this Chapter.

* See Topic “Springs” (page 34) in this Chapter.
* See Chapter “Load Patterns” (page 273).
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Generalized Displacements

A generalized displacement is a named displacement measure that you define. It is
simply a linear combination of displacement degrees of freedom from one or more
joints.

For example, you could define a generalized displacement that is the difference of
the UX displacements at two joints on different stories of a building and name it
“DRIFTX”. You could define another generalized displacement that is the sum of
three rotations about the Z axis, each scaled by 1/3, and name it “AVGRZ.”

Generalized displacements are primarily used for output purposes, except that you
can also use a generalized displacement to monitor a nonlinear static analysis.

To define a generalized displacement, specify the following:

* A unique name

* The type of displacement measure

* A list of the joint degrees of freedom and their corresponding scale factors that
will be summed to created the generalized displacement

The type of displacement measure can be one of the following:

» Translational: The generalized displacement scales (with change of units) as
length. Coefficients of contributing joint translations are unitless. Coefficients
of contributing joint rotations scale as length.

» Rotational: The generalized displacement is unitless (radians). Coefficients of
joint translations scale as inverse length. Coefficients of joint rotations are
unitless.

Be sure to choose your scale factors for each contributing component to account for
the type of generalized displacement being defined.

Degree of Freedom Output

A table of the types of degrees of freedom present at every joint in the model is
printed in the analysis output (.OUT) file under the heading:

DISPLACEMENT DEGREES OF FREEDOM

The degrees of freedom are listed for all of the regular joints, as well as for the mas-
ter joints created automatically by the program. For Constraints, the master joints
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are identified by the labels of their corresponding Constraints. For Welds, the mas-
ter joint for each set of joints that are welded together is identified by the label of
one of the welded joints. Joints are printed in alpha-numeric order of the labels.

The type of each of the six degrees of freedom at a joint is identified by the follow-
ing symbols:

(2)  Active degree of freedom

(=)  Restrained degree of freedom
(+)  Constrained degree of freedom
()

Null or unavailable degree of freedom

The degrees of freedom are always referred to the local axes of the joint. They are
identified in the output as U1, U2, U3, R1, R2, and R3 for all joints. However, if all
regular joints use the global coordinate system as the local system (the usual situa-
tion), then the degrees of freedom for the regular joints are identified as UX, UY,
UZ, RX, RY, and RZ.

The types of degrees of freedom are a property of the structure and are independent
of the Load Cases, except when staged construction is performed.

See Topic “Degrees of Freedom” (page 30) in this Chapter for more information.

Assembled Joint Mass Output

46

Y ou can request assembled joint masses as part of the analysis results. The mass at a
given joint includes the mass assigned directly to that joint as well as a portion of
the mass from each element connected to that joint. Mass at restrained degrees of
freedom is set to zero. All mass assigned to the elements is apportioned to the con-
nected joints, so that this table represents the total unrestrained mass of the struc-
ture. The masses are always referred to the local axes of the joint.

For more information:

* See Topic “Masses” (page 39) in this Chapter.
* See Chapter “Load Cases” (page 289).

Assembled Joint Mass Output
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Displacement Output

Force

You can request joint displacements as part of the analysis results on a case by case
basis. For dynamic Load Cases, you can also request velocities and accelerations.
The output is always referred to the local axes of the joint.

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Load Cases” (page 289).

Output

You can request joint support forces as part of the analysis results on a case by case
basis. These support forces are called reactions, and are the sum of all forces from
restraints, springs, or one-joint Link/Support elements at that joint. The reactions at
joints not supported will be zero.

The forces and moments are always referred to the local axes of the joint. The val-
ues reported are always the forces and moments that act on the joints. Thus a posi-
tive value of joint force or moment tends to cause a positive value of joint transla-
tion or rotation along the corresponding degree of freedom.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Load Cases” (page 289).

Element Joint Force Output

The element joint forces are concentrated forces and moments acting at the joints
of the element that represent the effect of the rest of the structure upon the element
and that cause the deformation of the element. The moments will always be zero for
the solid-type elements: Plane, Asolid, and Solid.

A positive value of force or moment tends to cause a positive value of translation or
rotation of the element along the corresponding joint degree of freedom.

Element joint forces must not be confused with internal forces and moments which,
like stresses, act within the volume of the element.

For a given element, the vector of element joint forces, f, is computed as:
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f=Ku-r

where K is the element stiffness matrix, u is the vector of element joint displace-
ments, and r is the vector of element applied loads as apportioned to the joints. The
element joint forces are always referred to the local axes of the individual joints.
They are identified in the output as F1, F2, F3, M1, M2, and M3.
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Constraints and Welds

Constraints are used to enforce certain types of rigid-body behavior, to connect to-
gether different parts of the model, and to impose certain types of symmetry condi-
tions. Welds are used to generate a set of constraints that connect together different
parts of the model.

Basic Topics for All Users

Overview

Body Constraint
Plane Definition
Diaphragm Constraint
Plate Constraint

Axis Definition

Rod Constraint

Beam Constraint
Equal Constraint
Welds

49
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Advanced Topics
e Local Constraint
¢ Automatic Master Joints

* Constraint Output

Overview

A constraint consists of a set of two or more constrained joints. The displacements
of each pair of joints in the constraint are related by constraint equations. The types
of behavior that can be enforced by constraints are:

» Rigid-body behavior, in which the constrained joints translate and rotate to-
gether as if connected by rigid links. The types of rigid behavior that can be
modeled are:

Rigid Body: fully rigid for all displacements

Rigid Diaphragm: rigid for membrane behavior in a plane

— Rigid Plate: rigid for plate bending in a plane

Rigid Rod: rigid for extension along an axis
— Rigid Beam: rigid for beam bending on an axis

» Equal-displacement behavior, in which the translations and rotations are equal
at the constrained joints

* Symmetry and anti-symmetry conditions

The use of constraints reduces the number of equations in the system to be solved
and will usually result in increased computational efficiency.

Most constraint types must be defined with respect to some fixed coordinate sys-
tem. The coordinate system may be the global coordinate system or an alternate co-
ordinate system, or it may be automatically determined from the locations of the
constrained joints. The Local Constraint does not use a fixed coordinate system, but
references each joint using its own joint local coordinate system.

Welds are used to connect together different parts of the model that were defined
separately. Each Weld consists of a set of joints that may be joined. The program
searches for joints in each Weld that share the same location in space and constrains
them to act as a single joint.
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Body Constraint

A Body Constraint causes all of its constrained joints to move together as a
three-dimensional rigid body. By default, all degrees of freedom at each connected
joint participate. However, you can select a subset of the degrees of freedom to be
constrained.

This Constraint can be used to:

* Model rigid connections, such as where several beams and/or columns frame
together

» Connect together different parts of the structural model that were defined using
separate meshes

* Connect Frame elements that are acting as eccentric stiffeners to Shell elements

Welds can be used to automatically generate Body Constraints for the purpose of
connecting coincident joints.

See Topic “Welds” (page 64) in this Chapter for more information.

Joint Connectivity
Each Body Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space.

Local Coordinate System

Each Body Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. These correspond to the X, Y, and Z axes of a fixed coordinate
system that you choose.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Body Constraint. These equations are expressed in terms of
the translations (u,, u,, and w,), the rotations (r,, r,, and r,), and the coordinates (x,,
X,, and x;), all taken in the Constraint local coordinate system:

ulj = uli +r2i Axz —r3; Ax2

uj = u2i + r3i Axi —r1i Ax3

Body Constraint 51



CSI Analysis Reference Manual

where Ax, = x,, —x

u3j = u3i + rii Axa —r2i Axi

rii=rij
i =12
r3i=13j

w A, =x,—x,, and Ax;=x, —x,.

If you omit any particular degree of freedom, the corresponding constraint equation
is not enforced. If you omit a rotational degree of freedom, the corresponding terms
are removed from the equations for the translational degrees of freedom.

Plane Definition

52

The constraint equations for each Diaphragm or Plate Constraint are written with
respect to a particular plane. The location of the plane is not important, only its ori-
entation.

By default, the plane is determined automatically by the program from the spatial
distribution of the constrained joints as follows:

The centroid of the constrained joints is determined

The second moments of the locations of all of the constrained joints about the
centroid are determined

The principal values and directions of these second moments are found

The direction of the smallest principal second moment is taken as the normal to
the constraint plane; if all constrained joints lie in a unique plane, this smallest
principal moment will be zero

If no unique direction can be found, a horizontal (X-Y) plane is assumed in co-
ordinate system csys; this situation can occur if the joints are coincident or col-
linear, or if the spatial distribution is more nearly three-dimensional than pla-
nar.

You may override automatic plane selection by specifying the following:

csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

axis: The axis (X, Y, or Z) normal to the plane of the constraint, taken in coor-
dinate system csys.

Plane Definition
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This may be useful, for example, to specify a horizontal plane for a floor with a
small step in it.

Diaphragm Constraint

A Diaphragm Constraint causes all of its constrained joints to move together as a
planar diaphragm that is rigid against membrane deformation. Effectively, all con-
strained joints are connected to each other by links that are rigid in the plane, but do
not affect out-of-plane (plate) deformation.

This Constraint can be used to:

* Model concrete floors (or concrete-filled decks) in building structures, which
typically have very high in-plane stiffness

* Model diaphragms in bridge superstructures

The use of the Diaphragm Constraint for building structures eliminates the numeri-
cal-accuracy problems created when the large in-plane stiffness of a floor dia-
phragm is modeled with membrane elements. It is also very useful in the lateral
(horizontal) dynamic analysis of buildings, as it results in a significant reduction in
the size of the eigenvalue problem to be solved. See Figure 10 (page 54) for an illus-
tration of a floor diaphragm.

Joint Connectivity

Each Diaphragm Constraint connects a set of two or more joints together. The
joints may have any arbitrary location in space, but for best results all joints should
lie in the plane of the constraint. Otherwise, bending moments may be generated
that are restrained by the Constraint, which unrealistically stiffens the structure. If
this happens, the constraint forces reported in the analysis results may not be in
equilibrium.

Local Coordinate System

Each Diaphragm Constraint has its own local coordinate system, the axes of which
are denoted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint.
The program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The
actual orientation of the planar axes is not important since only the normal direction
affects the constraint equations. For more information, see Topic “Plane Defini-
tion” (page 52) in this Chapter.
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Rigid Floor Slab

Constrained
# Joint
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Joint
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Master Joint
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Figure 10
Use of the Diaphragm Constraint to Model a Rigid Floor Slab

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts 7 and j) in a Diaphragm Constraint. These equations are expressed in
terms of in-plane translations (i, and u,), the rotation (,) about the normal, and the
in-plane coordinates (x, and x,), all taken in the Constraint local coordinate system:

ulj = uli—rii Ax2
u2j = u2i + r3j Axi
r3i =13

where Ax, =x, —x,, and Ax,=x, —X,.
y i j i
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Plate Constraint

A Plate Constraint causes all of its constrained joints to move together as a flat plate
that is rigid against bending deformation. Effectively, all constrained joints are
connected to each other by links that are rigid for out-of-plane bending, but do not
affect in-plane (membrane) deformation.

This Constraint can be used to:

* Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

* Enforce the assumption that “plane sections remain plane” in detailed models
of beam bending

Joint Connectivity

Each Plate Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. Unlike the Diaphragm Constraint, equilibrium
is not affected by whether or not all joints lie in the plane of the Plate Constraint.

Local Coordinate System

Each Plate Constraint has its own local coordinate system, the axes of which are de-
noted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint. The
program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The actual
orientation of the planar axes is not important since only the normal direction af-
fects the constraint equations.

For more information, see Topic “Plane Definition” (page 52) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and ;) in a Plate Constraint. These equations are expressed in terms of
the out-of-plane translation (u,), the bending rotations (», and r,), and the in-plane
coordinates (x, and x,), all taken in the Constraint local coordinate system:

u3j = u3j + r1i Axa2 — r2i Axy

ri=rij
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i =12j

where Ax, =x, —x,, and Ax,=x, —X,.
v i 2 4

Axis Definition

The constraint equations for each Rod or Beam Constraint are written with respect
to a particular axis. The location of the axis is not important, only its orientation.

By default, the axis is determined automatically by the program from the spatial
distribution of the constrained joints as follows:

The centroid of the constrained joints is determined

The second moments of the locations of all of the constrained joints about the
centroid are determined

The principal values and directions of these second moments are found

The direction of the largest principal second moment is taken as the axis of the
constraint; if all constrained joints lie on a unique axis, the two smallest princi-
pal moments will be zero

If no unique direction can be found, a vertical (Z) axis is assumed in coordinate
system esys; this situation can occur if the joints are coincident, or if the spatial
distribution is more nearly planar or three-dimensional than linear.

You may override automatic axis selection by specifying the following:

csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

axis: The axis (X, Y, or Z) of the constraint, taken in coordinate system csys.

This may be useful, for example, to specify a vertical axis for a column with a small
offset in it.

Rod Constraint

56

A Rod Constraint causes all of its constrained joints to move together as a straight
rod that is rigid against axial deformation. Effectively, all constrained joints main-
tain a fixed distance from each other in the direction parallel to the axis of the rod,
but translations normal to the axis and all rotations are unaffected.

This Constraint can be used to:

Axis Definition
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Figure 11
Use of the Rod Constraint to Model Axially Rigid Beams

» Prevent axial deformation in Frame elements

* Model rigid truss-like links

An example of the use of the Rod Constraint is in the analysis of the two-dimen-
sional frame shown in Figure 11 (page 57). If the axial deformations in the beams
are negligible, a single Rod Constraint could be defined containing the five joints.
Instead of five equations, the program would use a single equation to define the
X-displacement of the whole floor. However, it should be noted that this will result
in the axial forces of the beams being output as zero, as the Constraint will cause the
ends of the beams to translate together in the X-direction. Interpretations of such re-
sults associated with the use of Constraints should be clearly understood.

Joint Connectivity

Each Rod Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, bending moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium.
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Local Coordinate System

Each Rod Constraint has its own local coordinate system, the axes of which are de-
noted 1, 2, and 3. Local axis 1 is always the axis of the constraint. The program arbi-
trarily chooses the orientation of the transverse axes 2 and 3. The actual orientation
of the transverse axes is not important since only the axial direction affects the con-
straint equations.

For more information, see Topic “Axis Definition” (page 56) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and ;) in a Rod Constraint. These equations are expressed only in terms
of the axial translation (u,):

ulj = uli

Beam Constraint

58

A Beam Constraint causes all of its constrained joints to move together as a straight
beam that is rigid against bending deformation. Effectively, all constrained joints
are connected to each other by links that are rigid for off-axis bending, but do not
affect translation along or rotation about the axis.

This Constraint can be used to:

* Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

» Prevent bending deformation in Frame elements

Joint Connectivity

Each Beam Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, torsional moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium.
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Local Coordinate System

Each Beam Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. Local axis 1 is always the axis of the constraint. The program
arbitrarily chooses the orientation of the transverse axes 2 and 3. The actual orienta-
tion of the transverse axes is not important since only the axial direction affects the
constraint equations.

For more information, see Topic “Axis Definition” (page 56) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Beam Constraint. These equations are expressed in terms of
the transverse translations (1, and u,), the transverse rotations (r, and r,), and the ax-
ial coordinate (x,), all taken in the Constraint local coordinate system:

u2j = u2; + r3j Axi
u3j = u3j —r2i Axy
r2i =12
r3i=13j

where Ax, = x, — x,..

i

Equal Constraint

An Equal Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the constraint lo-
cal coordinate system. The other degrees of freedom are unaffected.

The Equal Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations.

This Constraint can be used to partially connect together different parts of the struc-
tural model, such as at expansion joints and hinges

For fully connecting meshes, it is better to use the Body Constraint when the con-
strained joints are not in exactly the same location.
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Joint Connectivity

Each Equal Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should share the
same location in space if used for connecting meshes. Otherwise, moments may be
generated that are restrained by the Constraint, which unrealistically stiffens the
structure. If this happens, the constraint forces reported in the analysis results may
not be in equilibrium.

Local Coordinate System

Each Equal Constraint uses a fixed coordinate system, csys, that you specify. The
default for esys is zero, indicating the global coordinate system. The axes of the
fixed coordinate system are denoted X, Y, and Z.

Selected Degrees of Freedom

For each Equal Constraint you may specify a list, cdofs, of up to six degrees of free-
dom in coordinate system csys that are to be constrained. The degrees of freedom
are indicated as UX, UY, UZ, RX, RY, and RZ.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in an Equal Constraint. These equations are expressed in terms
of the translations (u,, u, and u.) and the rotations (r,, r,, and r), all taken in fixed
coordinate system csys:

Uxj = Uxi
Uyj = Uyi
Uzj = Uz
rli = rij
r2i =12
r3i =13j

If you omit any of the six degrees of freedom from the constraint definition, the cor-
responding constraint equation is not enforced.
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Local Constraint

A Local Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the separate joint
local coordinate systems. The other degrees of freedom are unaffected.

The Local Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations. The Local Constraint is
the same as the Equal Constraint if all constrained joints have the same local coor-
dinate system.

This Constraint can be used to:

* Model symmetry conditions with respect to a line or a point
* Model displacements constrained by mechanisms

The behavior of this Constraint is dependent upon the choice of the local coordinate
systems of the constrained joints.

Joint Connectivity

Each Local Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. If the joints do not share the same location in
space, moments may be generated that are restrained by the Constraint. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium. These moments are necessary to enforce the desired symmetry of the dis-
placements when the applied loads are not symmetric, or may represent the con-
straining action of a mechanism.

For more information, see:

» Topic “Force Output” (page 47) in Chapter “Joints and Degrees of Freedom.”
* Topic “Global Force Balance Output” (page 45) in Chapter “Joints and De-

grees of Freedom.”

No Local Coordinate System

A Local Constraint does not have its own local coordinate system. The constraint
equations are written in terms of constrained joint local coordinate systems, which
may differ. The axes of these coordinate systems are denoted 1, 2, and 3.
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Selected Degrees of Freedom

For each Local Constraint you may specify a list, Idofs, of up to six degrees of free-
dom in the joint local coordinate systems that are to be constrained. The degrees of
freedom are indicated as U1, U2, U3, R1, R2, and R3.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Local Constraint. These equations are expressed in terms of
the translations (u,, u,, and u,) and the rotations (r,, 7,, and ), all taken in joint local
coordinate systems. The equations used depend upon the selected degrees of free-

dom and their signs. Some important cases are described next.

Axisymmetry

Axisymmetry is a type of symmetry about a line. It is best described in terms of a
cylindrical coordinate system having its Z axis on the line of symmetry. The struc-
ture, loading, and displacements are each said to be axisymmetric about a line if
they do not vary with angular position around the line, i.e., they are independent of
the angular coordinate CA.

To enforce axisymmetry using the Local Constraint:
* Model any cylindrical sector of the structure using any axisymmetric mesh of

joints and elements

» Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

* For each axisymmetric set of joints (i.e., having the same coordinates CR and
CZ, but different CA), define a Local Constraint using all six degrees of free-
dom: Ul, U2, U3, R1, R2, and R3

 Restrain joints that liec on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

ulj = uli
u2j = u2i
uzj = u3j
r1i=rij
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r2i =1
r3i =13

The numeric subscripts refer to the corresponding joint local coordinate systems.

Cyclic symmetry

Cyclic symmetry is another type of symmetry about a line. It is best described in
terms of a cylindrical coordinate system having its Z axis on the line of symmetry.
The structure, loading, and displacements are each said to be cyclically symmetric
about a line if they vary with angular position in a repeated (periodic) fashion.

To enforce cyclic symmetry using the Local Constraint:
* Model any number of adjacent, representative, cylindrical sectors of the struc-

ture; denote the size of a single sector by the angle 6

» Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

» For each cyclically symmetric set of joints (i.e., having the same coordinates
CR and CZ, but with coordinate CA differing by multiples of 6), define a Local
Constraint using all six degrees of freedom: U1, U2, U3, R1, R2, and R3.

* Restrain joints that lie on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

uij = uli
uzj = u2i
usj = u3j
r1i =rij
12i = rj
r3i = r3j

The numeric subscripts refer to the corresponding joint local coordinate systems.

For example, suppose a structure is composed of six identical 60° sectors, identi-
cally loaded. If two adjacent sectors were modeled, each Local Constraint would
apply to a set of two joints, except that three joints would be constrained on the
symmetry planes at 0°, 60°, and 120°.
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Welds

64

If a single sector is modeled, only joints on the symmetry planes need to be con-
strained.

Symmetry About a Point

Symmetry about a point is best described in terms of a spherical coordinate system
having its Z axis on the line of symmetry. The structure, loading, and displacements
are each said to be symmetric about a point if they do not vary with angular position
about the point, i.e., they are independent of the angular coordinates SB and SA.
Radial translation is the only displacement component that is permissible.

To enforce symmetry about a point using the Local Constraint:
* Model any spherical sector of the structure using any symmetric mesh of joints
and elements

* Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +SB, +SA, and +SR, respectively

* For each symmetric set of joints (i.e., having the same coordinate SR, but dif-
ferent coordinates SB and SA), define a Local Constraint using only degree of
freedom U3

* For all joints, restrain the degrees of freedom U1, U2, R1, R2, and R3

* Fully restrain any joints that lie at the point of symmetry
The corresponding constraint equations are:
u3j = u3j
The numeric subscripts refer to the corresponding joint local coordinate systems.

It is also possible to define a case for symmetry about a point that is similar to cyclic
symmetry around a line, e.g., where each octant of the structure is identical.

A Weld can be used to connect together different parts of the structural model that
were defined using separate meshes. A Weld is not a single Constraint, but rather is
a set of joints from which the program will automatically generate multiple Body
Constraints to connect together coincident joints.

Joints are considered to be coincident if the distance between them is less than or
equal to a tolerance, tol, that you specify. Setting the tolerance to zero is permissi-
ble but is not recommended.

Welds
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Figure 12
Use of a Weld to Connect Separate Meshes at Coincident Joints

One or more Welds may be defined, each with its own tolerance. Only the joints
within each Weld will be checked for coincidence with each other. In the most
common case, a single Weld is defined that contains all joints in the model; all coin-
cident groups of joints will be welded. However, in situations where structural dis-
continuity is desired, it may be necessary to prevent the welding of some coincident
joints. This may be facilitated by the use of multiple Welds.

Figure 12 (page 65) shows a model developed as two separate meshes, A and B.
Joints 121 through 125 are associated with mesh A, and Joints 221 through 225 are
associated with mesh B. Joints 121 through 125 share the same location in space as
Joints 221 through 225, respectively. These are the interfacing joints between the
two meshes. To connect these two meshes, a single Weld can be defined containing
all joints, or just joints 121 through 125 and 221 through 225. The program would
generate five Body Constraints, each containing two joints, resulting in an inte-
grated model.

It is permissible to include the same joint in more than one Weld. This could result
in the joints in different Welds being constrained together if they are coincident
with the common joint. For example, suppose that Weld 1 contained joints 1,2, and
3, Weld 2 contained joints 3, 4, and 5. If joints 1, 3, and 5 were coincident, joints 1
and 3 would be constrained by Weld 1, and joints 3 and 5 would be constrained by
Weld 2. The program would create a single Body Constraint containing joints 1, 3,
and 5. One the other hand, if Weld 2 did not contain joint 3, the program would only
generate a Body Constraint containing joint 1 and 3 from Weld 1; joint 5 would not
be constrained.
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For more information, see Topic “Body Constraint” (page 51) in this Chapter.

Automatic Master Joints

66

The program automatically creates an internal master joint for each explicit Con-
straint, and a master joint for each internal Body Constraint that is generated by a
Weld. Each master joint governs the behavior of the corresponding constrained
joints. The displacement at a constrained degree of freedom is computed as a linear
combination of the displacements of the master joint.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Stiffness, Mass, and Loads

Joint local coordinate systems, springs, masses, and loads may all be applied to
constrained joints. Elements may also be connected to constrained joints. The joint
and element stiffnesses, masses and loads from the constrained degrees of freedom
are be automatically transferred to the master joint in a consistent fashion.

The translational stiffness at the master joint is the sum of the translational
stiffnesses at the constrained joints. The same is true for translational masses and
loads.

The rotational stiffness at a master joint is the sum of the rotational stiffnesses at the
constrained degrees of freedom, plus the second moment of the translational
stiffnesses at the constrained joints for the Body, Diaphragm, Plate, and Beam Con-
straints. The same is true for rotational masses and loads, except that only the first
moment of the translational loads is used. The moments of the translational
stiffnesses, masses, and loads are taken about the center of mass of the constrained
joints. If the joints have no mass, the centroid is used.

Local Coordinate Systems

Each master joint has two local coordinate systems: one for the translational de-
grees of freedom, and one for the rotational degrees of freedom. The axes of each
local system are denoted 1, 2, and 3. For the Local Constraint, these axes corre-
spond to the local axes of the constrained joints. For other types of Constraints,
these axes are chosen to be the principal directions of the translational and rota-
tional masses of the master joint. Using the principal directions eliminates coupling
between the mass components in the master-joint local coordinate system.

Automatic Master Joints
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For a Diaphragm or Plate Constraint, the local 3 axes of the master joint are always
normal to the plane of the Constraint. For a Beam or Rod Constraint, the local 1
axes of the master joint are always parallel to the axis of the Constraint.

Constraint OQutput

For each Body, Diaphragm, Plate, Rod, and Beam Constraint having more than two
constrained joints, the following information about the Constraint and its master
joint is printed in the output file:

* The translational and rotational local coordinate systems for the master joint

* The total mass and mass moments of inertia for the Constraint that have been
applied to the master joint

* The center of mass for each of the three translational masses

The degrees of freedom are indicated as U1, U2, U3, R1, R2, and R3. These are re-
ferred to the two local coordinate systems of the master joint.
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Material Properties

The Materials are used to define the mechanical, thermal, and density properties
used by the Frame, Shell, Plane, Asolid, and Solid elements.

Basic Topics for All Users
* Overview
* Local Coordinate System
 Stresses and Strains
* Isotropic Materials
* Mass Density
» Weight Density
* Design-Type Indicator

Advanced Topics
* Orthotropic Materials
* Anisotropic Materials
* Temperature-Dependent Materials

* Element Material Temperature
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» Material Damping
* Time-dependent Properties

e Stress-Strain Curves

Overview

The Material properties may be defined as isotropic, orthotropic or anisotropic.
How the properties are actually utilized depends on the element type. Each Material
that you define may be used by more than one element or element type. For each el-
ement type, the Materials are referenced indirectly through the Section properties
appropriate for that element type.

All elastic material properties may be temperature dependent. Properties are given
at a series of specified temperatures. Properties at other temperatures are obtained
by linear interpolation.

For a given execution of the program, the properties used by an element are as-
sumed to be constant regardless of any temperature changes experienced by the
structure. Each element may be assigned a material temperature that determines
the material properties used for the analysis.

Time-dependent properties include creep, shrinkage, and age-dependent elasticity.
These properties can be activated during a staged-construction analysis, and form
the basis for subsequent analyses.

Nonlinear stress-strain curves may be defined for the purpose of generating frame
hinge properties.

Local Coordinate System

70

Each Material has its own Material local coordinate system used to define the
elastic and thermal properties. This system is significant only for orthotropic and
anisotropic materials. [sotropic materials are independent of any particular coordi-
nate system.

The axes of the Material local coordinate system are denoted 1, 2, and 3. By default,
the Material coordinate system is aligned with the local coordinate system for each
element. However, you may specify a set of one or more material angles that rotate
the Material coordinate system with respect to the element system for those ele-
ments that permit orthotropic or anisotropic properties.

Overview
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Figure 13
Definition of Stress Components in the Material Local Coordinate System

For more information:

* See Topic “Material Angle” (page 162) in Chapter “The Shell Element.”
* See Topic “Material Angle” (page 181) in Chapter “The Plane Element.”
* See Topic “Material Angle” (page 191) in Chapter “The Asolid Element.”
* See Topic “Material Angles” (page 208) in Chapter “The Solid Element.”

Stresses and Strains

The elastic mechanical properties relate the behavior of the stresses and strains
within the Material. The stresses are defined as forces per unit area acting on an ele-
mental cube aligned with the material axes as shown in Figure 13 (page 71). The
stresses G, 0y, and 633 are called the direct stresses and tend to cause length
change, whilec,, 0,3, and 6,5 are called the shear stresses and tend to cause angle
change.

Not all stress components exist in every element type. For example, the stresses
Gy, 033, and ©,3 are assumed to be zero in the Frame element, and stress 633 is
taken to be zero in the Shell element.
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The direct strains €1, €,,, and €33 measure the change in length along the Material
local 1, 2, and 3 axes, respectively, and are defined as:

where u,, u,, and u, are the displacements and x,, x,, and x, are the coordinates in the
Material 1, 2, and 3 directions, respectively.

The engineering shear strains yy,, Y3, and y,3, measure the change in angle in the
Material local 1-2, 1-3, and 2-3 planes, respectively, and are defined as:

dl/ll duz
Y=t =
de dxl
dl/ll du3

Y13 = d
Xy dxg
_ dl/lz dl/l3
YZ3 a d)C3 de

Note that the engineering shear strains are equal to twice the tensorial shear strains
€12, €13, and €,3, respectively.

Strains can also be caused by a temperature change, AT, that can be specified as a
load on an element. No stresses are caused by a temperature change unless the in-
duced thermal strains are restrained.

See Cook, Malkus, and Plesha (1989), or any textbook on elementary mechanics.

Isotropic Materials

The behavior of an isotropic material is independent of the direction of loading or
the orientation of the material. In addition, shearing behavior is uncoupled from ex-
tensional behavior and is not affected by temperature change. Isotropic behavior is
usually assumed for steel and concrete, although this is not always the case.
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The isotropic mechanical and thermal properties relate strain to stress and tempera-
ture change as follows:

1 -ul2 -ul2 0 0 0 (Eqn. 1)
el el el
1 -ul2
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el el ’
€ 1 c a
822 . 0 0 0 22 )
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gl2
V13 1 o13 0
V23 sym. al2 0 1oy 0
1
L gl2 |

where el is Young’s modulus of elasticity, ul2 is Poisson’s ratio, g12 is the shear
modulus, and al is the coefficient of thermal expansion. This relationship holds re-
gardless of the orientation of the Material local 1, 2, and 3 axes.

The shear modulus is not directly specified, but instead is defined in terms of
Young’s modulus and Poisson’s ratio as:

el

gl2=— —
2(1+ul2)

Note that Young’s modulus must be positive, and Poisson’s ratio must satisfy the
condition:

-1< u12<l
2

Orthotropic Materials

The behavior of an orthotropic material can be different in each of the three local
coordinate directions. However, like an isotropic material, shearing behavior is un-
coupled from extensional behavior and is not affected by temperature change.

The orthotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:
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where el, e2, and e3 are the moduli of elasticity; ul2, ul3, and u23 are the Pois-
son’s ratios; g12, g13, and g23 are the shear moduli; and al, a2, and a3 are the coef-
ficients of thermal expansion.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios may take on any values provided that the upper-left 3x3 portion of the stress-
strain matrix is positive-definite (i.e., has a positive determinant.)

Anisotropic Materials

74

The behavior of an anisotropic material can be different in each of the three local
coordinate directions. In addition, shearing behavior can be fully coupled with ex-
tensional behavior and can be affected by temperature change.

The anisotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:

Anisotropic Materials
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where el, €2, and e3 are the moduli of elasticity; ul2, ul3, and u23 are the standard
Poisson’s ratios; ul4, u24..., us6 are the shear and coupling Poisson’s ratios; g12,
g13, and g23 are the shear moduli; al, a2, and a3 are the coefficients of thermal ex-
pansion; and al2, al3, and a23 are the coefficients of thermal shear.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios must be chosen so that the 6x6 stress-strain matrix is positive definite. This
means that the determinant of the matrix must be positive.

These material properties can be evaluated directly from laboratory experiments.
Each column of the elasticity matrix represents the six measured strains due to the
application of the appropriate unit stress. The six thermal coefficients are the meas-
ured strains due to a unit temperature change.

Temperature-Dependent Properties

All of the mechanical and thermal properties given in Equations 1 to 3 may depend
upon temperature. These properties are given at a series of specified material tem-
peratures t. Properties at other temperatures are obtained by linear interpolation be-
tween the two nearest specified temperatures. Properties at temperatures outside
the specified range use the properties at the nearest specified temperature. See
Figure 14 (page 76) for examples.

If the Material properties are independent of temperature, you need only specify
them at a single, arbitrary temperature.
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Determination of Property Emai at Temperature Tias from Function E(T)

Element Material Temperature

You can assign each element an element material temperature. This is the tem-
perature at which temperature-dependent material properties are evaluated for the
element. The properties at this fixed temperature are used for all analyses regard-
less of any temperature changes experienced by the element during loading.

The element material temperature may be uniform over an element or interpolated
from values given at the joints. In the latter case, a uniform material temperature is
used that is the average of the joint values. The default material temperature for any
element is zero.

The properties for a temperature-independent material are constant regardless of
the element material temperatures specified.

Mass Density

76

For each Material you may specify a mass density, m, that is used for calculating
the mass of the element. The total mass of the element is the product of the mass
density (mass per unit volume) and the volume of the element. This mass is appor-
tioned to each joint of the element. The same mass is applied along of the three
translational degrees of freedom. No rotational mass moments of inertia are com-
puted.

Element Material Temperature
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Consistent mass units must be used. Typically the mass density is equal to the
weight density of the material divided by the acceleration due to gravity, but this is
not required.

The mass density property is independent of temperature.
For more information:

* See Topic “Mass” (page 109) in Chapter “The Frame Element.”
* See Topic “Mass” (page 168) in Chapter “The Shell Element.”
* See Topic “Mass” (page 182) in Chapter “The Plane Element.”
* See Topic “Mass” (page 194) in Chapter “The Asolid Element.”
* See Topic “Mass” (page 209) in Chapter “The Solid Element.”

Weight Density

For each Material you may specify a weight density, w, that is used for calculating
the self-weight of the element. The total weight of the element is the product of the
weight density (weight per unit volume) and the volume of the element. This
weight is apportioned to each joint of the element. Self-weight is activated using
Self-weight Load and Gravity Load.

The weight density property is independent of temperature.
For more information:

» See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”
» See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Material Damping

You may specify material damping to be used in dynamic analyses. Different types
of damping are available for different types of Load Cases. Material damping is a
property of the material and affects all Load Cases of a given type in the same way.
You may specify additional damping in each Load Case.

Because damping has such a significant affect upon dynamic response, you should
use care in defining your damping parameters.
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Modal Damping

The material modal damping available in SAP2000 is stiffness weighted, and is
also known as composite modal damping. It is used for all response-spectrum and
modal time-history analyses. For each material you may specify a material modal
damping ratio, 7, where 0 < 7 < 1. The damping ratio, r;;, contributed to mode / by el-
ement j of this material is given by

r ¢iTK_/<|)i

1

where ¢, is mode shape for mode 7, K ; is the stiffness matrix for element/, and K; is
the modal stiffness for mode / given by

T
K;= Z ¢i K j¢i
J
summed over all elements, j, in the model.

Viscous Proportional Damping

Viscous proportional damping is used for direct-integration time-history analyses.
For each material, you may specify a mass coefficient, c¢,,, and a stiffness coeffi-
cient, cx . The damping matrix for element j of the material is computed as:

C] szMj +CKKj

Hysteretic Proportional Damping

Hysteretic proportional damping is used for steady-state and power-spectral-den-
sity analyses. For each material, you may specify a mass coefficient, d;,, and a
stiffness coefficient, d,,. The hysteretic damping matrix for element j of the mate-
rial is computed as:

Design-Type
You may specify a design-type for each Material that indicates how it is to be

treated for design by the SAP2000, ETABS, or SAFE graphical user interface. The
available design types are:
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Steel: Frame elements made of this material will be designed according to steel
design codes

Concrete: Frame elements made of this material will be designed according to
concrete design codes

Aluminum: Frame elements made of this material will be designed according
to aluminum design codes

Cold-formed: Frame elements made of this material will be designed according
to cold-formed steel design codes

None: Frame elements made of this material will not be designed

When you choose a design type, additional material properties may be specified
that are used only for design; they do not affect the analysis. Consult the on-line
help and design documentation for further information on these design properties

Time-dependent Properties

For any material having a design type of concrete or steel, you may specify time de-
pendent material properties that are used for creep, shrinkage, and aging effects
during a staged-construction analysis.

For more information, see Topic “Staged Construction” (page 374) in Chapter
“Nonlinear Static Analysis.”

Properties

For concrete-type materials, you may specify:

Aging parameters that determine the change in modulus of elasticity with age
Shrinkage parameters that determine the decrease in direct strains with time

Creep parameters that determine the change in strain with time under the action
of stress

For steel-type materials, relaxation behavior may be specified that determines the
change in strain with time under the action of stress, similar to creep.

Currently these behaviors are specified using CEB-FIP parameters. See Comite
Euro-International Du Beton (1993).
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Time-Integration Control

For each material, you have the option to model the creep behavior by full integra-
tion or by using a Dirichlet series approximation.

With full integration, each increment of stress during the analysis becomes part of
the memory of the material. This leads to accurate results, but for long analyses
with many stress increments, this requires computer storage and execution time
that both increase as the square of the number of increments. For larger problems,
this can make solution impractical.

Using the Dirichlet series approximation (Ketchum, 1986), you can choose a fixed
number of series terms that are to be stored. Each term is modified by the stress in-
crements, but the number of terms does not change during the analysis. This means
the storage and execution time increase linearly with the number of stress incre-
ments. Each term in the Dirichlet series can be thought of as a spring and dashpot
system with a characteristic relaxation time. The program automatically chooses
these spring-dashpot systems based on the number of terms you request. You
should try different numbers of terms and check the analysis results to make sure
that your choice is adequate.

It is recommended that you work with a smaller problem that is representative of
your larger model, and compare various numbers of series terms with the full inte-
gration solution to determine the appropriate series approximation to use.

Stress-Strain Curves
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For each material you may specify a stress-strain curve that are used to represent
the axial behavior of the material along any material axis, i.e., The stress-strain
curve is isotropic.

Currently these curves are only used to generate fiber hinges and for hinge models
for frame sections defined in Section Designer.

For more information:

* See Topic “Section Designer Sections” (page 109) in Chapter “The Frame Ele-
ment.”

* See Chapter “Frame Hinge Properties” (page 121).

Stress-Strain Curves
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The Frame Element

The Frame element is a very powerful element that can be used to model beams,
columns, braces, and trusses in planar and three-dimensional structures. Nonlinear
material behavior is available through the use of Frame Hinges.

Basic Topics for All Users
* Overview
 Joint Connectivity
* Degrees of Freedom
* Local Coordinate System
» Section Properties
* Insertion Point
* End Offsets
* End Releases
* Mass
» Self-Weight Load
» Concentrated Span Load
* Distributed Span Load

8l
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Internal Force Output

Advanced Topics

Advanced Local Coordinate System
Property Modifiers

Nonlinear Properties

Gravity Load

Temperature Load

Strain and Deformation Load

Target-Force Load

Overview

82

The Frame element uses a general, three-dimensional, beam-column formulation
which includes the effects of biaxial bending, torsion, axial deformation, and biax-
ial shear deformations. See Bathe and Wilson (1976).

Structures that can be modeled with this element include:

Three-dimensional frames
Three-dimensional trusses
Planar frames

Planar grillages

Planar trusses

Cables

A Frame element is modeled as a straight line connecting two points. In the graphi-
cal user interface, you can divide curved objects into multiple straight objects, sub-
ject to your specification.

Each element has its own local coordinate system for defining section properties
and loads, and for interpreting output.

The element may be prismatic or non-prismatic. The non-prismatic formulation al-
lows the element length to be divided into any number of segments over which
properties may vary. The variation of the bending stiffness may be linear, para-
bolic, or cubic over each segment of length. The axial, shear, torsional, mass, and
weight properties all vary linearly over each segment.

Overview
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Insertion points and end offsets are available to account for the finite size of beam
and column intersections. The end offsets may be made partially or fully rigid to
model the stiffening effect that can occur when the ends of an element are embed-
ded in beam and column intersections. End releases are also available to model dif-
ferent fixity conditions at the ends of the element.

Each Frame element may be loaded by gravity (in any direction), multiple concen-
trated loads, multiple distributed loads, strain and deformation loads, and loads due
to temperature change.

Target-force loading is available that iteratively applies deformation load to the el-
ement to achieve a desired axial force.

Element internal forces are produced at the ends of each element and at a user-
specified number of equally-spaced output stations along the length of the element.

Cable behavior is usually best modeled using the catenary Cable element (page
135). However, there are certain cases where using Frame elements is necessary.
This can be achieved by adding appropriate features to a Frame element. You can
release the moments at the ends of the elements, although we recommend that you
retain small, realistic bending stiffness instead. You can also add nonlinear behav-
ior as needed, such as the no-compression property, tension stiffening (p-delta ef-
fects), and large deflections. These features require nonlinear analysis.

Joint Connectivity

A Frame element is represented by a straight line connecting two joints, I and j, un-
less modified by joint offsets as described below. The two joints must not share the
same location in space. The two ends of the element are denoted end I and end J, re-
spectively.

By default, the neutral axis of the element runs along the line connecting the two
joints. However, you can change this using the insertion point, as described in
Topic “Insertion Point” (page 101).

Joint Offsets

Sometimes the axis of the element cannot be conveniently specified by joints that
connect to other elements in the structure. You have the option to specify joint off-
sets independently at each end of the element. These are given as the three distance
components (X, Y, and Z) parallel to the global axes, measured from the joint to the
end of the element (at the insertion point.)
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The two locations given by the coordinates of joints I and j, plus the corresponding
joint offsets, define the axis of the element. These two locations must not be coinci-
dent. Itis generally recommended that the offsets be perpendicular to the axis of the
element, although this is not required.

Offsets along the axis of the element are usually specified using end offsets rather
than joint offsets. See topic “End Offsets” (page 102). End offsets are part of the
length of the element, have element properties and loads, and may or may not be
rigid. Joint offsets are external to the element, and do not have any mass or loads.
Internally the program creates a fully rigid constraint along the joints offsets.

Joint offsets are specified along with the cardinal point as part of the insertion point
assignment, even though they are independent features.

For more information:

* See Topic “Insertion Point” (page 101) in this Chapter.
* See Topic “End Offsets” (page 102) in this Chapter.

Degrees of Freedom

84

The Frame element activates all six degrees of freedom at both of its connected
joints. If you want to model truss or cable elements that do not transmit moments at
the ends, you may either:

» Set the geometric Section properties j, i33, and i22 all to zero (a is non-zero;
as2 and as3 are arbitrary), or

» Release both bending rotations, R2 and R3, at both ends and release the tor-
sional rotation, R1, at either end

For more information:

» See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of
Freedom.”

» See Topic “Section Properties” (page 90) in this Chapter.

* See Topic “End Offsets” (page 102) in this Chapter.

* See Topic “End Releases” (page 106) in this Chapter.

Degrees of Freedom
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Local Coordinate System

Each Frame element has its own element local coordinate system used to define
section properties, loads and output. The axes of this local system are denoted 1, 2
and 3. The first axis is directed along the length of the element; the remaining two
axes lie in the plane perpendicular to the element with an orientation that you spec-
ify.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both
systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Frame elements in the most complicated
situations.

The simplest method, using the default orientation and the Frame element coor-
dinate angle, is described in this topic. Additional methods for defining the Frame
element local coordinate system are described in the next topic.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Advanced Local Coordinate System” (page 86) in this Chapter.

Longitudinal Axis |

Local axis 1 is always the longitudinal axis of the element, the positive direction be-
ing directed from end I to end J.

Specifically, end I is joint I plus its joint offsets (if any), and end J is joint j plus its
joint offsets (if any.) The axis is determined independently of the cardinal point; see
Topic “Insertion Point” (page 101.)

Default Orientation

The default orientation of the local 2 and 3 axes is determined by the relationship
between the local 1 axis and the global Z axis:

* The local 1-2 plane is taken to be vertical, i.e., parallel to the Z axis
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* The local 2 axis is taken to have an upward (+Z) sense unless the element is ver-
tical, in which case the local 2 axis is taken to be horizontal along the global +X
direction

» The local 3 axis is horizontal, i.e., it lies in the X-Y plane

An element is considered to be vertical if the sine of the angle between the local 1
axis and the Z axis is less than 10°.

The local 2 axis makes the same angle with the vertical axis as the local 1 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for horizontal elements.

Coordinate Angle

The Frame element coordinate angle, ang, is used to define element orientations
that are different from the default orientation. It is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the default orientation.
The rotation for a positive value of ang appears counterclockwise when the local
+1 axis is pointing toward you.

For vertical elements, ang is the angle between the local 2 axis and the horizontal
+X axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 1 axis. See Figure 15 (page 87) for examples.
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By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +X directions, as described
in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the transverse local 2 and 3
axes with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the orientation deter-
mined by the reference vector. The local 1 axis is always directed from end I to end
J of the element.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.
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ang=30°

X Y
Local 1 Axis is Parallel to +Y Axis Local 1 Axis is Not Parallel to X, Y, or Z Axes
Local 2 Axis is Rotated 90° from Z-1 Plane Local 2 Axis is Rotated 30° from Z-1 Plane

ang=90°
Local 1 Axis is Parallel to +Z Axis Local 1 Axis is Parallel to —Z Axis
Local 2 Axis is Rotated 90° from X-1 Plane Local 2 Axis is Rotated 30° from X-1 Plane

Figure 15
The Frame Element Coordinate Angle with Respect to the Default Orientation

* See Topic “Local Coordinate System” (page 85) in this Chapter.
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Reference Vector

To define the transverse local axes 2 and 3, you specify a reference vector that is
parallel to the desired 1-2 or 1-3 plane. The reference vector must have a positive
projection upon the corresponding transverse local axis (2 or 3, respectively). This
means that the positive direction of the reference vector must make an angle of less
than 90° with the positive direction of the desired transverse axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +X). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

» A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

» The local plane, local, to be determined by the reference vector (the default is
12, indicating plane 1-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 1, it is used as the reference vector V ,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system esys. If this direction is not parallel to
local axis 1, it is used as the reference vector V »

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system esys. If this direction is not parallel to
local axis 1, it is used as the reference vector V »

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis 1 if the sine of the angle between
them is less than 10~
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YA
pldirp = +Y
pldirs = -X 1
local = 12
i
a
Z —an® AX
ang=90 < . s
A
2
Local 1 Axis is Not Parallel to pldirp (+Y) Local 1 Axis is Parallel to pldirp (+Y)
Local 2 Axis is Rotated 90° from Y-1 Plane Local 2 Axis is Rotated 90° from X-1 Plane

Figure 16
The Frame Element Coordinate Angle with Respect to Coordinate Directions

The use of the Frame element coordinate angle in conjunction with coordinate di-
rections that define the reference vector is illustrated in Figure 16 (page 89). The
use of joints to define the reference vector is shown in Figure 17 (page 90).

Determining Transverse Axes 2 and 3

The program uses vector cross products to determine the transverse axes 2 and 3
once the reference vector has been specified. The three axes are represented by the
three unit vectors V;, V, and V3, respectively. The vectors satisfy the cross-product
relationship:

Vl = V2 X V3
The transverse axes 2 and 3 are defined as follows:

 If the reference vector is parallel to the 1-2 plane, then:
V3=V, xV, and
V, =V; xV,

* If the reference vector is parallel to the 1-3 plane, then:
V,=V,xV; and
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The following two specifications are equivalent: Plane 1-2 Vp (a)
(a) local=12, plveca=0, plvecb=100 Axis 1
(b) local=13, plveca=101, plvecb=102

<V

Figure 17
Using Joints to Define the Frame Element Local Coordinate System

V3 =V1 XV2

In the common case where the reference vector is perpendicular to axis Vj, the
transverse axis in the selected plane will be equal to V.

Section Properties

A Frame Section is a set of material and geometric properties that describe the
cross-section of one or more Frame elements. Sections are defined independently
of the Frame elements, and are assigned to the elements.

Section properties are of two basic types:

* Prismatic — all properties are constant along the full element length

* Non-prismatic — the properties may vary along the element length

Non-prismatic Sections are defined by referring to two or more previously defined
prismatic Sections.
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All of the following subtopics, except the last, describe the definition of prismatic
Sections. The last subtopic, “Non-prismatic Sections”, describes how prismatic
Sections are used to define non-prismatic Sections.

Local Coordinate System

Section properties are defined with respect to the local coordinate system of a
Frame element as follows:

* The 1 direction is along the axis of the element. It is normal to the Section and
goes through the intersection of the two neutral axes of the Section.

* The 2 and 3 directions are parallel to the neutral axes of the Section. Usually the
2 direction is taken along the major dimension (depth) of the Section, and the 3
direction along its minor dimension (width), but this is not required.

See Topic “Local Coordinate System” (page 85) in this Chapter for more informa-
tion.

Material Properties

The material properties for the Section are specified by reference to a previously-
defined Material. Isotropic material properties are used, even if the Material se-
lected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

» The modulus of elasticity, el, for axial stiffness and bending stiffness

* The shear modulus, g12, for torsional stiffness and transverse shear stiffness

* The coefficient of thermal expansion, al, for axial expansion and thermal
bending strain

* The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads

The material properties el, g12, and al are all obtained at the material temperature
of each individual Frame element, and hence may not be unique for a given Section.

See Chapter “Material Properties” (page 69) for more information.

Geometric Properties and Section Stiffnesses

Six basic geometric properties are used, together with the material properties, to
generate the stiffnesses of the Section. These are:
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* The cross-sectional area, a. The axial stiffness of the Section is given by a - el;

* The moment of inertia, i33, about the 3 axis for bending in the 1-2 plane, and
the moment of inertia, i22, about the 2 axis for bending in the 1-3 plane. The
corresponding bending stiffnesses of the Section are given by i33-el and
i22-el;

* The torsional constant, j. The torsional stiffness of the Section is given by
j-g12. Note that the torsional constant is not the same as the polar moment of
inertia, except for circular shapes. See Roark and Young (1975) or Cook and
Young (1985) for more information.

* The shear areas, as2 and as3, for transverse shear in the 1-2 and 1-3 planes, re-
spectively. The corresponding transverse shear stiffnesses of the Section are
given by as2-gl2 and as3-gl2. Formulae for calculating the shear areas of
typical sections are given in Figure 18 (page 93).

Setting a, j, 133, or i22 to zero causes the corresponding section stiffness to be zero.
For example, a truss member can be modeled by setting j = i33 =i22 =0, and a pla-
nar frame member in the 1-2 plane can be modeled by setting j =i22 = 0.

Setting as2 or as3 to zero causes the corresponding transverse shear deformation to
be zero. In effect, a zero shear area is interpreted as being infinite. The transverse
shear stiffness is ignored if the corresponding bending stiffness is zero.

Shape Type

For each Section, the six geometric properties (a, j, i33, i22, as2 and as3) may be
specified directly, computed from specified Section dimensions, or read from a
specified property database file. This is determined by the shape type, shape, speci-
fied by the user:

» If shape=GENERAL (general section), the six geometric properties must be
explicitly specified

» If shape=RECTANGLE, PIPE, BOX/TUBE, I/WIDE FLANGE, or one of
several others offered by the program, the six geometric properties are auto-
matically calculated from specified Section dimensions as described in “Auto-
matic Section Property Calculation” below, or obtained from a specified prop-
erty database file. See “Section Property Database Files” below.

» [fshape=SD SECTION (Section Designer Section), you can create your own
arbitrary Sections using the Section Designer utility within the program, and
the six geometric properties are automatically calculated. See “Section De-
signer Sections” below.
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* Ifshape=NONPRISMATIC, the Section is interpolated along the length of the
element from previously defined Sections as described in “Nonprismatic Sec-
tion” below.

Automatic Section Property Calculation

The six geometric Section properties can be automatically calculated from speci-
fied dimensions for the simple shapes shown in Figure 19 (page 95), and for others
offered by the program. The required dimensions for each shape are shown in the
figure.

Note that the dimension t3 is the depth of the Section in the 2 direction and contrib-
utes primarily to i33.

Section Property Database Files

Geometric Section properties may be obtained from one or more Section property
database files. Several database files are currently supplied with SAP2000,
including:

* AA6061-T6.pro: American aluminum shapes

* AISC3.pro: American steel shapes

» BSShapes.pro: British steel shapes

e Chinese.pro: Chinese steel shapes

* CISC.pro: Canadian steel shapes

» EURO.pro: European steel shapes

* SECTIONSS8.PRO: This is just a copy of AISC3.PRO.

Additional property database files may be created using the Excel macro
PROPER .xls, which is available upon request from Computers and Structures, Inc.
The geometric properties are stored in the length units specified when the database
file was created. These are automatically converted by SAP2000 to the units used
in the input data file.

Each shape type stored in a database file may be referenced by one or two different
labels. For example, the W36x300 shape type in file AISC3.PRO may be refer-
enced either by label “W36X300” or by label “W920X446”. Shape types stored in
CISC.PRO may only be referenced by a single label.

You may select one database file to be used when defining a given Frame Section.
The database file in use can be changed at any time when defining Sections. If no
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Figure 19
Automatic Section Property Calculation

database filename is specified, the default file SECTIONSS.PRO is used. You may
copy any property database file to SECTIONSS.PRO.
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All Section property database files, including file SECTIONS8.PRO, must be lo-
cated either in the directory that contains the input data file, or in the directory that
contains the SAP2000 executable files. If a specified database file is present in both
directories, the program will use the file in the input-data-file directory.

Section-Designer Sections

Section Designer is a separate utility built into SAP2000 and ETABS that can be
used to create your own frame section properties. You can build sections of arbi-
trary geometry and combinations of materials. The basic analysis geometric prop-
erties (areas, moments of inertia, and torsional constant) are computed and used for
analysis. In addition, Section Designer can compute nonlinear frame hinge proper-
ties.

For more information, see the on-line help within Section Designer.

Additional Mass and Weight

Y ou may specify mass and/or weight for a Section that acts in addition to the mass
and weight of the material. The additional mass and weight are specified per unit of
length using the parameters mpl and wpl, respectively. They could be used, for ex-
ample, to represent the effects of nonstructural material that is attached to a Frame
element.

The additional mass and weight act regardless of the cross-sectional area of the
Section. The default values for mpl and wpl are zero for all shape types.

Non-prismatic Sections

Non-prismatic Sections may be defined for which the properties vary along the ele-
ment length. You may specify that the element length be divided into any number
of segments; these do not need to be of equal length. Most common situations can
be modeled using from one to five segments.

The variation of the bending stiffnesses may be linear, parabolic, or cubic over each
segment of length. The axial, shear, torsional, mass, and weight properties all vary
linearly over each segment. Section properties may change discontinuously from
one segment to the next.

See Figure 20 (page 97) for examples of non-prismatic Sections.
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Figure 20
Examples of Non-prismatic Sections
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Segment Lengths

The length of a non-prismatic segment may be specified as either a variable length,
vl, or an absolute length, 1. The default is vl=1.

When a non-prismatic Section is assigned to an element, the actual lengths of each
segment for that element are determined as follows:

* The clear length of the element, L, is first calculated as the total length minus
the end offsets:

L. =L—(ioff + joff )
See Topic “End Offsets” (page 102) in this Chapter for more information.
 If'the sum of the absolute lengths of the segments exceeds the clear length, they

are scaled down proportionately so that the sum equals the clear length. Other-
wise the absolute lengths are used as specified.

* The remaining length (the clear length minus the sum of the absolute lengths) is
divided among the segments having variable lengths in the same proportion as
the specified lengths. For example, for two segments with vl= 1 and vl=2, one
third of the remaining length would go to the first segment, and two thirds to
the second segment.

Starting and Ending Sections

The properties for a segment are defined by specifying:

* The label, seci, of a previously defined prismatic Section that defines the prop-
erties at the start of the segment, i.e., at the end closest to joint L.

» The label, secj, of a previously defined prismatic Section that defines the prop-
erties at the end of the segment, i.e., at the end closest to joint j. The starting and
ending Sections may be the same if the properties are constant over the length
of the segment.

The Material would normally be the same for both the starting and ending Sections
and only the geometric properties would differ, but this is not required.

Variation of Properties

Non-prismatic Section properties are interpolated along the length of each segment
from the values at the two ends.

The variation of the bending stiffnesses, i33-el and i22-el, are defined by specify-
ing the parameters eivar33 and eivar22, respectively. Assign values of 1, 2, or 3 to
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these parameters to indicate variation along the length that is linear, parabolic, or
cubic, respectively.

Specifically, the eivar33-th root of the bending stiffness in the 1-2 plane:
eivar33 m

varies linearly along the length. This usually corresponds to a linear variation in
one of the Section dimensions. For example, referring to Figure 19 (page 95): a lin-
ear variation in t2 for the rectangular shape would require eivar33=1, a linear
variation in t3 for the rectangular shape would require eivar33=3, and a linear
variation in t3 for the I-shape would require eivar33=2.

The interpolation of the bending stiffness in the 1-2 plane, i22 - el, is defined in the
same manner by the parameter eivar22.

The remaining properties are assumed to vary linearly between the ends of each
segment:

» Stiffnesses: a -el, j-gl12,as2-gl12, and as3-gl2
e Mass: a-m + mpl
* Weight: a-w + wpl
If a shear area is zero at either end, it is taken to be zero along the full segment, thus

eliminating all shear deformation in the corresponding bending plane for that seg-
ment.

Effect upon End Offsets

Properties vary only along the clear length of the element. Section properties within
end offset ioff are constant using the starting Section of the first segment. Section
properties within end offset joff are constant using the ending Section of the last
segment.

See Topic “End Offsets” (page 102) in this Chapter for more information.

Property Modifiers

You may specify scale factors to modify the computed section properties. These
may be used, for example, to account for cracking of concrete or for other factors
not easily described in the geometry and material property values. Individual
modifiers are available for the following eight terms:
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* The axial stiffness a - el

* The shear stiffnesses as2 - g12 and as3 - g12
* The torsional stiffness j-g12

* The bending stiffnesses i33 - el and i22 - el
* The section mass a-m + mpl

* The section weight a-w + wpl
You may specify multiplicative factors in two places:

* As part of the definition of the section property

* As an assignment to individual elements.

If modifiers are assigned to an element and also to the section property used by that
element, then both sets of factors multiply the section properties. Modifiers cannot
be assigned directly to a nonprismatic section property, but any modifiers applied
to the sections contributing to the nonprismatic section are used.

When performing steel frame design using the Direct Analysis Method of design
code AISC 360-05/IBC2006, further property modifiers may be computed by the
design algorithm for the axial and bending stiffnesses. In this case, the computed
modifiers are multiplied by those assigned to the element and those specified in the
section property used by that element, so that all three sets of factors apply.

Named Property Sets

In addition to directly assigning property modifiers to frame elements, you can ap-
ply them to a frame element in a staged-construction Load Case using a Named
Property Set of Frame Property Modifiers. A Named Property Set includes the
same eight factors above that can be assigned to an element.

When a Named Property Set is applied to an element in a particular stage of a Load
Case, itreplaces only the values that are assigned to the element or that had been ap-
plied in a previous stage; values computed by the Direct Analysis Method of design
are also replaced. However, property modifiers specified with the section property
remain in force and are not affected by the application of a Named Property Set.
The net effect is to use the factors specified in the Named Property Set multiplied
by the factors specified in the section property.

When propery modifiers are changed in a staged construction Load Case, they do
not change the response of the structure up to that stage, but only affect subsequent
response. In other words, the effect is incremental. For example, consider a cantile-
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ver with only default (unity) property modifers, and a staged construction case as
follows:

» Stage 1: Self-weight load is applied, resulting in a tip deflection of 1.0 and
a support moment of 1000.

» Stage 2: Named Property Set “A” is applied that multiplies all stiffnesses
by 2.0, and the mass and weight by 1.0. The tip deflection and support mo-
ment do not change.

» Stage 3: Self-weight load is applied again (incrementally). The resulting
tip deflection is 1.5 and the support moment is 2000. Compared to Stage 1,
the same incremental load is applied, but the structure is twice as stiff.

» Stage 4: Named Property Set “B” is applied that multiplies all stiffnesses,
as well as the mass and weight, by 2.0. The tip deflection and support mo-
ment do not change.

» Stage 5: Self-weight load is applied again (incrementally). The resulting
tip deflection is 2.5 and the support moment is 4000. Compared to Stage 1,
twice the incremental load is applied, and the structure is twice as stiff

Insertion Point

By default the local 1 axis of the element runs along the neutral axis of the section,
i.e., at the centroid of the section. It is often convenient to specify another location
on the section, such as the top of a beam or an outside corner of a column. This loca-
tion is called the cardinal point of the section.

The available cardinal point choices are shown in Figure 21 (page 102). The default
location is point 10.

Joint offsets are specified along with the cardinal point as part of the insertion point
assignment, even though they are independent features. Joint offsets are used first
to calculate the element axis and therefore the local coordinate system, then the car-
dinal point is located in the resulting local 2-3 plane.

This feature is useful, as an example, for modeling beams and columns when the
beams do not frame into the center of the column. Figure 22 (page 103) shows an el-
evation and plan view of a common framing arrangement where the exterior beams
are offset from the column center lines to be flush with the exterior of the building.
Also shown in this figure are the cardinal points for each member and the joint off-
set dimensions.
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Frame Cardinal Points
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Frame elements are modeled as line elements connected at points (joints). How-
ever, actual structural members have finite cross-sectional dimensions. When two
elements, such as a beam and column, are connected at a joint there is some overlap
of the cross sections. In many structures the dimensions of the members are large
and the length of the overlap can be a significant fraction of the total length of a
connecting element.

You may specify two end offsets for each element using parameters ioff and joff
corresponding to ends I and J, respectively. End offset ioff is the length of overlap
for a given element with other connecting elements at joint L. It is the distance from
the joint to the face of the connection for the given element. A similar definition ap-
plies to end offset joff at joint j. See Figure 23 (page 104).

End offsets are automatically calculated by the SAP2000 graphical interface for
each element based on the maximum Section dimensions of all other elements that
connect to that element at a common joint.
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Figure 23
Frame Element End Offsets

Clear Length

The clear length, denoted L, is defined to be the length between the end offsets
(support faces) as:

L. =L —(ioff + joff )
where L is the total element length. See Figure 23 (page 104).

If end offsets are specified such that the clear length is less than 1% of the total ele-
ment length, the program will issue a warning and reduce the end offsets propor-
tionately so that the clear length is equal to 1% of the total length. Normally the end
offsets should be a much smaller proportion of the total length.

Rigid-end Factor

An analysis based upon the centerline-to-centerline (joint-to-joint) geometry of
Frame elements may overestimate deflections in some structures. This is due to the
stiffening effect caused by overlapping cross sections at a connection. It is more
likely to be significant in concrete than in steel structures.
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You may specify a rigid-end factor for each element using parameter rigid, which
gives the fraction of each end offset that is assumed to be rigid for bending and
shear deformation. The length rigid-ioff, starting from joint I, is assumed to be
rigid. Similarly, the length rigid-joff is rigid at joint j. The flexible length L » of the

element is given by:
Ly =L —rigid (ioff + joff )

The rigid-zone offsets never affect axial and torsional deformation. The full ele-
ment length is assumed to be flexible for these deformations.

The default value for rigid is zero. The maximum value of unity would indicate that
the end offsets are fully rigid. You must use engineering judgment to select the ap-
propriate value for this parameter. It will depend upon the geometry of the connec-
tion, and may be different for the different elements that frame into the connection.
Typically the value for rigid would not exceed about 0.5.

Effect upon Non-prismatic Elements

At each end of a non-prismatic element, the Section properties are assumed to be
constant within the length of the end offset. Section properties vary only along the
clear length of the element between support faces. This is not affected by the value
of the rigid-end factor, rigid.

See Subtopic “Non-prismatic Sections” (page 96) in this Chapter for more informa-
tion.

Effect upon Internal Force Output

All internal forces and moments are output at the faces of the supports and at other
equally-spaced points within the clear length of the element. No output is produced
within the end offset, which includes the joint. This is not affected by the value of
the rigid-end factor, rigid.

See Topic “Internal Force Output” (page 118) in this Chapter for more information.

Effect upon End Releases

End releases are always assumed to be at the support faces, i.e., at the ends of the
clear length of the element. If a moment or shear release is specified in either bend-
ing plane at either end of the element, the end offset is assumed to be rigid for bend-
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ing and shear in that plane at that end (i.e., it acts as if rigid = 1). This does not af-
fect the values of the rigid-end factor at the other end or in the other bending plane.

See Topic “End Releases” (page 106) in this Chapter for more information.

End Releases

106

Normally, the three translational and three rotational degrees of freedom at each
end of the Frame element are continuous with those of the joint, and hence with
those of all other elements connected to that joint. However, it is possible to release
(disconnect) one or more of the element degrees of freedom from the joint when it
is known that the corresponding element force or moment is zero. The releases are
always specified in the element local coordinate system, and do not affect any other
element connected to the joint.

In the example shown in Figure 24 (page 107), the diagonal element has a moment
connection at End I and a pin connection at End J. The other two elements connect-
ing to the joint at End J are continuous. Therefore, in order to model the pin condi-
tion the rotation R3 at End J of the diagonal element should be released. This as-
sures that the moment is zero at the pin in the diagonal element.

Unstable End Releases

Any combination of end releases may be specified for a Frame element provided
that the element remains stable; this assures that all load applied to the element is
transferred to the rest of the structure. The following sets of releases are unstable,
either alone or in combination, and are not permitted.

» Releasing Ul at both ends;

* Releasing U2 at both ends;

* Releasing U3 at both ends;

» Releasing R1 at both ends;

» Releasing R2 at both ends and U3 at either end;

» Releasing R3 at both ends and U2 at either end.

Effect of End Offsets

End releases are always applied at the support faces, i.e., at the ends of the element
clear length. The presence of a moment or shear release will cause the end offset to
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Frame Element End Releases

be rigid in the corresponding bending plane at the corresponding end of the ele-
ment.

See Topic “End Offsets” (page 102) in this Chapter for more information.

Named Property Sets

In addition to directly assigning end releases to frame elements, you can apply them
to a frame element in a staged-construction Load Case using a Named Property Set
of Frame Releases. A Named Property Set includes the same options that can be as-
signed to an element.

When propery modifiers are changed in a staged construction Load Case, they do
not change the response of the structure up to that stage, but only affect subsequent
response. In other words, the effect is incremental. For example, consider a beam
with assigned moment releases that is added between two columns in a staged con-
struction case as follows:

» Stage 1: The beam is added to an existing structure and self-weight is
applied. Because the element has moment releases assigned to it, the beam
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is added as simply-supported and has no fixed-end moments. The
mid-span moment is 1000.

» Stage 2: Named Property Set “A” is applied that has no end releases. The
mid-span moment does not change.

» Stage 3: Self-weight load is applied again (incrementally). The resulting
mid-span moment increases to 1333, and the end span moments are -667
each.

This example illustrates the common case where beams are intially added as sim-
ply-supported, then connected to provide fully moment continuity. In another com-
mon situation, two independent staged construction cases can be considered: One
for gravity load where certain members have moment releases, and the other for lat-
eral load where the same members have moment continuity. Each of these cases
can be used as the basis for further linear or nonlinear Load Cases, and the results
considered together for design.

Nonlinear Properties
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Two types of nonlinear properties are available for the Frame/Cable element: ten-
sion/compression limits and plastic hinges.

When nonlinear properties are present in the element, they only affect nonlinear
analyses. Linear analyses starting from zero conditions (the unstressed state) be-
have as if the nonlinear properties were not present. Linear analyses using the stiff-
ness from the end of a previous nonlinear analysis use the stiffness of the nonlinear
property as it existed at the end of the nonlinear case.

Tension/Compression Limits

You may specify a maximum tension and/or a maximum compression that a
frame/cable element may take. In the most common case, you can define a no-com-
pression cable or brace by specifying the compression limit to be zero.

If you specify a tension limit, it must be zero or a positive value. If you specify a
compression limit, it must be zero or a negative value. If you specify a tension and
compression limit of zero, the element will carry no axial force.

The tension/compression limit behavior is elastic. Any axial extension beyond the
tension limit and axial shortening beyond the compression limit will occur with
zero axial stiffness. These deformations are recovered elastically at zero stiffness.

Nonlinear Properties
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Bending, shear, and torsional behavior are not affected by the axial nonlinearity.

Plastic Hinge

Mass

You may insert plastic hinges at any number of locations along the clear length of
the element. Detailed description of the behavior and use of plastic hinges is pre-
sented in Chapter “Frame Hinge Properties” (page 121).

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Frame element is lumped at the joints I and j. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the integral along the length of the mass
density, m, multiplied by the cross-sectional area, a, plus the additional mass per
unit length, mpl.

For non-prismatic elements, the mass varies linearly over each non-prismatic seg-
ment of the element, and is constant within the end offsets.

The total mass is apportioned to the two joints in the same way a similarly-distrib-
uted transverse load would cause reactions at the ends of a simply-supported beam.
The effects of end releases are ignored when apportioning mass. The total mass is
applied to each of the three translational degrees of freedom: UX, UY, and UZ. No
mass moments of inertia are computed for the rotational degrees of freedom.

For more information:

* See Topic “Mass Density” (page 76) in Chapter “Material Properties.”

» See Topic “Section Properties” (page 90) in this Chapter for the definition of a
and mpl.

* See Subtopic “Non-prismatic Sections” (page 96) in this Chapter.
* See Topic “End Offsets” (page 102) in this Chapter.
* See Chapter “Static and Dynamic Analysis” (page 289).
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Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a
Frame element, the self-weight is a force that is distributed along the length of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a, plus the additional weight per unit length, wpl.

For non-prismatic elements, the self-weight varies linearly over each non-prismatic
segment of the element, and is constant within the end offsets.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:
* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the

definition of w.

» See Topic “Section Properties” (page 90) in this Chapter for the definition of a
and wpl..

* See Subtopic “Non-prismatic Sections” (page 96) in this Chapter.
* See Topic “End Offsets” (page 102) in this Chapter.
» See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

10

Gravity Load can be applied to each Frame element to activate the self-weight of
the element. Using Gravity Load, the self-weight can be scaled and applied in any
direction. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self~-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 110) in this Chapter for the definition of
self-weight for the Frame element.

» See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Self-Weight Load



Chapter VIl The Frame Element

uz 1 rz 1

Global Z Moment

Global Z Force

3 3
All loads applied
atrd=0.5
u2 1 r2 1
2 2
Local 2 Force Local 2 Moment
Z
3 3
X Global Y
Figure 25

Examples of the Definition of Concentrated Span Loads

Concentrated Span Load

The Concentrated Span Load is used to apply concentrated forces and moments at
arbitrary locations on Frame elements. The direction of loading may be specified in
a fixed coordinate system (global or alternate coordinates) or in the element local
coordinate system.

The location of the load may be specified in one of the following ways:

* Specifying a relative distance, rd, measured from joint I. This must satisfy
0<rd < 1. The relative distance is the fraction of element length;

* Specifying an absolute distance, d, measured from joint I. This must satisfy
0<d <L, where L is the element length.

Any number of concentrated loads may be applied to each element. Loads given in
fixed coordinates are transformed to the element local coordinate system. See

Concentrated Span Load i
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Figure 25 (page 111). Multiple loads that are applied at the same location are added
together.

See Chapter “Load Patterns” (page 273) for more information.

Distributed Span Load

12

The Distributed Span Load is used to apply distributed forces and moments on
Frame elements. The load intensity may be uniform or trapezoidal. The direction of
loading may be specified in a fixed coordinate system (global or alternate coordi-
nates) or in the element local coordinate system.

See Chapter “Load Patterns” (page 273) for more information.

Loaded Length

Loads may apply to full or partial element lengths. Multiple loads may be applied to
a single element. The loaded lengths may overlap, in which case the applied loads
are additive.

A loaded length may be specified in one of the following ways:

» Specifying two relative distances, rda and rdb, measured from joint I. They
must satisfy 0 < rda < rdb < 1. The relative distance is the fraction of element
length;

* Specifying two absolute distances, da and db, measured from joint I. They
must satisfy 0 < da < db < L, where L is the element length;

» Specifying no distances, which indicates the full length of the element.

Load Intensity

The load intensity is a force or moment per unit of length. Except for the case of
projected loads described below, the intensity is measured per unit of element
length.

For each force or moment component to be applied, a single load value may be
given if the load is uniformly distributed. Two load values are needed if the load in-
tensity varies linearly over its range of application (a trapezoidal load).

See Figure 26 (page 113) and Figure 27 (page 114).
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Projected Loads

A distributed snow or wind load produces a load intensity (force per unit of element
length) that is proportional to the sine of the angle between the element and the di-
rection of loading. This is equivalent to using a fixed load intensity that is measured
per unit of projected element length. The fixed intensity would be based upon the
depth of snow or the wind speed; the projected element length is measured in a
plane perpendicular to the direction of loading.

Distributed Span Loads may be specified as acting upon the projected length. The
program handles this by reducing the load intensity according to the angle, 6, be-
tween the element local 1 axis and the direction of loading. Projected force loads
are scaled by sin6, and projected moment loads are scaled by cos6. The reduced
load intensities are then applied per unit of element length.

The scaling of the moment loads is based upon the assumption that the moment is
caused by a force acting upon the projected element length. The resulting moment
is always perpendicular to the force, thus accounting for the use of the cosine in-
stead of the sine of the angle. The specified intensity of the moment should be com-
puted as the product of the force intensity and the perpendicular distance from the
element to the force. The appropriate sign of the moment must be given.

Temperature Load

Temperature Load creates thermal strain in the Frame element. This strain is given
by the product of the Material coefficient of thermal expansion and the temperature
change of the element. All specified Temperature Loads represent a change in tem-
perature from the unstressed state for a linear analysis, or from the previous temper-
ature in a nonlinear analysis.

Three independent Load Temperature fields may be specified:
* Temperature, t, which is constant over the cross section and produces axial
strains

* Temperature gradient, t2, which is linear in the local 2 direction and produces
bending strains in the 1-2 plane

* Temperature gradient, t3, which is linear in the local 3 direction and produces
bending strains in the 1-3 plane

Temperature gradients are specified as the change in temperature per unit length.
The temperature gradients are positive if the temperature increases (linearly) in the

Temperature Load 115



CSI Analysis Reference Manual

positive direction of the element local axis. The gradient temperatures are zero at
the neutral axes, hence no axial strain is induced.

Each of the three Load Temperature fields may be constant along the element
length or linearly interpolated from values given at the joints by a Joint Pattern.

See Chapter “Load Patterns” (page 273) for more information.

Strain Load

11

Six types of strain load are available, one corresponding to each of the internal
forces and moments in a frame element. These are:

+ Axial strain, g, representing change in length per unit length. Positive strain
increases the length of an unrestrained element, or causes compression in a re-
strained element.

+ Shear strains, y;, and y;3, representing change in angle per unit length. The an-
gle change is measured between the cross section and the neutral axis. Positive
shear strain causes shear deformation in the same direction as would positive
shear forces V2 and V3, respectively.

» Torsional curvature, y |, representing change in torsional angle per unit length.
Positive curvature causes deformation in the same direction as would positive
torque T.

» Bending curvatures, y, and y5, representing change in angle per unit length.
The angle is measured between adjacent sections that remain normal to the
neutral axis. Positive curvature causes bending deformation in the same direc-
tion as would positive moments M2 and M3, respectively.

Each of the Strain Loads may be constant along the element length or linearly inter-
polated from values given at the joints by a Joint Pattern.

In an unrestrained element, strain loads cause deformation between the two ends of
the element, but induce no internal forces. This unrestrained deformation has the
same sign as would deformation caused by the corresponding (conjugate) forces
and moments acting on the element. On the other hand, strain loading in a re-
strained element causes corresponding internal forces that have the opposite sign as
the applied strain. Most elements in a real structure are connected to finite stiffness,
and so strain loading would cause both deformation and internal forces. Note that
the effects of shear and bending strain loading are coupled.

Strain Load
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For more information, see Topic “Internal Force Output” (page 118) in this chapter,
and also Chapter “Load Patterns” (page 273.)

Deformation Load

While Strain Load specifies a change in deformation per unit length, Deformation
Load specifies the total deformation between the two ends of an unrestrained ele-
ment. Deformation Load is internally converted to Strain Load, so you should
choose whichever type of loading is most conveniently specified for your particular
application.

Currently only axial Deformation Load is available. The specified axial deforma-
tion is converted to axial Strain Load by simply dividing by the element length. The
computed strain loads are assumed to be constant along the length of the element.

See Chapter “Load Patterns” (page 273) for more information.

Target-Force Load

Target-Force Load is a special type of loading where you specify a desired axial
force, and deformation load is iteratively applied to achieve the target force. Since
the axial force may vary along the length of the element, you must also specify the
relative location where the desired force is to occur. Target-Force loading is only
used for nonlinear static and staged-construction analysis. If applied in any other
type of Load Case, it has no effect.

Unlike all other types of loading, target-force loading is not incremental. Rather,
you are specifying the total force that you want to be present in the frame element at
the end of the Load Case or construction stage. The applied deformation that is cal-
culated to achieve that force may be positive, negative, or zero, depending on the
force present in the element at the beginning of the analysis. When a scale factor is
applied to a Load Pattern that contains Target-Force loads, the total target force is
scaled. The increment of applied deformation that is required may change by a dif-
ferent scale factor.

See Topic “Target-Force Load” (page 283) in Chapter “Load Patterns” and Topic
“Target-Force Iteration” (page 379) in Chapter “Nonlinear Static Analysis” for
more information.
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Internal Force Output
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The Frame element internal forces are the forces and moments that result from in-
tegrating the stresses over an element cross section. These internal forces are:

* P, the axial force

* V2, the shear force in the 1-2 plane

» V3, the shear force in the 1-3 plane

» T, the axial torque

* M2, the bending moment in the 1-3 plane (about the 2 axis)

* M3, the bending moment in the 1-2 plane (about the 3 axis)

These internal forces and moments are present at every cross section along the
length of the element, and may be requested as part of the analysis results.

The sign convention is illustrated in Figure 28 (page 119). Positive internal forces
and axial torque acting on a positive 1 face are oriented in the positive direction of
the element local coordinate axes. Positive internal forces and axial torque acting
on a negative face are oriented in the negative direction of the element local coordi-
nate axes. A positive 1 face is one whose outward normal (pointing away from ele-
ment) is in the positive local 1 direction.

Positive bending moments cause compression at the positive 2 and 3 faces and ten-
sion at the negative 2 and 3 faces. The positive 2 and 3 faces are those faces in the
positive local 2 and 3 directions, respectively, from the neutral axis.

Effect of End Offsets

When end offsets are present, internal forces and moments are output at the faces of
the supports and at points within the clear length of the element. No output is pro-
duced within the length of the end offset, which includes the joint. Output will only
be produced at joints I or j when the corresponding end offset is zero.

See Topic “End Offsets” (page 102) in this Chapter for more information.
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Frame Hinge Properties

You may insert plastic hinges at any number of locations along the clear length of
any Frame element or Tendon object. Each hinge represents concentrated
post-yield behavior in one or more degrees of freedom. Hinges only affect the be-
havior of the structure in nonlinear static and nonlinear direct-integration time-his-
tory analyses.

Advanced Topics

Overview

Hinge Properties

Automatic, User-Defined, and Generated Properties
Automatic Hinge Properties

Analysis Results

Overview

Yielding and post-yielding behavior can be modeled using discrete user-defined
hinges. Currently hinges can only be introduced into frame elements; they can be
assigned to a frame element at any location along that element. Uncoupled moment,
torsion, axial force and shear hinges are available. There is also a coupled
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P-M2-M3 hinge which yields based on the interaction of axial force and bi-axial
bending moments at the hinge location. Subsets of this hinge include P-M2, P-M3,
and M2-M3 behavior.

More than one type of hinge can exist at the same location, for example, you might
assign both an M3 (moment) and a V2 (shear) hinge to the same end of a frame ele-
ment. Hinge properties can be computed automatically from the element material
and section properties according to FEMA-356 (FEMA, 2000) criteria.

Hinges only affect the behavior of the structure in nonlinear static and nonlinear di-
rect-integration time-history analyses.

Strength loss is permitted in the hinge properties, and in fact the FEMA hinges as-
sume a sudden loss of strength. However, you should use this feature judiciously.
Sudden strength loss is often unrealistic and can be very difficult to analyze, espe-
cially when elastic snap-back occurs. We encourage you to consider strength loss
only when necessary, to use realistic negative slopes, and to carefully evaluate the
results.

To help with convergence, the program automatically limits the negative slope of a
hinge to be no stiffer than 10% of the elastic stiffness of the Frame element contain-
ing the hinge. This is a new feature, and may cause significant changes in analysis
results compared to previous versions. If you need steeper slopes, you can assign a
hinge overwrite that automatically meshes the frame element around the hinge. By
reducing the size of the meshed element, you can increase the steepness of the
drop-off.

Everything in this Chapter applies to Tendon objects as well as to Frame elements,
although usually only the use of axial hinges makes sense for Tendons.

Hinge Properties
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A hinge property is a named set of rigid-plastic properties that can be assigned to
one or more Frame elements. You may define as many hinge properties as you
need.

For each force degree of freedom (axial and shears), you may specify the plastic
force-displacement behavior. For each moment degree of freedom (bending and
torsion) you may specify the plastic moment-rotation behavior. Each hinge prop-
erty may have plastic properties specified for any number of the six degrees of free-
dom. The axial force and the two bending moments may be coupled through an in-
teraction surface. Degrees of freedom that are not specified remain elastic.

Hinge Properties
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The same type of curve is used for Moment vs. Rotation

Hinge Length

Each plastic hinge is modeled as a discrete point hinge. All plastic deformation,
whether it be displacement or rotation, occurs within the point hinge. This means
you must assume a length for the hinge over which the plastic strain or plastic cur-
vature is integrated.

There is no easy way to choose this length, although guidelines are given in
FEMA-356. Typically it is a fraction of the element length, and is often on the order
of the depth of the section, particularly for moment-rotation hinges.

Y ou can approximate plasticity that is distributed over the length of the element by
inserting many hinges. For example, you could insert ten hinges at relative loca-
tions within the element 0f 0.05, 0.15, 0.25, ..., 0.95, each with deformation proper-
ties based on an assumed hinge length of one-tenth the element length. Of course,
adding more hinges will add more computational cost, although it may not be too
significant if they don’t actually yield.
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Plastic Deformation Curve

For each degree of freedom, you define a force-displacement (moment-rotation)
curve that gives the yield value and the plastic deformation following yield. This is
done in terms of a curve with values at five points, A-B-C-D-E, as shown in Figure
29 (page 123). You may specify a symmetric curve, or one that differs in the posi-
tive and negative direction.

The shape of this curve as shown is intended for pushover analysis. You can use
any shape you want. The following points should be noted:

* Point A is always the origin.

* Point B represents yielding. No deformation occurs in the hinge up to point B,
regardless of the deformation value specified for point B. The displacement
(rotation) at point B will be subtracted from the deformations at points C, D,
and E. Only the plastic deformation beyond point B will be exhibited by the
hinge.

* Point C represents the ultimate capacity for pushover analysis. However, you
may specify a positive slope from C to D for other purposes.

* Point D represents a residual strength for pushover analysis. However, you
may specify a positive slope from C to D or D to E for other purposes.

* Point E represent total failure. Beyond point E the hinge will drop load down to
point F (not shown) directly below point E on the horizontal axis. If you do not
want your hinge to fail this way, be sure to specify a large value for the defor-
mation at point E.

You may specify additional deformation measures at points IO (immediate occu-
pancy), LS (life safety), and CP (collapse prevention). These are informational
measures that are reported in the analysis results and used for performance-based
design. They do not have any effect on the behavior of the structure.

Prior to reaching point B, all deformation is linear and occurs in the Frame element
itself, not the hinge. Plastic deformation beyond point B occurs in the hinge in addi-
tion to any elastic deformation that may occur in the element.

When the hinge unloads elastically, it does so without any plastic deformation, i.e.,
parallel to slope A-B.
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Scaling the Curve

When defining the hinge force-deformation (or moment-rotation) curve, you may
enter the force and deformation values directly, or you may enter normalized values
and specify the scale factors that you used to normalized the curve.

In the most common case, the curve would be normalized by the yield force (mo-
ment) and yield displacement (rotation), so that the normalized values entered for
point B would be (1,1). However, you can use any scale factors you want. They do
not have to be yield values.

Remember that any deformation given from A to B is not used. This means that the
scale factor on deformation is actually used to scale the plastic deformation from B
to C, Cto D, and D to E. However, it may still be convenient to use the yield defor-
mation for scaling.

When automatic hinge properties are used, the program automatically uses the
yield values for scaling. These values are calculated from the Frame section proper-
ties. See the next topic for more discussion of automatic hinge properties.

Strength Loss

Strength loss is permitted in the hinge properties, and in fact the FEMA hinges as-
sume a sudden loss of strength. However, you should use this feature judiciously.
Any loss of strength in one hinge causes load redistribution within the structure,
possibly leading to failure of another hinge, and ultimately causing progressive col-
lapse. This kind of analysis can be difficult and time consuming. Furthermore, any
time negative stiffnesses are present in the model, the solution may not be mathe-
matically unique, and so may be of questionable value.

Sudden strength loss (steep negative stiffness) is often unrealistic and can be even
more difficult to analyze. When an unloading plastic hinge is part of a long beam or
column, or is in series with any flexible elastic subsytem, “elastic snap-back” can
occur. Here the elastic unloading deflection is larger than, and of opposite sign to,
the plastic deformation. This results in the structure deflecting in the direction op-
posite the applied load. SAP2000 and ETABS have several built-in mechanisms to
deal with snap-back, but these may not always be enough to handle several simulta-
neous snap-back hinge failures.

Consider carefully what you are trying to accomplish with your analysis. A well de-
signed structure, whether new or retrofitted, should probably not have strength loss
in any primary members. If an analysis shows strength loss in a primary member,
you may want to modify the design and then re-analyze, rather than trying to push
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the analysis past the first failure of the primary members. Since you need to re-de-
sign anyway, what happens after the first failure is not relevant, since the behavior
will become changed.

To help with convergence, the program automatically limits the negative slope of a
hinge to be no stiffer than 10% of the elastic stiffness of the Frame element contain-
ing the hinge. By doing this, snap-back is prevented within the element, although it
may still occur in the larger structure. This is a new feature, and may cause signifi-
cant changes in analysis results compared to previous versions.

If you need steeper slopes, you can assign a Frame Hinge Overwrite that automati-
cally meshes the Frame object around the hinge. When you assign this overwrite,
you can specify what fraction of the Frame object length should be used for the ele-
ment that contains the hinge. For example, consider a Frame object containing one
hinge at each end, and one in the middle. If you assign a Frame Hinge Overwrite
with a relative length of 0.1, the object will be meshed into five elements of relative
lengths 0.05, 0.4, 0.1, 0.4, and 0.05. Each hinge is located at the center of an ele-
ment with 0.1 relative length, but because two of the hinges fall at the ends of the
object, half of their element lengths are not used. Because these elements are
shorter than the object, their elastic stiffnesses are larger, and the program will per-
mit larger negative stiffnesses in the hinges.

By reducing the size of the meshed element, you can increase the steepness of the
drop-off, although the slope will never be steeper than you originally specified for
the hinge. Again, we recommend gradual, realistic slopes whenever possible, un-
less you truly need to model brittle behavior.

Coupled P-M2-M3 Hinge

Normally the hinge properties for each of the six degrees of freedom are uncoupled
from each other. However, you have the option to specify coupled axial-force/bi-
axial-moment behavior. This is called the P-M2-M3 or PMM hinge. See also the
Fiber P-M2-M3 hinge below.

Tension is Always Positive!

It is important to note that SAP2000 uses the sign convention where tension is al-
ways positive and compression is always negative, regardless of the material being
used. This means that for some materials (e.g., concrete) the interaction surface
may appear to be upside down.
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Interaction (Yield) Surface

For the PMM hinge, you specify an interaction (yield) surface in three-dimensional
P-M2-M3 space that represents where yielding first occurs for different combina-
tions of axial force P, minor moment M2, and major moment M3.

The surface is specified as a set of P-M2-M3 curves, where P is the axial force (ten-
sion is positive), and M2 and M3 are the moments. For a given curve, these mo-
ments may have a fixed ratio, but this is not necessary. The following rules apply:

* All curves must have the same number of points.

* For each curve, the points are ordered from most negative (compressive) value
of P to the most positive (tensile).

* The three values P, M2 and M3 for the first point of all curves must be identical,
and the same is true for the last point of all curves

* When the M2-M3 plane is viewed from above (looking toward compression),
the curves should be defined in a counter-clockwise direction

* The surface must be convex. This means that the plane tangent to the surface at
any point must be wholly outside the surface. If you define a surface that is not
convex, the program will automatically increase the radius of any points which
are “pushed in” so that their tangent planes are outside the surface. A warning
will be issued during analysis that this has been done.

You can explicitly define the interaction surface, or let the program calculate it us-
ing one of the following formulas:

» Steel, AISC-LRFD Equations HI-1a and H1-1b with phi =1

» Steel, FEMA-356 Equation 5-4

* Concrete, ACI 318-02 with phi =1

You may look at the hinge properties for the generated hinge to see the specific sur-
face that was calculated by the program.

Moment-Rotation Curves

For PMM hinges you specify one or more moment/plastic-rotation curves corre-
sponding to different values of P and moment angle 6. The moment angle is mea-

sured in the M2-M3 plane, where 0° is the positive M2 axis, and 90° is the positive
M3 axis.
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You may specify one or more axial loads P and one or more moment angles 0. For
each pair (P,0), the moment-rotation curve should represent the results of the fol-
lowing experiment:

* Apply the fixed axial load P.

* Increase the moments M2 and M3 in a fixed ratio (cos 6, sin 0) corresponding
to the moment angle 0.

* Measure the plastic rotations Rp2 and Rp3 that occur after yield.

* Calculate the resultant moment M = M2*cos 6 + M3*sin 0, and the projected
plastic rotation Rp = Rp2*cos 6 + Rp3*sin 6 at each measurement increment

* Plot M vs. Rp, and supply this data to SAP2000

Note that the measured direction of plastic strain may not be the same as the direc-
tion of moment, but the projected value is taken along the direction of the moment.
In addition, there may be measured axial plastic strain that is not part of the projec-
tion. However, during analysis the program will recalculate the total plastic strain
based on the direction of the normal to the interaction (yield) surface.

During analysis, once the hinge yields for the first time, i.e., once the values of P,
M2 and M3 first reach the interaction surface, a net moment-rotation curve is inter-
polated to the yield point from the given curves. This curve is used for the rest of the
analysis for that hinge.

Ifthe values of P, M2, and M3 change from the values used to interpolate the curve,
the curve is adjusted to provide an energy equivalent moment-rotation curve. This
means that the area under the moment-rotation curve is held fixed, so that if the re-
sultant moment is smaller, the ductility is larger. This is consistent with the under-
lying stress strain curves of axial “fibers” in the cross section.

As plastic deformation occurs, the yield surface changes size according to the shape
of the M-Rp curve, depending upon the amount of plastic work that is done. You
have the option to specify whether the surface should change in size equally in the
P, M2, and M3 directions, or only in the M2 and M3 directions. In the latter case,
axial deformation behaves as if it is perfectly plastic with no hardening or collapse.
Axial collapse may be more realistic in some hinges, but it is computationally diffi-
cult and may require nonlinear direct-integration time-history analysis if the struc-
ture is not stable enough the redistribute any dropped gravity load.

Hinge Properties
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Fiber P-M2-M3 Hinge

The Fiber P-M2-M3 (Fiber PMM) hinge models the axial behavior of a number of
representative axial “fibers” distributed across the cross section of the frame ele-
ment. Each fiber has a location, a tributary area, and a stress-strain curve. The axial
stresses are integrated over the section to compute the values of P, M2 and M3.
Likewise, the axial deformation U1 and the rotations R2 and R3 are used to com-

pute the axial strains in each fiber.

You can define you own fiber hinge, explicitly specifying the location, area, mate-
rial and its stress-strain curve for each fiber, or you can let the program automati-

cally create fiber hinges for circular and rectangular frame sections.

The Fiber PMM hinge is more “natural” than the Coupled PMM hinge described
above, since it automatically accounts for interaction, changing moment-rotation
curve, and plastic axial strain. However, it is also more computationally intensive,
requiring more computer storage and execution time. You may have to experiment
with the number of fibers needed to get an optimum balance between accuracy and

computational efficiency.

Strength loss in a fiber hinge is determined by the strength loss in the underlying
stress-strain curves. Because all the fibers in a cross section do not usually fail at the
same time, the overall hinges tend to exhibit more gradual strength loss than hinges
with directly specified moment-rotation curves. This is especially true if reasonable
hinge lengths are used. For this reason, the program does not automatically restrict
the negative drop-off slopes of fiber hinges. However, we still recommend that you
pay close attention to the modeling of strength loss, and modify the stress-strain

curves if necessary.

For more information:

* See Topic “Stress-Strain Curves” (page 80) in Chapter “Material Properties.”

» See Topic “Section-Designer Sections” (page 96) Chapter “The Frame Ele-

ment.”

Automatic, User-Defined, and Generated Properties

There are three types of hinge properties in SAP2000:

* Automatic hinge properties

» User-defined hinge properties

Automatic, User-Defined, and Generated Properties
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* Generated hinge properties

Only automatic hinge properties and user-defined hinge properties can be assigned
to frame elements. When automatic or user-defined hinge properties are assigned to
a frame element, the program automatically creates a generated hinge property for
each and every hinge.

The built-in automatic hinge properties for steel members are based on Table 5-6 in
FEMA-356. The built-in automatic hinge properties for concrete members are
based on Tables 6-7 and 6-8 in FEMA-356, or on Caltrans specifications for con-
crete columns. After assigning automatic hinge properties to a frame element, the
program generates a hinge property that includes specific information from the
frame section geometry, the material, and the length of the element. You should re-
view the generated properties for their applicability to your specific project.

User-defined hinge properties can either be based on a hinge property generated
from automatic property, or they can be fully user-defined.

A generated property can be converted to user-defined, and then modified and
re-assigned to one or more frame elements. This way you can let the program do
much of the work for you using automatic properties, but you can still customize
the hinges to suit your needs. However, once you convert a generated hinge to
user-defined, it will no longer change if you modify the element, its section or ma-
terial.

It is the generated hinge properties that are actually used in the analysis. They can
be viewed, but they can not be modified. Generated hinge properties have an auto-
matic naming convention of LabelH#, where Label is the frame element label, H
stands for hinge, and # represents the hinge number. The program starts with hinge
number 1 and increments the hinge number by one for each consecutive hinge ap-
plied to the frame element. For example if a frame element label is F23, the gener-
ated hinge property name for the second hinge assigned to the frame element is
F23H2.

The main reason for the differentiation between defined properties (in this context,
defined means both automatic and user-defined) and generated properties is that
typically the hinge properties are section dependent. Thus it would be necessary to
define a different set of hinge properties for each different frame section type in the
model. This could potentially mean that you would need to define a very large num-
ber of hinge properties. To simplify this process, the concept of automatic proper-
ties is used in SAP2000. When automatic properties are used, the program com-
bines its built-in default criteria with the defined section properties for each ele-
ment to generate the final hinge properties. The net effect of this is that you do sig-

Automatic, User-Defined, and Generated Properties



Chapter VIIl  Frame Hinge Properties

nificantly less work defining the hinge properties because you don’t have to define
each and every hinge.

Automatic Hinge Properties

Automatic hinge properties are based upon a simplified set of assumptions that may
not be appropriate for all structures. Y ou may want to use automatic properties as a
starting point, and then convert the corresponding generated hinges to user-defined
and explicitly override calculated values as needed.

Automatic properties require that the program have detailed knowledge of the
Frame Section property used by the element that contains the hinge. For this reason,
only the following types of automatic hinges are available:

Concrete Beams in Flexure

M2 or M3 hinges can be generated using FEMA Table 6-7 (I) for the following
shapes:

* Rectangle

e Tee

* Angle

» Section Designer

Concrete Columns in Flexure

M2, M3, M2-M3, P-M2, P-M3, or P-M2-M3 hinges can be generated using
FEMA Table 6-8 (1), for the following shapes:

* Rectangle
» Circle

* Section Designer
or using Caltrans specifications, for the following shapes:

* Section Designer only

Steel Beams in Flexure

M2 or M3 hinges can be generated using FEMA Table 5-6, for the following
shapes:
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— I/Wide-flange only

Steel Columns in Flexure

M2, M3, M2-M3, P-M2, P-M3, or P-M2-M3 hinges can be generated using
FEMA Table 5-6, for the following shapes:
* [/Wide-flange

¢ Box

Steel Braces in Tension/Compression

P (axial) hinges can be generated using FEMA Table 5-6, for the following
shapes:

* [/Wide-flange

* Box

* Pipe

* Double channel

* Double angle

Fiber Hinge

P-M2-M3 hinges can be generated for steel or reinforced concrete members us-
ing the underlying stress-strain behavior of the material for the following
shapes:

e Rectangle

¢ Circle

Additional Considerations

You must make sure that all required design information is available to the Frame
section as follows:

» For concrete Sections, the reinforcing steel must be explicitly defined, or else
the section must have already been designed by the program before nonlinear
analysis is performed

» For steel Sections, Auto-select Sections can only be used if they have already
been designed so that a specific section has been chosen before nonlinear anal-
ysis is performed
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For more information, see the on-line help that is available while assigning auto-
matic hinges to Frame elements in the Graphical User Interface.

Analysis Results

For each output step in a nonlinear static or nonlinear direct-integration time-his-
tory Load Case, you may request analysis results for the hinges. These results in-
clude:

* The forces and/or moments carried by the hinge. Degrees of freedom not de-
fined for the hinge will report zero values, even though non-zero values are car-
ried rigidly through the hinge.

* The plastic displacements and/or rotations.

» The most extreme state experienced by the hinge in any degree of freedom.
This state does not indicate whether it occurred for positive or negative defor-
mation:

AtoB
— BtoC
CtoD
DtoE
_ >E

* The most extreme performance status experienced by the hinge in any degree
of freedom. This status does not indicate whether it occurred for positive or
negative deformation:

— AtoB
— BtoIO
I0to LS
— LSto CP
- >CP

When you display the deflected shape in the graphical user interface for a nonlinear
static or nonlinear direct-integration time-history Load Case, the hinges are plotted
as colored dots indicating their most extreme state or status:

e BtoIO
e« JOtoLS
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* LStoCP
*« CPtoC
« CtoD
s DtoE
e« >E

The colors used for the different states are indicated on the plot. Hinges that have
not experienced any plastic deformation (A to B) are not shown.
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The Cable Element

The Cable element is a highly nonlinear element used to model the catenary behav-
ior of slender cables under their own self-weight. Tension-stiffening and large-de-
flections nonlinearity are inherently included in the formulation. Nonlinear analy-
sis is required to make use of the Cable element. Linear analyses can be performed
that use the stiffness from the end of nonlinear Load Cases.

Advanced Topics

* Overview

» Joint Connectivity
* Undeformed Length
* Shape Calculator

* Degrees of Freedom
* Local Coordinate System
» Section Properties
* Property Modifiers
* Mass

» Self-Weight Load
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* Gravity Load

 Distributed Span Load

e Temperature Load

* Strain and Deformation Load
» Target-Force Load

* Nonlinear Analysis

e Element Output

Overview
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The Cable element uses an elastic catenary formulation to represent the behavior of
a slender cable under its own self-weight, temperature, and strain loading. This be-
havior is highly nonlinear, and inherently includes tension-stiffening (P-delta) and
large-deflection effects. Slack and taut behavior is automatically considered.

In the graphical user interface, you can draw a cable object connecting any two
points. A shape calculator is available to help you determine the undeformed length
of the cable. The undeformed length is extremely critical in determining the behav-
ior of the cable.

An unloaded, slack cable is not stable and has no unique position. Therefore linear
Load Cases that start from zero initial conditions may be meaningless. Instead, all
linear Load Cases should use the stiffness from the end of a nonlinear static Load
Case in which all cables are loaded by their self-weight or other transverse load. For
cases where no transverse load is present on a slack Cable element, the program
will internally assume a very small self-weight load in order to obtain a unique
shape. However, it is better if you apply a realistic load for this purpose.

Each Cable element may be loaded by gravity (in any direction), distributed forces,
strain and deformation loads, and loads due to temperature change. To apply con-
centrated loads, a cable should be divided at the point of loading, and the force ap-
plied to the connecting joint.

Target-force loading is available that iteratively applies deformation load to the ca-
ble to achieve a desired tension.

Element output includes the axial force and deflected shape at a user-specified
number of equally-spaced output stations along the length of the element.

Overview
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You have the option when drawing a cable object in the model to use the catenary
element of this chapter, or to model the cable as a series of straight frame elements.
Using frame elements allows you to consider material nonlinearity and compli-
cated loading, but the catenary formulation is better suited to most applications.

Joint Connectivity

A Cable element is represented by a curve connecting two joints, I and j. The two
joints must not share the same location in space. The two ends of the element are
denoted end I and end J, respectively.

The shape of the cable is defined by undeformed length of the cable and the load
acting on it, unless it is taut with no transverse load, in which case it is a straight
line.

Undeformed Length

In the graphical user interface, you can draw a cable object connecting any two
points. A shape calculator is available to help you determine the undeformed length
of the cable. The relationship between the undeformed length and the chord length
(the distance between the two end joints) is extremely critical in determining the
behavior of the cable.

In simple terms, when the undeformed length is longer that the chord length, the ca-
ble is slack and has significant sag. When the undeformed length is shorter than the
chord length, the cable is taut and carries significant tension with little sag.

When transverse load acts on the cable, there is a transition range where the
undeformed length is close to the chord length. In this regime, the tension and sag
interact in a highly nonlinear way with the transverse load.

Temperature, strain, and distortion loads can change the length of the cable. The ef-
fect of these changes is similar to changing the undeformed length, except that they
do not change the weight of the cable. Strain in the cable due to any source is calcu-
lated as the difference between the total length and the undeformed length, divided
by the undeformed length (engineering strain).

If the undeformed length of a cable is shorter than the chord length at the beginning
of a nonlinear analysis, or when the cable is added to the structure during staged
construction, tension will immediately exist in the cable and iteration may be re-
quired to bring the structure into equilibrium before any load is applied.
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The ultimate purpose of the shape calculator (also called Cable Layout form) in the
graphical user interface is to help you calculate the undeformed length of a cable
object. By default, the undeformed length is assumed to be equal to the chord
length between the undeformed positions of the two end joints.

You may specify a vertical load acting on the cable consisting of:

» Self-weight (always included in the shape calculator)
» Additional weight per unit of undeformed length of the cable
» Addition load per unit horizontal length between the two joints
Note that these loads are only used in the shape calculator. They are not applied to

the element during analysis. Loads to be used for analysis must be assigned to the
elements in Load Patterns.

You may choose one of the following ways to calculate the undeformed length:
* Specifying the undeformed length, either absolute or relative to the chord
length
* Specifying the maximum vertical sag, measured from the chord to the cable

* Specifying the maximum low-point sag, measured from the joint with the
lowest Z elevation to the lowest point on the cable

* Specifying the constant horizontal component of tension in the cable
* Specifying the tension at either end of the cable

* Requesting the shape which gives the minimum tension at either end of the
cable

See Figure 30 (page 139) for a description of the cable geometry.

Note that there does exist an undeformed length that yields a minimum tension at
either end of the cable. Longer cables carry more self weight, increasing the ten-
sion. Shorter cables are tauter, also increasing the tension. If you intend to specify
the tension at either end, it is a good idea first to determine what is the minimum
tension, since attempts to specify a lower tension will fail. When a larger value of
tension is specified, the shorter solution will be returned.

It is important to note that the shape calculated here may not actually occur during
any Load Case, nor are the tensions calculated here directly imposed upon the ca-
ble. Only the cable length is determined. The deformed shape of the cable and the

Shape Calculator
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Ti
1, J = Joints
L, =Undeformed length
Lc =Chord length
H = Horizontal force
Tl = Tension at Joint |
D St TJ = Tension at Joint J
H |
T,
EA = Stiffness /
w = Weight per length »—
H ULow
Uyax = Maximum vertical sag
U ow = Low-point sag
Figure 30
Cable Element, showing connectivity, local axes, dimensions, properties, and
shape parameters

tensions it carries will depend upon the loads applied and the behavior of the struc-
ture during analysis. For example, the shape calculator assumes that the two end
joints remain fixed. However, if the cable is connected to a deforming structure, the
chord length and its orientation may change, yielding a different solution.

Cable vs. Frame Elements

In the shape calculator, you may specify whether the cable is to be modeled with the
catenary element of this chapter, or using straight frame elements.

If you are interested in highly variable loading or material nonlinearity, using frame
elements may be appropriate. Large-deflection geometrically nonlinear analysis of
the entire structure will be needed to capture full cable behavior. P-delta analysis
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with compression limits may be sufficient for some applications. For more infor-
mation, see Chapter “The Frame Element” (page 81).

For most cable applications, however, the catenary cable element is a better choice,
especially if the cable is very slender, or significant support movement is expected.
Nonlinear analysis is still required, but the geometric nonlinearity (P-delta and/or
large-deflection behavior) of the catenary element will be considered internally re-
gardless of how the rest of the structure is treated.

Number of Segments

In the shape calculator, you may specify the number of segments into which the ca-
ble object should be broken. Each segment will be modeled as a single catenary ca-
ble or single frame element.

For the catenary element, a single segment is usually the best choice unless you are
considering concentrated loads or intermediate masses for cable vibration.

For the frame element, multiple segments (usually at least eight, and sometimes
many more) are required to capture the shape variation, unless you are modeling a
straight stay or brace, in which case a single segment may suffice.

For more information, see Chapter “Objects and Elements” (page 7)

Degrees of Freedom

The Cable element activates the three translational degrees of freedom at each of its
connected joints. Rotational degrees of freedom are not activated. This element
contributes stiffness to all of these translational degrees of freedom.

For more information, see Topic “Degrees of Freedom” (page 30) in Chapter
“Joints and Degrees of Freedom.”

Local Coordinate System

140

Each Cable element has its own element local coordinate system which can be
used to define loads acting on the element. The axes of this local system are denoted
1,2 and 3. The first axis is directed along the chord connecting the two joints of the
element; the remaining two axes lie in the plane perpendicular to the chord with an
orientation that you specify. This coordinate system does not necessarily corre-
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spond to the direction of sag of the cable, and does not change as the direction of
sag changes during loading.

The definition of the cable element local coordinate system is not usually important
unless you want to apply concentrated or distributed span loads in the element local
system.

The definition of the Cable local coordinate system is exactly the same as for the
Frame element. For more information, see Topics “Local Coordinate System”
(page 85) and “Advanced Local Coordinate System” (page 86) in Chapter “The
Frame Element.”

Section Properties

A Cable Section is a set of material and geometric properties that describe the
cross-section of one or more Cable elements. Sections are defined independently of
the Cable elements, and are assigned to the elements.

Cable Sections are always assumed to be circular. You may specify either the diam-
eter or the cross-sectional area, from which the other value is computed. Bending
moments of inertia, the torsional constant, and shear areas are also computed by the
program for a circular shape.

Material Properties

The material properties for the Section are specified by reference to a previ-
ously-defined Material. Isotropic material properties are used, even if the Material
selected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

* The modulus of elasticity, el, for axial stiffness

* The coefficient of thermal expansion, al, for temperature loading

* The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads
The material properties el and al are obtained at the material temperature of each

individual Cable element, and hence may not be unique for a given Section. See
Chapter “Material Properties” (page 69) for more information.
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Geometric Properties and Section Stiffnesses

Mass

For the catenary formulation, the section has only axial stiffness, given by a -el,
where a is the cross-sectional area and el is the modulus of elasticity.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Cable element is lumped at the joints I and j. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the undeformed length of the element mul-
tiplied by the mass density, m, and by the cross-sectional area, a. It is apportioned
equally to the two joints. The mass is applied to each of the three translational de-
grees of freedom: UX, UY, and UZ.

To capture dynamics of a cable itself, it is necessary to divide the cable object into
multiple segments. A minimum of four segments is recommended for this purpose.
For many structures, cable vibration is not important, and no subdivision is neces-

sary.
For more information:

* See Topic “Mass Density” (page 76) in Chapter “Material Properties.”

* See Topic “Section Properties” (page 141) in this Chapter for the definition of
a.

* See Chapter “Static and Dynamic Analysis” (page 289).

Self-Weight Load
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Self-Weight Load activates the self-weight of all elements in the model. For a Ca-
ble element, the self-weight is a force that is distributed along the arc length of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a. As the cable stretches, the magnitude is corre-
spondingly reduced, so that the total load does not change.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

Mass
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For more information:

* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the
definition of w.

* See Topic “Section Properties” (page 141) in this Chapter for the definition of
a.

* See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Cable element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element. The
magnitude of a unit gravity load is equal to the weight density, w, multiplied by the
cross-sectional area, a. As the cable stretches, the magnitude is correspondingly re-
duced, so that the total load does not change.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 110) in this Chapter for the definition of
self-weight for the Frame element.

* See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Distributed Span Load

The Distributed Span Load is used to apply distributed forces on Cable elements.
The load intensity may be specified as uniform or trapezoidal. However, the load is
actually applied as a uniform load per unit of undeformed length of the cable.

The total load is calculated and divided by the undeformed length to determine the
magnitude of load to apply. As the cable stretches, the magnitude is correspond-
ingly reduced, so that the total load does not change.

The direction of loading may be specified in a fixed coordinate system (global or
alternate coordinates) or in the element local coordinate system.
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To model the effect of a non-uniform distributed load on a catenary cable object,
specify multiple segments for the single cable object. The distributed load on the
object will be applied as piecewise uniform loads over the segments.

For more information:
» See Topic “Distributed Span Load” (page 112) in Chapter “The Frame Ele-
ment.”

* See Chapter “Objects and Elements” (page 7) for how a single cable object is
meshed into elements (segments) at analysis time.

* See Chapter “Load Patterns” (page 273).

Temperature Load

Temperature Load creates axial thermal strain in the Cable element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. All specified Temperature Loads represent a
change in temperature from the unstressed state for a linear analysis, or from the
previous temperature in a nonlinear analysis.

The Load Temperature may be constant along the element length or interpolated
from values given at the joints.

See Chapter “Load Patterns” (page 273) for more information.

Strain and Deformation Load

Axial Strain and Deformation Load change the length of the cable element. Defor-
mation Load is the total change in length, whereas Strain Load is the change in
length per unit of undeformed length. Positive values of these loads increase sag
and tend to reduce tension in the cable, while negative values tighten up the cable
and tend to increase tension.

See Chapter “Load Patterns” (page 273) for more information.

Target-Force Load

Target-Force Load is a special type of loading where you specify a desired cable
tension, and deformation load is iteratively applied to achieve the target tension.
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Since the tension may vary along the length of the cable, you must also specify the
relative location where the desired tension is to occur. Target-Force loading is only
used for nonlinear static and staged-construction analysis. If applied in any other
type of Load Case, it has no effect.

Unlike all other types of loading, target-force loading is not incremental. Rather,
you are specifying the total force that you want to be present in the cable element at
the end of the Load Case or construction stage. The applied deformation that is cal-
culated to achieve that force may be positive, negative, or zero, depending on the
force present in the element at the beginning of the analysis. When a scale factor is
applied to a Load Pattern that contains Target-Force loads, the total target force is
scaled. The increment of applied deformation that is required may change by a dif-
ferent scale factor.

See Topic “Target-Force Load” (page 283) in Chapter “Load Patterns” and Topic
“Target-Force Iteration” (page 379) in Chapter “Nonlinear Static Analysis” for
more information.

Nonlinear Analysis

Nonlinear analysis is required to get meaningful results with the Cable element.
Linear analyses can be performed, but they should always use the stiffness from the
end of a nonlinear static Load Case in which all cables are loaded by their
self-weight or other transverse load. For cases where no transverse load is present
on a slack Cable element, the program will internally assume a very small
self-weight load in order to obtain a unique shape. However, it is better if you apply
a realistic load for this purpose.

Models with Cable elements will usually converge better if you allow a large num-
ber of Newton-Raphson iterations in the Load Case, say 25 or more. Convergence
behavior is generally improved by using fewer segments in the cable object, and by
applying larger load increments. Note that this is the opposite behavior than can be
expected for cables modeled as frames, where using more segments and smaller
load increments is usually advantageous.

Element Output

The catenary Cable element produces axial force (tension only) and displacement
output along its length.
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Chapter X

The Shell Element

The Shell element is a type of area object that is used to model membrane, plate,
and shell behavior in planar and three-dimensional structures. The shell material
may be homogeneous or layered through the thickness. Material nonlinearity can
be considered when using the layered shell.

Basic Topics for All Users
* Overview
 Joint Connectivity
* Edge Constraints
* Degrees of Freedom
* Local Coordinate System
* Section Properties
* Mass
» Self-Weight Load
* Uniform Load
* Surface Pressure Load

* Internal Force and Stress Output
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Advanced Topics
* Advanced Local Coordinate System
e Property Modifiers
» Joint Offsets and Thickness Overwrites
* Gravity Load
» Temperature Load

Overview
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The Shell element is a three- or four-node formulation that combines membrane
and plate-bending behavior. The four-joint element does not have to be planar. Two
distinct formulations are available: homogenous and layered.

The homogeneous shell combines independent membrane and plate behavior.
These behaviors become coupled if the element is warped (non-planar.) The mem-
brane behavior uses an isoparametric formulation that includes translational in-
plane stiffness components and a rotational stiffness component in the direction
normal to the plane of the element. See Taylor and Simo (1985) and Ibrahimbego-
vic and Wilson (1991). In-plane displacements are quadratic.

The homogenous plate-bending behavior includes two-way, out-of-plane, plate ro-
tational stiffness components and a translational stiffness component in the direc-
tion normal to the plane of the element. By default, a thin-plate (Kirchhoff) formu-
lation is used that neglects transverse shearing deformation. Optionally, you may
choose a thick-plate (Mindlin/Reissner) formulation which includes the effects of
transverse shearing deformation. Out-of-plane displacements are cubic.

The layered shell allows any number of layers in the thickness direction, each with
independent location, thickness, and material. Membrane deformation within each
layer uses the same formulation as the homogeneous shell. For bending, a
Mindlin/Reissner formulation is used which includes transverse shear deforma-
tions. Out-of-plane displacements are quadratic.

For each homogeneous Shell element in the structure, you can choose to model
pure-membrane, pure-plate, or full-shell behavior. It is generally recommended
that you use the full shell behavior unless the entire structure is planar and is ade-
quately restrained. The layered Shell always represents full-shell behavior. Unless
the layering is fully symmetrical in the thickness direction, membrane and plate be-
havior will also be coupled.

Overview
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Structures that can be modeled with this element include:

e Three-dimensional shells, such as tanks and domes
 Plate structures, such as floor slabs

e Membrane structures, such as shear walls

Each Shell element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, orthotropic
material properties are allowed. Each element may be loaded by gravity and uni-
form loads in any direction; surface pressure on the top, bottom, and side faces; and
loads due to temperature change.

A variable, four-to-eight-point numerical integration formulation is used for the
Shell stiffness. Stresses and internal forces and moments, in the element local coor-
dinate system, are evaluated at the 2-by-2 Gauss integration points and extrapo-
lated to the joints of the element. An approximate error in the element stresses or in-
ternal forces can be estimated from the difference in values calculated from differ-
ent elements attached to a common joint. This will give an indication of the accu-
racy of a given finite-element approximation and can then be used as the basis for
the selection of a new and more accurate finite element mesh.

Joint Connectivity

Each Shell element (and other types of area objects/elements) may have either of
the following shapes, as shown in Figure 31 (page 150):

* Quadrilateral, defined by the four joints j1, j2, j3, and j4.
* Triangular, defined by the three joints j1, j2, and j3.

The quadrilateral formulation is the more accurate of the two. The triangular ele-
ment is recommended for transitions only. The stiffness formulation of the three-
node element is reasonable; however, its stress recovery is poor. The use of the
quadrilateral element for meshing various geometries and transitions is illustrated
in Figure 32 (page 151), so that triangular elements can be avoided altogether.

Edge constraints are also available to create transitions between mis-matched
meshes without using distorted elements. See Subtopic “Edge Constraints” (page
152) for more information.

The joints j1 to j4 define the corners of the reference surface of the shell element.
For the homogeneous shell this is the mid-surface of the element; for the layered
shell you choose the location of this surface relative to the material layers.
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Face 6: Top (+3 face)

Face 5: Bottom (-3 face)

Four-node Quadrilateral Shell Element

Axis 2

Face 6: Top (+3 face)

Face 5: Bottom (-3 face)

j1

Three-node Triangular Shell Element

Figure 31
Area Element Joint Connectivity and Face Definitions
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Triangular Region Circular Region
— |
\
Infinite Region Mesh Transition
Figure 32

Mesh Examples Using the Quadrilateral Area Element

You may optionally assign joint offsets to the element that shift the reference sur-
face away from the joints. See Topic “Joint Offsets and Thickness Overwrites”
(page 167) for more information.

Shape Guidelines

The locations of the joints should be chosen to meet the following geometric condi-
tions:
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* The inside angle at each corner must be less than 180°. Best results for the
quadrilateral will be obtained when these angles are near 90°, or at least in the
range of 45° to 135°.

» The aspect ratio of an element should not be too large. For the triangle, this is
the ratio of the longest side to the shortest side. For the quadrilateral, this is the
ratio of the longer distance between the midpoints of opposite sides to the
shorter such distance. Best results are obtained for aspect ratios near unity, or at
least less than four. The aspect ratio should not exceed ten.

* For the quadrilateral, the four joints need not be coplanar. A small amount of
twist in the element is accounted for by the program. The angle between the
normals at the corners gives a measure of the degree of twist. The normal at a
corner is perpendicular to the two sides that meet at the corner. Best results are
obtained if the largest angle between any pair of corners is less than 30°. This
angle should not exceed 45°.

These conditions can usually be met with adequate mesh refinement. The accuracy
of the thick-plate and layered formulations is more sensitive to large aspect ratios
and mesh distortion than is the thin-plate formulation.

Edge Constraints

152

You can assign automatic edge constraints to any shell element (or any area ob-
jects.) When edge constraints are assigned to an element, the program
automatically connects all joints that are on the edge of the element to the adjacent
corner joints of the element. Joints are considered to be on the edge of the element if
they fall within the auto-merge tolerance set by you in the Graphical User Interface.

Edge constraints can be used to connect together mis-matched shell meshes, but
will also connect any element that has a joint on the edge of the shell to that shell.
This include beams, columns, restrained joints, link supports, etc.

These joints are connected by flexible interpolation constraints. This means that the
displacements at the intermediate joints on the edge are interpolated from the dis-
placements of the corner joints of the shell. No overall stiffness is added to the
model; the effect is entirely local to the edge of the element.

Figure 33 (page 153) shows an example of two mis-matched meshes, one con-
nected with edge constraints, and one not. In the connected mesh on the right, edge
constraints were assigned to all elements, although it was really only necessary to
do so for the elements at the transition. Assigning edge constraints to elements that
do not need them has little effect on performance and no effect on results.

Edge Constraints
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Figure 33
Connecting Meshes with the Edge Constraints. Left Model — No Edge
Constraints; Right Model — Edge Constraints Assigned to All Elements

The advantage of using edge constraints instead of the mesh transitions shown in
Figure 32 (page 151) is that edge constraints do not require you to create distorted
elements. This can increase the accuracy of the results. It is important to under-
stand, however, that for any transition the effect of the coarser mesh propagates into
the finer mesh for a distance that is on the order of the size of the larger elements, as
governed by St. Venant’s effect. For this reason, be sure to create your mesh transi-
tions are enough away from the areas where you need detailed stress results.

Degrees of Freedom

The Shell element always activates all six degrees of freedom at each of its con-
nected joints. When the element is used as a pure membrane, you must ensure that
restraints or other supports are provided to the degrees of freedom for normal trans-
lation and bending rotations. When the element is used as a pure plate, you must en-
sure that restraints or other supports are provided to the degrees of freedom for in-
plane translations and the rotation about the normal.
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The use of the full shell behavior (membrane plus plate) is recommended for all
three-dimensional structures.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

154

Each Shell element (and other types of area objects/elements) has its own element
local coordinate system used to define Material properties, loads and output. The
axes of this local system are denoted 1, 2 and 3. The first two axes lie in the plane of
the element with an orientation that you specify; the third axis is normal.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both
systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Shell elements in the most complicated
situations.

The simplest method, using the default orientation and the Shell element coordi-
nate angle, is described in this topic. Additional methods for defining the Shell ele-
ment local coordinate system are described in the next topic.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

» See Topic “Advanced Local Coordinate System” (page 156) in this Chapter.

Normal Axis 3

Local axis 3 is always normal to the plane of the Shell element. This axis is directed
toward you when the path j1-j2-j3 appears counterclockwise. For quadrilateral ele-
ments, the element plane is defined by the vectors that connect the midpoints of the
two pairs of opposite sides.
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Top row: ang = 45°
2nd row: ang = 90°
3rd row: ang= 0°
4th row: ang =-90°

For all elements,
Axis 3 points outward,
toward viewer

Figure 34
The Area Element Coordinate Angle with Respect to the Default Orientation

Default Orientation

The default orientation of the local 1 and 2 axes is determined by the relationship
between the local 3 axis and the global Z axis:

* The local 3-2 plane is taken to be vertical, i.e., parallel to the Z axis

* The local 2 axis is taken to have an upward (+Z) sense unless the element is
horizontal, in which case the local 2 axis is taken along the global +Y direction

Local Coordinate System 155



CSI Analysis Reference Manual

» The local 1 axis is horizontal, i.e., it lies in the X-Y plane

The element is considered to be horizontal if the sine of the angle between the local
3 axis and the Z axis is less than 107,

The local 2 axis makes the same angle with the vertical axis as the local 3 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for vertical elements.

Element Coordinate Angle

The Shell element coordinate angle, ang, is used to define element orientations that
are different from the default orientation. It is the angle through which the local 1
and 2 axes are rotated about the positive local 3 axis from the default orientation.
The rotation for a positive value of ang appears counterclockwise when the local
+3 axis is pointing toward you.

For horizontal elements, ang is the angle between the local 2 axis and the horizontal
+Y axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 3 axis. See Figure 34 (page 155) for examples.

Advanced Local Coordinate System

156

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +Y directions, as described
in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the tangential local 1 and 2
axes, with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
1 and 2 axes are rotated about the positive local 3 axis from the orientation deter-
mined by the reference vector. The local 3 axis is always normal to the plane of the
element.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Local Coordinate System” (page 154) in this Chapter.
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Reference Vector

To define the tangential local axes, you specify a reference vector that is parallel to
the desired 3-1 or 3-2 plane. The reference vector must have a positive projection
upon the corresponding tangential local axis (1 or 2, respectively). This means that
the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the desired tangential axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 3

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

* The local plane, local, to be determined by the reference vector (the default is
32, indicating plane 3-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 3, it is used as the reference vector V,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system esys. If this direction is not parallel to
local axis 3, it is used as the reference vector V »

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system esys. If this direction is not parallel to
local axis 3, it is used as the reference vector V »

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis 3 if the sine of the angle between
them is less than 10~
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Intersection of Element
Plane & Global Y-Z Plane
Intersection of Element

Plane & Global Z-X Plane V; pldirp = +X

pldirp =-Y V, Vy pldirp = -X

<Y

For all cases: local = 32

V; pldirp=+Z

pldirp =+Y V;

V; pldirp=-Z

Intersection of Element
Plane & Global X-Y Plane

Figure 35
Area Element Local Coordinate System Using Coordinate Directions

The use of the coordinate direction method is illustrated in Figure 35 (page 158) for
the case where local = 32.

A special option is available for backward compatibility with previous versions of
the program. If pldirp is set to zero, the reference vector V, is directed from the
midpoint of side j1-j3 to the midpoint of side j2-j4 (or side j2-j3 for the triangle).
This is illustrated in Figure 31 (page 150), where the reference vector would be

identical to local axis 1. With this option, the orientation of the tangential local axes
is very dependent upon the mesh used.

Determining Tangential Axes | and 2

The program uses vector cross products to determine the tangential axes 1 and 2
once the reference vector has been specified. The three axes are represented by the
three unit vectors V;, V, and V;, respectively. The vectors satisty the cross-product
relationship:

Vl =V2 XV3
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The tangential axes 1 and 2 are defined as follows:

* If the reference vector is parallel to the 3-1 plane, then:
V,=V;xV, and
V=V, xV;

 If the reference vector is parallel to the 3-2 plane, then:
Vi =V, xV; and
V, =V; xV,

In the common case where the reference vector is parallel to the plane of the ele-
ment, the tangential axis in the selected local plane will be equal to V.

Section Properties

A Shell Section is a set of material and geometric properties that describe the
cross-section of one or more Shell objects (elements.) A Shell Section property is a
type of Area Section property. Sections are defined independently of the objects,
and are assigned to the area objects.

Area Section Type
When defining an area section, you have a choice of three basic element types:
* Shell — the subject of this Chapter, with translational and rotational degrees of

freedom, capable of supporting forces and moments

 Plane (stress or strain) — a two-dimensional solid, with translational degrees of
freedom, capable of supporting forces but not moments. This element is cov-
ered in Chapter “The Plane Element” (page 177).

* Asolid — axisymmetric solid, with translational degrees of freedom, capable of
supporting forces but not moments. This element is covered in Chapter “The
Asolid Element” (page 187).

Shell Section Type
For Shell sections, you may choose one of the following types of behavior:

* Membrane — pure membrane behavior; only the in-plane forces and the normal
(drilling) moment can be supported; homogeneous material
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 Plate — pure plate behavior; only the bending moments and the transverse force
can be supported; homogeneous material

* Shell — full shell behavior, a combination of membrane and plate behavior; all
forces and moments can be supported; homogeneous material

» Layered — multiple layers, each with a different material, thickness, and loca-
tion; provides full-shell behavior, all forces and moments can be supported

It is generally recommended that you use the full shell behavior unless the entire
structure is planar and is adequately restrained.

Homogeneous Section Properties

Homogeneous material properties are used for the non-layered Membrane, Plate,
and Shell section types. The following data needs to be specified.

Section Thickness

Each homogeneous Section has a constant membrane thickness and a constant
bending thickness. The membrane thickness, th, is used for calculating:

* The membrane stiffness for full-shell and pure-membrane Sections

* The element volume for the element self-weight and mass calculations
The bending thickness, thb, is use for calculating:

* The plate-bending and transverse-shearing stiffnesses for full-shell and
pure-plate Sections

Normally these two thicknesses are the same and you only need to specify th. How-
ever, for some applications, you may wish to artificially change the membrane or
plate stiffness. For this purpose, you may specify a value of thb that is different
from th. For more detailed control, such as representing corrugated or orthotropic
construction, the use of property modifiers is better. See Topic “Property
Modifiers” (page 165.)

Thickness Formulation

Two thickness formulations are available, which determine whether or not trans-
verse shearing deformations are included in the plate-bending behavior of a plate or
shell element:

* The thick-plate (Mindlin/Reissner) formulation, which includes the effects of
transverse shear deformation
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* The thin-plate (Kirchhoff) formulation, which neglects transverse shearing de-
formation

Shearing deformations tend to be important when the thickness is greater than
about one-tenth to one-fifth of the span. They can also be quite significant in the vi-
cinity of bending-stress concentrations, such as near sudden changes in thickness
or support conditions, and near holes or re-entrant corners.

Even for thin-plate bending problems where shearing deformations are truly negli-
gible, the thick-plate formulation tends to be more accurate, although somewhat
stiffer, than the thin-plate formulation. However, the accuracy of the thick-plate
formulation is more sensitive to large aspect ratios and mesh distortion than is the
thin-plate formulation.

It is generally recommended that you use the thick-plate formulation unless you are
using a distorted mesh and you know that shearing deformations will be small, or
unless you are trying to match a theoretical thin-plate solution.

The thickness formulation has no effect upon membrane behavior, only upon
plate-bending behavior.

Section Material

The material properties for each Section are specified by reference to a previ-
ously-defined Material. The material may be isotropic, uniaxial, or orthotropic. If
an anisotropic material is chosen, orthotropic properties will be used. The material
properties used by the Shell Section are:

* The moduli of elasticity, el, €2, and e3

* The shear modulus, g12, g13, and g23

o The Poisson’s ratios, ul2, ul3, and u23

* The coefficients of thermal expansion, al and a2

* The mass density, m, for computing element mass

* The weight density, w, for computing Self-Weight and Gravity Loads
The properties e3, ul3, and u23 are condensed out of the material matrix by assum-

ing a state of plane stress in the element. The resulting, modified values of el, €2,
g12, and ul2 are used to compute the membrane and plate-bending stiffnesses.

The shear moduli, g13 and g23, are used to compute the transverse shearing stiff-
ness if the thick-plate formulation is used. The coefficients of thermal expansion,
al and a2, are used for membrane expansion and thermal bending strain.
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Figure 36
Shell Section Material Angle

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 69) for more information.

Section Material Angle

The material local coordinate system and the element (Shell Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 36 (page 162). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 70) in Chapter “Material Properties”
for more information.
Layered Section Property

For the layered Section property, you define how the section is built-up in the thick-
ness direction. Any number of layers is allowed, even a single layer. Layers are lo-
cated with respect to a reference surface. This reference surface may be the middle
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Figure 37

Four-Layer Shell, Showing the Reference Surface, the Names of the Layers,
and the Distance and Thickness for Layer “C”

surface, the neutral surface, the top, the bottom, or any other location you choose.
By default, the reference surface contains the element nodes, although this can be
changed using joint offsets.

The thick-plate (Mindlin/Reissner) formulation, which includes the effects of
transverse shear deformation, is always used for bending behavior the layered
shell.

For each layer, you specify the following, as illustrated in Figure 37 (page 163.)

Layer Name

The layer name 1is arbitrary, but must be unique within a single Section. However,
the same layer name can be used in different Sections. This can be useful because
results for a given layer name can be plotted simultaneously for elements having
different Sections.

Layer Distance

Each layer is located by specifying the distance from the reference surface to the
center of the layer, measured in the positive local-3 direction of the element.
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Layer Thickness

Each layer has a single thickness, measured in the local-3 direction of the element.

Layer Material

The material properties for each layer are specified by reference to a previously-de-
fined Material. The material may be isotropic, uniaxial, or orthotropic. If an
anisotropic material is chosen, orthotropic properties will be used. For further in-
formation, see topic “Section Material” above (page 161.)

Layer Nonlinearity

Specify whether the material should behave linearly or nonlinearly. Different
nonlinear models will be introduced in the program over time. Please check the
on-line help for more information.

Layer Material Angle

For orthotropic and uniaxial materials, the material axes may be rotated with re-
spect to the element axes. Each layer may have a different material angle. For ex-
ample, you can model rebar in two orthogonal directions as two layers of uniaxial
material with material angles 90° apart. For further information, see topic “Section
Material Angle” above (page 162.)

Layer Number of Integration Points

Material behavior is integrated (sampled) at a finite number of points in the thick-
ness direction of each layer. You may choose one to three points for each layer. The
location of these points follows standard Glass integration procedures.

For a single layer of linear material, one point in the thickness direction is adequate
to represent membrane behavior, and two points will capture both membrane and
plate behavior. If you have multiple layers, you may be able to use a single point for
thinner layers. Nonlinear behavior may require more integration points or more
layers in order to capture yielding near the top and bottom surfaces. Using an exces-
sive number of integration points can increase analysis time. You may need to ex-
periment to find a balance between accuracy and computational efficiency.

Interaction Between Layers

Layers are defined independently, and it is permissible for layers to overlap, or for
gaps to exist between the layers. It is up to you to decide what is appropriate.
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For example, when modeling a concrete slab, you can choose a single layer to rep-
resent the full thickness of concrete, and four layers to represent rebar (two near the

top at a 90° angle to each other, and two similar layers at the bottom.) These rebar
layers would be very thin, using an equivalent thickness to represent the cross-sec-
tional area of the steel. Because the layers are so thin, there is no need to worry
about the fact that the rebar layers overlap the concrete. The amount of excess con-
crete that is contained in the overlapped region is very small.

Layers are kinematically connected by the Mindlin/Reissner assumption that nor-
mals to the reference surface remain straight after deformation. This is the shell
equivalent to the beam assumption that plane sections remain plane.

Property Modifiers

You may specify scale factors to modify the computed section properties. These
may be used, for example, to account for cracking of concrete, corrugated or
orthotropic fabrication, or for other factors not easily described in the geometry and
material property values. Individual modifiers are available for the following ten
terms:

* Membrane stiffness corresponding to force F11

* Membrane stiffness corresponding to force F22

* Membrane stiffness corresponding to force F12

 Plate bending stiffness corresponding to moment M11

» Plate bending stiffness corresponding to moment M22

» Plate bending stiffness corresponding to moment M12

* Plate shear stiffness corresponding to force V12

* Plate shear stiffness corresponding to force V13

e Mass

* Weight

The stiffness modifiers affect only homogenous elements, not layered elements.
The mass and weight modifiers affect all elements.

See Topic “Internal Force and Stress Output” (page 172) for the definition of the
force and moment components above.

You may specify multiplicative factors in two places:
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* As part of the definition of the section property

* As an assignment to individual elements.

If modifiers are assigned to an element and also to the section property used by that
element, then both sets of factors multiply the section properties.

Named Property Sets

In addition to directly assigning property modifiers to shell elements, you can apply
them to a shell element in a staged-construction Load Case using a Named Property
Set of Shell Property Modifiers. A Named Property Set includes the same ten fac-
tors above that can be assigned to an element.

When a Named Property Set is applied to an element in a particular stage of a Load
Case, itreplaces only the values that are assigned to the element or that had been ap-
plied in a previous stage; values computed by the Direct Analysis Method of design
are also replaced. However, property modifiers specified with the section property
remain in force and are not affected by the application of a Named Property Set.
The net effect is to use the factors specified in the Named Property Set multiplied
by the factors specified in the section property.

When propery modifiers are changed in a staged construction Load Case, they do
not change the response of the structure up to that stage, but only affect subsequent
response. In other words, the effect is incremental. For example, consider a cantile-
ver with only default (unity) property modifers, and a staged construction case as
follows:

» Stage 1: Self-weight load is applied, resulting in a tip deflection of 1.0 and
a support moment of 1000.

» Stage 2: Named Property Set “A” is applied that multiplies all stiffnesses
by 2.0, and the mass and weight by 1.0. The tip deflection and support mo-
ment do not change.

» Stage 3: Self-weight load is applied again (incrementally). The resulting
tip deflection is 1.5 and the support moment is 2000. Compared to Stage 1,
the same incremental load is applied, but the structure is twice as stiff.

o Stage 4: Named Property Set “B” is applied that multiplies all stiffnesses,
as well as the mass and weight, by 2.0. The tip deflection and support mo-
ment do not change.

» Stage 5: Self-weight load is applied again (incrementally). The resulting
tip deflection is 2.5 and the support moment is 4000. Compared to Stage 1,
twice the incremental load is applied, and the structure is twice as stiff
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Joint Offsets and Thickness Overwrites for a Homogeneous Shell
Edge View shown Along One Side

Joint Offsets and Thickness Overwrites

You may optionally assign joint offset and thickness overwrites to any element.
These are often used together to align the top or bottom of the shell element with a
given surface. See Figure 38 (page 167.)

Joint Offsets

Joint offsets are measured from the joint to the reference surface of the element in
the direction normal to the plane of the joints. If the joints define a warped surface,
the plane is determine by the two lines connecting opposite mid-sides (i.e., the mid-
dle of j1-j2 to the middle of j3-j4, and the middle of j1-j3 to the middle of j2-j4.) A
positive offset is in the same general direction as the positive local-3 axis of the ele-
ment. However, that the offset may not be exactly parallel to the local-3 axis if the
offsets are not all equal.

Joint offsets locate the reference plane of the element. For homogeneous shells, this
is the mid-surface of the element. For layered shells, the reference surface is the
surface you used to locate the layers in the section. By changing the reference sur-
face in a layered section, you can accomplish the same effect as using joint offsets
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except that the layer distances are always measured parallel to the local-3 axis. See
Topic “Layered Section Property” (page 162) for more information.

When you assign joint offsets to a shell element, you can explicitly specify the off-
sets at the element joints, or you can reference a Joint Pattern. Using a Joint Pattern
makes it easy to specify consistently varying offsets over many elements. See
Topic “Joint Patterns” (page 284) in Chapter “Load Patterns” for more information.

Note that when the neutral surface of the element, after applying joint offsets, is no
longer in the plane of the joints, membrane and plate-bending behavior become
coupled. If you apply a diaphragm constraint to the joints, this will also constrain
bending. Likewise, a plate constraint will constrain membrane action.

Thickness Overwrites

Mass

168

Normally the thickness of the shell element is defined by the Section Property as-
signed to the element. You have the option to overwrite this thickness, including
the ability to specify a thickness that varies over the element.

Currently this option only affects homogeneous shells. The thickness of layered
shells is not changed. When thickness overwrites are assigned to a homogeneous
shell, both the membrane thickness, th, and the bending thickness, thb, take the
overwritten value.

When you assign thickness overwrites to a shell element, you can explicitly specify
the thicknesses at the element joints, or you can reference a Joint Pattern. Using a
Joint Pattern makes it easy to specify consistently varying thickness over many ele-
ments. See Topic “Joint Patterns” (page 284) in Chapter “Load Patterns” for more
information.

As an example, suppose you have a variable thickness slab, and you want the top
surface to lie in a single flat plane. Define a Joint Pattern that defines the thickness
over the slab. Draw the elements so that the joints lie in the top plane. Assign thick-
ness overwrites to all the elements using the Joint Pattern with a scale factor of one,
and assign the joint offsets using the same Joint Pattern, but with a scale factor of
one-half (positive or negative, as needed).

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Shell element is lumped at the element joints. No iner-
tial effects are considered within the element itself.

Mass
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The total mass of the element is equal to the integral over the plane of the element of
the mass density, m, multiplied by the thickness, th, for homogeneous sections, and
the sum of the masses of the individual layers for layered sections. This mass may
be scaled by the appropriate property modifiers.

The total mass is apportioned to the joints in a manner that is proportional to the di-
agonal terms of the consistent mass matrix. See Cook, Malkus, and Plesha (1989)
for more information. The total mass is applied to each of the three translational de-
grees of freedom: UX, UY, and UZ. No mass moments of inertia are computed for
the rotational degrees of freedom.

For more information:

» See Topic “Mass Density” (page 76) in Chapter “Material Properties”.
* See Topic “Property Modifiers” (page 165) in this chapter.
* See Chapter “Static and Dynamic Analysis” (page 289).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Shell
element, the self-weight is a force that is uniformly distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, th, for homogeneous sections, and the sum of the weights of
the individual layers for layered sections. This weight may be scaled by the appro-
priate property modifiers.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the
definition of w.
* See Topic “Property Modifiers” (page 165) in this chapter.

* See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”
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Gravity Load

Gravity Load can be applied to each Shell element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 161) in this Chapter for the definition of
self-weight for the Shell element.

* See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Uniform Load

Uniform Load is used to apply uniformly distributed forces to the midsurfaces of
the Shell elements. The direction of the loading may be specified in a fixed coordi-
nate system (global or Alternate Coordinates) or in the element local coordinate
system.

Load intensities are given as forces per unit area. Load intensities specified in dif-
ferent coordinate systems are converted to the element local coordinate system and
added together. The total force acting on the element in each local direction is given
by the total load intensity in that direction multiplied by the area of the mid-surface.
This force is apportioned to the joints of the element.

Forces given in fixed coordinates can optionally be specified to act on the projected
area of the mid-surface, i.c., the area that can be seen along the direction of loading.
The specified load intensity is automatically multiplied by the cosine of the angle
between the direction of loading and the normal to the element (the local 3 direc-
tion). This can be used, for example, to apply distributed snow or wind loads. See
Figure 39 (page 171).

See Chapter “Load Patterns” (page 273) for more information.

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
six faces of the Shell element. The definition of these faces is shown in Figure 31
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Uniformly distributed force uzp acts on
the projected area of the midsurface.
This is equivalent to force uzp cosq
acting on the full midsurface area.

Global

Edge View of Shell Element

Figure 39
Example of Uniform Load Acting on the Projected Area of the Mid-surface

(page 150). Surface pressure always acts normal to the face. Positive pressures are
directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The bottom and top faces are denoted Faces 5 and 6, respectively. The top face is
the one visible when the +3 axis is directed toward you and the path j1-j2-j3 ap-
pears counterclockwise. The pressure acting on the bottom or top face is integrated
over the plane of the element and apportioned to the corner joints..

The sides of the element are denoted Faces 1 to 4 (1 to 3 for the triangle), counting
counterclockwise from side j1-j2 when viewed from the top. The pressure acting
on a side is multiplied by the thickness, th, integrated along the length of the side,
and apportioned to the two joints on that side.

For more information:

* See Topic “Thickness” (page 163) in this Chapter for the definition of th.
* See Chapter “Load Patterns” (page 273).
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Temperature Load

Temperature Load creates thermal strain in the Shell element. This strain is given
by the product of the Material coefficient of thermal expansion and the temperature
change of the element. All specified Temperature Loads represent a change in tem-
perature from the unstressed state for a linear analysis, or from the previous temper-
ature in a nonlinear analysis.

Two independent Load Temperature fields may be specified:
» Temperature, t, which is constant through the thickness and produces mem-
brane strains
* Temperature gradient, t3, which is linear in the thickness direction and pro-

duces bending strains

The temperature gradient is specified as the change in temperature per unit length.
The temperature gradient is positive if the temperature increases (linearly) in the
positive direction of the element local 3 axis. The gradient temperature is zero at the
mid-surface, hence no membrane strain is induced.

Each of the two Load Temperature fields may be constant over the plane of the ele-
ment or interpolated from values given at the joints.

See Chapter “Load Patterns” (page 273) for more information.

Internal Force and Stress Output

The Shell element internal forces (also called stress resultants) are the forces and
moments that result from integrating the stresses over the element thickness. For a
homogeneous shell, these internal forces are:

 Membrane direct forces:

_[tth/2 (Egns. 1)
11 _J—th/z Oy dx3

o J~+th/2 d
= (e) X
22 =) g 022 9%

* Membrane shear force:

F J-+th/2 d
= (e) X
12=) 4, O12 953

* Plate bending moments:
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+thb/2

M, =— I X3 G dx
11 _thb2 3 O11 9%3
M +thb/2 d
=— X7 O X
22 ey 3 022 9%3

 Plate twisting moment:
J-+thb/2

My, =—
12 —_thb/2

X3 Gy dxs

» Plate transverse shear forces:

V ."+thb/2 d
= (e} X
13 _thb/2 13 3

V. J~+thb/2 d
= (¢ X
23 _thb/2 23 3

where x3 represents the thickness coordinate measured from the mid-surface of the
element, th is the membrane thickness, and thb is the plate-bending thickness.

For a layered shell, the definitions are the same, except that the integrals of the
stresses are now summed over all layers, and x5 is always measured from the refer-
ence surface.

It is very important to note that these stress resultants are forces and moments per
unit of in-plane length. They are present at every point on the mid-surface of the el-
ement.

For the thick-plate (Mindlin/Reissner) formulation of the homogeneous shell, and
for the layered shell, the shear stresses are computed directly from the shearing de-
formation. For the thin-plate homogeneous shell, shearing deformation is assumed
to be zero, so the transverse shear forces are computed instead from the moments
using the equilibrium equations:

dMll dMlZ
iy =-S L

X1 dX2

dM12 dM22
Vy=-—""=-

X1 de

Where x; and x, are in-plane coordinates parallel to the local 1 and 2 axes.

The sign conventions for the stresses and internal forces are illustrated in Figure 40
(page 174). Stresses acting on a positive face are oriented in the positive direction
of the element local coordinate axes. Stresses acting on a negative face are oriented
in the negative direction of the element local coordinate axes.
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Axis 2

Forces are per unit

of in-plane length Axis 1

j3
Transverse Shear (not shown)

Positive transverse shear forces and
stresses acting on positive faces
point toward the viewer

i j2
STRESSES AND MEMBRANE FORCES

Stress Sij Has Same Definition as Force Fij

Axis 2

Moments are per unit

of in-plane length Axis 1

i3

i1 i2

PLATE BENDING AND TWISTING MOMENTS

Figure 40
Shell Element Stresses and Internal Resultant Forces and Moments
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A positive face is one whose outward normal (pointing away from element) is in the
positive local 1 or 2 direction.

Positive internal forces correspond to a state of positive stress that is constant
through the thickness. Positive internal moments correspond to a state of stress that
varies linearly through the thickness and is positive at the bottom. Thus for a homo-
geneous shell:

_f 12My (Eqns. 2)
O11 = - 3 93
th  thp
OCnp="""""73™M
th  thp

F, 12M),
O12 = T3 8
th  thp
_Ns
B thh
V3
OHy = ——
2 thb
033 =0

The transverse shear stresses given here are average values. The actual shear stress
distribution is parabolic, being zero at the top and bottom surfaces and taking a
maximum or minimum value at the mid-surface of the element.

The force and moment resultants are reported identically for homogeneous and lay-
ered shells. Stresses are reported for homogeneous shells at the top and bottom sur-
faces, and are linear in between. For the layered shell, stresses are reported in each
layer at the integration points, and at the top, bottom, and center of the layer.

The stresses and internal forces are evaluated at the standard 2-by-2 Gauss integra-
tion points of the element and extrapolated to the joints. Although they are reported
at the joints, the stresses and internal forces exist over the whole element. See
Cook, Malkus, and Plesha (1989) for more information.

Principal values and the associated principal directions are available for Load
Cases and Load Combinations that are single valued. The angle given is measured
counterclockwise (when viewed from the top) from the local 1 axis to the direction
of the maximum principal value.
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For more information:

* See Topic “Stresses and Strains” (page 71) in Chapter “Material Properties.”
» See Chapter “Load Patterns” (page 273).
* See Chapter “Load Cases” (page 289).
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The Plane Element

The Plane element is used to model plane-stress and plane-strain behavior in
two-dimensional solids. The Plane element/object is one type of area object. De-
pending on the type of section properties you assign to an area, the object could also
be used to model shell and axisymmetric solid behavior. These types of elements
are discussed in the previous and following Chapters.

Advanced Topics
* Overview
 Joint Connectivity
* Degrees of Freedom
* Local Coordinate System
» Stresses and Strains
* Section Properties
* Mass
» Self-Weight Load
» QGravity Load
* Surface Pressure Load

» Pore Pressure Load
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e Temperature Load
+ Stress Output

Overview
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The Plane element is a three- or four-node element for modeling two-dimensional
solids of uniform thickness. It is based upon an isoparametric formulation that in-
cludes four optional incompatible bending modes. The element should be planar; if
it is not, it is formulated for the projection of the element upon an average plane
calculated for the element.

The incompatible bending modes significantly improve the bending behavior of
the element if the element geometry is of a rectangular form. Improved behavior is
exhibited even with non-rectangular geometry.

Structures that can be modeled with this element include:

* Thin, planar structures in a state of plane stress

* Long, prismatic structures in a state of plane strain
The stresses and strains are assumed not to vary in the thickness direction.

For plane-stress, the element has no out-of-plane stiffness. For plane-strain, the ele-
ment can support loads with anti-plane shear stiffness.

Each Plane element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, orthotropic
material properties are allowed. Each element may be loaded by gravity (in any di-
rection); surface pressure on the side faces; pore pressure within the element; and
loads due to temperature change.

An 2 x 2 numerical integration scheme is used for the Plane. Stresses in the element
local coordinate system are evaluated at the integration points and extrapolated to
the joints of the element. An approximate error in the stresses can be estimated from
the difference in values calculated from different elements attached to a common
joint. This will give an indication of the accuracy of the finite element approxima-
tion and can then be used as the basis for the selection of a new and more accurate
finite element mesh.

Overview
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Joint Connectivity

The joint connectivity and face definition is identical for all area objects, i.e., the
Shell, Plane, and Asolid elements. See Topic “Joint Connectivity” (page 149) in
Chapter “The Shell Element” for more information.

The Plane element is intended to be planar. If you define a four-node element that is
not planar, an average plane will be fit through the four joints, and the projection of
the element onto this plane will be used.

Degrees of Freedom

The Plane element activates the three translational degrees of freedom at each of its
connected joints. Rotational degrees of freedom are not activated.

The plane-stress element contributes stiffness only to the degrees of freedom in the
plane of the element. It is necessary to provide restraints or other supports for the
translational degrees of freedom that are normal to this plane; otherwise, the struc-
ture will be unstable.

The plane-strain element models anti-plane shear, i.e., shear that is normal to the
plane of the element, in addition to the in-plane behavior. Thus stiffness is created
for all three translational degrees of freedom.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

The element local coordinate system is identical for all area objects, i.e., the Shell,
Plane, and Asolid elements. See Topics “Local Coordinate System” (page 154) and
“Advanced Local Coordinate System” (page 156) in Chapter “The Shell Element”
for more information.

Stresses and Strains

The Plane element models the mid-plane of a structure having uniform thickness,
and whose stresses and strains do not vary in the thickness direction.
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Plane-stress is appropriate for structures that are thin compared to their planar di-
mensions. The thickness normal stress (c33) is assumed to be zero. The thickness
normal strain (e33) may not be zero due to Poisson effects. Transverse shear
stresses (G1,, 013) and shear strains (y,, 713) are assumed to be zero. Displace-
ments in the thickness (local 3) direction have no effect on the element.

Plane-strain is appropriate for structures that are thick compared to their planar di-
mensions. The thickness normal strain (53 ) is assumed to be zero. The thickness
normal stress (c33) may not be zero due to Poisson effects. Transverse shear
stresses (01,, 03 ) and shear strains (y;,, 713 ) are dependent upon displacements in
the thickness (local 3) direction.

See Topic “Stresses and Strains” (page 71) in Chapter “Material Properties” for
more information.

Section Properties
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A Plane Section is a set of material and geometric properties that describe the
cross-section of one or more Plane elements. Sections are defined independently of
the Plane elements, and are assigned to the area objects.

Section Type

When defining an area section, you have a choice of three basic element types:

* Plane (stress or strain) — the subject of this Chapter, a two-dimensional solid,
with translational degrees of freedom, capable of supporting forces but not mo-
ments.

* Shell — shell, plate, or membrane, with translational and rotational degrees of
freedom, capable of supporting forces and moments. This element is covered in
Chapter “The Shell Element” (page 147).

* Asolid — axisymmetric solid, with translational degrees of freedom, capable of
supporting forces but not moments. This element is covered in Chapter “The
Asolid Element” (page 187).

For Plane sections, you may choose one of the following sub-types of behavior:

¢ Plane stress

* Plane strain, including anti-plane shear

Section Properties
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Material Properties

The material properties for each Plane element are specified by reference to a previ-
ously-defined Material. Orthotropic properties are used, even if the Material se-
lected was defined as anisotropic. The material properties used by the Plane ele-
ment are:

» The moduli of elasticity, el, €2, and e3

* The shear modulus, g12

* For plane-strain only, the shear moduli, g13 and g23

e The Poisson’s ratios, ul2, ul3 and u23

» The coefficients of thermal expansion, al, a2, and a3

* The mass density, m, for computing element mass

* The weight density, w, for computing Self-Weight and Gravity Loads

The properties e3, ul3, u23, and a3 are not used for plane stress. They are used to
compute the thickness-normal stress (c33) in plane strain.

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 69) for more information.

Material Angle

The material local coordinate system and the element (Plane Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 41 (page 182). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 70) in Chapter “Material Properties”
for more information.
Thickness

Each Plane Section has a uniform thickness, th. This may be the actual thickness,
particularly for plane-stress elements; or it may be a representative portion, such as
a unit thickness of an infinitely-thick plane-strain element.
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2 (Element)
2 (Material)
a 1 (Material)
a
[ » 1 (Element)

3 (Element, Material)

Figure 41
Plane Element Material Angle

The element thickness is used for calculating the element stiffness, mass, and loads.
Hence, joint forces computed from the element are proportional to this thickness.

Incompatible Bending Modes

By default each Plane element includes four incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
the bending behavior in the plane of the element if the element geometry is of a rect-
angular form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

Mass

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Plane element is lumped at the element joints. No iner-
tial effects are considered within the element itself.
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The total mass of the element is equal to the integral over the plane of the element of
the mass density, m, multiplied by the thickness, th. The total mass is apportioned
to the joints in a manner that is proportional to the diagonal terms of the consistent
mass matrix. See Cook, Malkus, and Plesha (1989) for more information. The total
mass is applied to each of the three translational degrees of freedom (UX, UY, and
UZ) even when the element contributes stiffness to only two of these degrees of
freedom.

For more information:

* See Topic “Mass Density” (page 76) in Chapter “Material Properties.”
* See Chapter “Load Cases” (page 289).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Plane
element, the self-weight is a force that is uniformly distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, th.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the
definition of w.

* See Topic “Thickness” (page 181) in this Chapter for the definition of th.
* See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Plane element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:
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» See Topic “Self-Weight Load” (page 183) in this Chapter for the definition of
self-weight for the Plane element.

* See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
three or four side faces of the Plane element. The definition of these faces is shown
in Figure 31 (page 150). Surface pressure always acts normal to the face. Positive
pressures are directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a side is multiplied by the thickness, th, integrated along the
length of the side, and apportioned to the two or three joints on that side.

See Chapter “Load Patterns” (page 273) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field over the plane of the element, multiplied by the
thickness, th. This force is apportioned to each of the joints of the element. The
forces are typically directed from regions of high pressure toward regions of low
pressure.

See Chapter “Load Patterns” (page 273) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Plane element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. The temperature change is measured from the ele-
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ment Reference Temperature to the element Load Temperature. Temperature
changes are assumed to be constant through the element thickness.

See Chapter “Load Patterns” (page 273) for more information.

Stress Output

The Plane element stresses are evaluated at the standard 2-by-2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.

Principal values and their associated principal directions in the element local 1-2
plane are also computed for single-valued Load Cases. The angle given is measured
counterclockwise (when viewed from the +3 direction) from the local 1 axis to the
direction of the maximum principal value.

For more information:

» See Chapter “Load Patterns” (page 273).
* See Chapter “Load Cases” (page 289).
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The Asolid Element

The Asolid element is used to model axisymmetric solids under axisymmetric load-
ing.

Advanced Topics
* Overview
+ Joint Connectivity
* Degrees of Freedom
* Local Coordinate System
» Stresses and Strains
» Section Properties
* Mass
» Self-Weight Load
* QGravity Load
* Surface Pressure Load
* Pore Pressure Load
* Temperature Load
* Rotate Load
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» Stress Output

Overview

The Asolid element is a three- or four-node element for modeling axisymmetric
structures under axisymmetric loading. It is based upon an isoparametric formula-
tion that includes four optional incompatible bending modes.

The element models a representative two-dimensional cross section of the three-di-
mensional axisymmetric solid. The axis of symmetry may be located arbitrarily in
the model. Each element should lie fully in a plane containing the axis of symmetry.
If it does not, it is formulated for the projection of the element upon the plane con-
taining the axis of symmetry and the center of the element.

The geometry, loading, displacements, stresses, and strains are assumed not to vary
in the circumferential direction. Any displacements that occur in the circumfer-
ential direction are treated as axisymmetric torsion.

The use of incompatible bending modes significantly improves the in-plane bend-
ing behavior of the element if the element geometry is of a rectangular form. Im-
proved behavior is exhibited even with non-rectangular geometry.

Each Asolid element has its own local coordinate system for defining Material
properties and loads, and for interpreting output. Temperature-dependent,
orthotropic material properties are allowed. Each element may be loaded by gravity
(in any direction); centrifugal force; surface pressure on the side faces; pore pres-
sure within the element; and loads due to temperature change.

An 2 x 2 numerical integration scheme is used for the Asolid. Stresses in the ele-
ment local coordinate system are evaluated at the integration points and extrapo-
lated to the joints of the element. An approximate error in the stresses can be esti-
mated from the difference in values calculated from different elements attached to a
common joint. This will give an indication of the accuracy of the finite element ap-
proximation and can then be used as the basis for the selection of a new and more
accurate finite element mesh.

Joint Connectivity

The joint connectivity and face definition is identical for all area objects, i.e., the
Shell, Plane, and Asolid elements. See Topic “Joint Connectivity” (page 149) in
Chapter “The Shell Element” for more information.
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The Asolid element is intended to be planar and to lie in a plane that contains the
axis of symmetry. If not, a plane is found that contains the axis of symmetry and the
center of the element, and the projection of the element onto this plane will be used.

Joints for a given element may not lie on opposite sides of the axis of symmetry.
They may lie on the axis of symmetry and/or to one side of it.

Degrees of Freedom

The Asolid element activates the three translational degrees of freedom at each of
its connected joints. Rotational degrees of freedom are not activated.

Stiffness is created for all three degrees of freedom. Degrees of freedom in the
plane represent the radial and axial behavior. The normal translation represents
circumferential torsion.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

The element local coordinate system is identical for all area objects, i.e., the Shell,
Plane, and Asolid elements. See Topics “Local Coordinate System” (page 154) and
“Advanced Local Coordinate System” (page 156) in Chapter “The Shell Element”
for more information.

The local 3 axis is normal to the plane of the element, and is the negative of the cir-
cumferential direction. The 1-2 plane is the same as the radial-axial plane, although
the orientation of the local axes is not restricted to be parallel to the radial and axial
axes.

The radial direction runs perpendicularly from the axis of symmetry to the center of
the element. The axial direction is parallel to the axis of symmetry, with the positive
sense being upward when looking along the circumferential (—3) direction with the
radial direction pointing to the right.
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Stresses and Strains

The Asolid element models the mid-plane of a representative sector of an axisym-
metric structure whose stresses and strains do not vary in the circumferential direc-
tion.

Displacements in the local 1-2 plane cause in-plane strains (v, Y27, Y12) and
stresses (51,523, G 12)-

Displacements in the radial direction also cause circumferential normal strains:
u

_ r
€33 =
-

where u,. is the radial displacement, and r is the radius at the point in question. The
circumferential normal stress (533) is computed as usual from the three normal
strains.

Displacements in the circumferential (local 3) direction cause only torsion, result-
ing in circumferential shear strains (y,,, y;3) and stresses (G5, G3).

See Topic “Stresses and Strains” (page 71) in Chapter “Material Properties” for
more information.

Section Properties
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An Asolid Section is a set of material and geometric properties that describe the
cross-section of one or more Asolid elements. Sections are defined independently
of the Asolid elements, and are assigned to the area objects.

Section Type

When defining an area section, you have a choice of three basic element types:
* Asolid — the subject of this Chapter, an axisymmetric solid, with translational
degrees of freedom, capable of supporting forces but not moments.

* Plane (stress or strain) — a two-dimensional solid, with translational degrees of
freedom, capable of supporting forces but not moments. This element is cov-
ered in Chapter “The Plane Element” (page 177).
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» Shell — shell, plate, or membrane, with translational and rotational degrees of
freedom, capable of supporting forces and moments. This element is covered in
Chapter “The Shell Element” (page 147).

After selecting an Asolid type of section, you must supply the rest of the data de-
scribed below.

Material Properties

The material properties for each Asolid element are specified by reference to a pre-
viously-defined Material. Orthotropic properties are used, even if the Material se-
lected was defined as anisotropic. The material properties used by the Asolid ele-
ment are:

* The moduli of elasticity, el, €2, and e3

* The shear moduli, g12, g13, and g23

e The Poisson’s ratios, ul2, ul3 and u23

» The coefficients of thermal expansion, al, a2, and a3

* The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight and Gravity Loads

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 69) for more information.

Material Angle

The material local coordinate system and the element (Asolid Section) local coordi-
nate system need not be the same. The local 3 directions always coincide for the
two systems, but the material 1 axis and the element 1 axis may differ by the angle a
as shown in Figure 42 (page 192). This angle has no effect for isotropic material
properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 70) in Chapter “Material Properties”
for more information.
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2 (Element)
A
2 (Material)
a 1 (Material)
a
° » 1 (Element)
3 (Element, Material)
Figure 42
Asolid Element Material Angle
Axis of Symmetry

For each Asolid Section, you may select an axis of symmetry. This axis is specified
as the Z axis of an alternate coordinate system that you have defined. All Asolid el-
ements that use a given Asolid Section will have the same axis of symmetry.

For most modeling cases, you will only need a single axis of symmetry. However,
if you want to have multiple axes of symmetry in your model, just set up as many al-
ternate coordinate systems as needed for this purpose and define corresponding
Asolid Section properties.

Y ou should be aware that it is almost impossible to make a sensible model that con-
nects Asolid elements with other element types, or that connects together Asolid el-
ements using different axes of symmetry. The practical application of having multi-
ple axes of symmetry is to have multiple independent axisymmetric structures in
the same model.

See Topic “Alternate Coordinate Systems” (page 16) in Chapter “Coordinate Sys-
tems” for more information.

Section Properties
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X, 3 Y, 1

Figure 43
Asolid Element Local Coordinate System and Arc Definition

Arc and Thickness

The Asolid element represents a solid that is created by rotating the element’s pla-
nar shape through 360° about the axis of symmetry. However, the analysis consid-
ers only a representative sector of the solid. You can specify the size of the sector,
in degrees, using the parameter arc. For example, arc=360 models the full struc-
ture, and arc=90 models one quarter of it. See Figure 43 (page 193). Setting arc=0,
the default, models a one-radian sector. One radian is the same as 180°/m, or ap-
proximately 57.3°.

The element “thickness” (circumferential extent), 4, increases with the radial dis-
tance, r, from the axis of symmetry:

T -arc
= r
180

Clearly the thickness varies over the plane of the element.

The element thickness is used for calculating the element stiffness, mass, and loads.
Hence, joint forces computed from the element are proportional to are.
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Incompatible Bending Modes

Mass

By default each Asolid element includes four incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
the bending behavior in the plane of the element if the element geometry is of a rect-
angular form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Asolid element is lumped at the element joints. No in-
ertial effects are considered within the element itself.

The total mass of the element is equal to the integral over the plane of the element of
the product of the mass density, m, multiplied by the thickness, 4. The total mass is
apportioned to the joints in a manner that is proportional to the diagonal terms of
the consistent mass matrix. See Cook, Malkus, and Plesha (1989) for more infor-
mation. The total mass is applied to each of the three translational degrees of free-
dom (UX, UY, and UZ).

For more information:

» See Topic “Mass Density” (page 76) in Chapter “Material Properties.”
* See Chapter “Load Cases” (page 289).

Self-Weight Load

194

Self-Weight Load activates the self-weight of all elements in the model. For an
Asolid element, the self-weight is a force that is distributed over the plane of the
element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the thickness, 4.

Self-Weight Load always acts downward, in the global —Z direction. If the down-
ward direction corresponds to the radial or circumferential direction of an Asolid
element, the Self-Weight Load for that element will be zero, since self-weight act-
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ing in these directions is not axisymmetric. Non-zero Self-Weight Load will only
exist for elements whose axial direction is vertical.

You may scale the self-weight by a single scale factor that applies equally to all ele-
ments in the structure.

For more information:
* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the

definition of w.

* See Subtopic “Arc and Thickness” (page 193) in this Chapter for the definition
of .

» See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Asolid element to activate the self-weight of
the element. Using Gravity Load, the self-weight can be scaled and applied in any
direction. Different scale factors and directions can be applied to each element.
However, only the components of Gravity load acting in the axial direction of an
Asolid element will be non-zero. Components in the radial or circumferential direc-
tion will be set to zero, since gravity acting in these directions is not axisymmetric.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

» See Topic “Self-Weight Load” (page 194) in this Chapter for the definition of
self-weight for the Asolid element.

* See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
three or four side faces of the Asolid element. The definition of these faces is shown
in Figure 31 (page 150). Surface pressure always acts normal to the face. Positive
pressures are directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
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be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a side is multiplied by the thickness, #, integrated along the
length of the side, and apportioned to the two or three joints on that side.

See Chapter “Load Patterns” (page 273) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field, multiplied by the thickness 4, over the plane of
the element. This force is apportioned to each of the joints of the element. The
forces are typically directed from regions of high pressure toward regions of low
pressure.

See Chapter “Load Patterns” (page 273) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Asolid element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. All specified Temperature Loads represent a
change in temperature from the unstressed state for a linear analysis, or from the
previous temperature in a nonlinear analysis. Temperature changes are assumed to
be constant through the element thickness.

See Chapter “Load Patterns” (page 273) for more information.

Rotate Load

196

Rotate Load is used to apply centrifugal force to Asolid elements. Each element is
assumed to rotate about its own axis of symmetry at a constant angular velocity.

The angular velocity creates a load on the element that is proportional to its mass,
its distance from the axis of rotation, and the square of the angular velocity. This
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load acts in the positive radial direction, and is apportioned to each joint of the ele-
ment. No Rotate Load will be produced by an element with zero mass density.

Since Rotate Loads assume a constant rate of rotation, it does not make sense to use
a Load Pattern that contains Rotate Load in a time-history analysis unless that Load
Pattern is applied quasi-statically (i.e., with a very slow time variation).

For more information:

* See Topic “Mass Density” (page 76) in Chapter “Material Properties.”
» See Chapter “Load Patterns” (page 273).

Stress Output

The Asolid element stresses are evaluated at the standard 2-by-2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.

Principal values and their associated principal directions in the element local 1-2
plane are also computed for single-valued Load Cases. The angle given is measured
counterclockwise (when viewed from the +3 direction) from the local 1 axis to the
direction of the maximum principal value.

For more information:

» See Chapter “Load Patterns” (page 273).
» See Chapter “Load Cases” (page 289).
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The Solid Element

The Solid element is used to model three-dimensional solid structures.

Advanced Topics

Overview

Joint Connectivity
Degrees of Freedom
Local Coordinate System
Advanced Local Coordinate System
Stresses and Strains
Solid Properties

Mass

Self-Weight Load
Gravity Load

Surface Pressure Load
Pore Pressure Load
Temperature Load

Stress Output
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Overview

The Solid element is an eight-node element for modeling three-dimensional struc-
tures and solids. It is based upon an isoparametric formulation that includes nine
optional incompatible bending modes.

The incompatible bending modes significantly improve the bending behavior of
the element if the element geometry is of a rectangular form. Improved behavior is
exhibited even with non-rectangular geometry.

Each Solid element has its own local coordinate system for defining Material prop-
erties and loads, and for interpreting output. Temperature-dependent, anisotropic
material properties are allowed. Each element may be loaded by gravity (in any di-
rection); surface pressure on the faces; pore pressure within the element; and loads
due to temperature change.

An 2 x 2 x 2 numerical integration scheme is used for the Solid. Stresses in the ele-
ment local coordinate system are evaluated at the integration points and extrapo-
lated to the joints of the element. An approximate error in the stresses can be esti-
mated from the difference in values calculated from different elements attached to a
common joint. This will give an indication of the accuracy of the finite element ap-
proximation and can then be used as the basis for the selection of a new and more
accurate finite element mesh.

Joint Connectivity

200

Each Solid element has six quadrilateral faces, with a joint located at each of the
eight corners as shown in Figure 44 (page 201). It is important to note the relative
position of the eight joints: the paths j1-j2-j3 and j5-j6-j7 should appear counter-
clockwise when viewed along the direction from j5 to j1. Mathematically stated,
the three vectors:

* V,, from joints j1 to j2,
* V3, from joints j1 to j3,
* Vs, from joints j1 to j5,
must form a positive triple product, that is:

(Vi2 xV3)-Vi5>0

Overview
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Figure 44
Solid Element Joint Connectivity and Face Definitions

The locations of the joints should be chosen to meet the following geometric condi-
tions:

* The inside angle at each corner of the faces must be less than 180°. Best results
will be obtained when these angles are near 90°, or at least in the range of 45° to
135°.

» The aspect ratio of an element should not be too large. This is the ratio of the
longest dimension of the element to its shortest dimension. Best results are ob-
tained for aspect ratios near unity, or at least less than four. The aspect ratio
should not exceed ten.

These conditions can usually be met with adequate mesh refinement.

Degrees of Freedom

The Solid element activates the three translational degrees of freedom at each of its
connected joints. Rotational degrees of freedom are not activated. This element
contributes stiffness to all of these translational degrees of freedom.
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See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Local Coordinate System

Each Solid element has its own element local coordinate system used to define
Material properties, loads and output. The axes of this local system are denoted 1, 2
and 3. By default these axes are identical to the global X, Y, and Z axes, respec-
tively. Both systems are right-handed coordinate systems.

The default local coordinate system is adequate for most situations. However, for
certain modeling purposes it may be useful to use element local coordinate systems
that follow the geometry of the structure.

For more information:

* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Advanced Local Coordinate System” (page 202) in this Chapter.

Advanced Local Coordinate System

202

By default, the element local 1-2-3 coordinate system is identical to the global
X-Y-Z coordinate system, as described in the previous topic. In certain modeling
situations it may be useful to have more control over the specification of the local
coordinate system.

A variety of methods are available to define a solid-element local coordinate sys-
tem. These may be used separately or together. Local coordinate axes may be de-
fined to be parallel to arbitrary coordinate directions in an arbitrary coordinate sys-
tem or to vectors between pairs of joints. In addition, the local coordinate system
may be specified by a set of three element coordinate angles. These methods are de-
scribed in the subtopics that follow.

For more information:

* See Chapter “Coordinate Systems” (page 11).
* See Topic “Local Coordinate System” (page 202) in this Chapter.

Local Coordinate System
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Reference Vectors

To define a solid-element local coordinate system you must specify two reference
vectors that are parallel to one of the local coordinate planes. The axis reference
vector, V,, must be parallel to one of the local axes (/= 1, 2, or 3) in this plane and

have a positive projection upon that axis. The plane reference vector, V,, must
have a positive projection upon the other local axis (j = 1, 2, or 3, but / #j) in this

plane, but need not be parallel to that axis. Having a positive projection means that

the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the local axis.

Together, the two reference vectors define a local axis, /, and a local plane, i-j.
From this, the program can determine the third local axis, &, using vector algebra.

For example, you could choose the axis reference vector parallel to local axis 1 and
the plane reference vector parallel to the local 1-2 plane (/= 1, j = 2). Alternatively,
you could choose the axis reference vector parallel to local axis 3 and the plane ref-
erence vector parallel to the local 3-2 plane (/= 3, =2). You may choose the plane
that is most convenient to define using the parameter local, which may take on the
values 12, 13, 21, 23, 31, or 32. The two digits correspond to / and j, respectively.
The default is value is 31.

Defining the Axis Reference Vector

To define the axis reference vector, you must first specify or use the default values
for:

* A coordinate direction axdir (the default is +7)

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used.

For each element, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvecb. If this vector is of finite
length, it is used as the reference vector V,,

Advanced Local Coordinate System 203



CSI Analysis Reference Manual

2. Otherwise, the coordinate direction axdir is evaluated at the center of the ele-
ment in fixed coordinate system csys, and is used as the reference vector V,,

Defining the Plane Reference Vector

To define the plane reference vector, you must first specify or use the default values
for:

* A primary coordinate direction pldirp (the default is +X)

* A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

» A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used.

For each element, the plane reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvech. If this vector is of finite
length and is not parallel to local axis J, it is used as the reference vector V,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system esys. If this direction is not parallel to
local axis /, it is used as the reference vector V »

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
ofthe element in fixed coordinate system csys. If this direction is not parallel to
local axis /, it is used as the reference vector V »

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis / if the sine of the angle between
them is less than 10°.
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V, is parallel to axveca-axvecb
Vp, is parallel to plveca-plvecb

V3 = Va
V2=V3xV, Al vectors normalized to unit length.
V1 = V2 X V3

V2

./;Ivecb

plveca

Ve

Plane 3-1
axveca

Global
axvech

Figure 45
Example of the Determination of the Solid Element Local Coordinate System
Using Reference Vectors for local=31. Point j is the Center of the Element.

Determining the Local Axes from the Reference Vectors

The program uses vector cross products to determine the local axes from the refer-
ence vectors. The three axes are represented by the three unit vectors V;, V, and V3,
respectively. The vectors satisfy the cross-product relationship:

Vl =V2 ><V3

The local axis V; is given by the vector V, after it has been normalized to unit
length.

The remaining two axes, VJ- and V), are defined as follows:
» [If/and; permute in a positive sense, i.e., local = 12, 23, or 31, then:
Vi =V;xV, and
Vj =V, xV;
» [f/and; permute in a negative sense, i.e., local =21, 32, or 13, then:
Vi =V, xV; and
V=V, xV,
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An example showing the determination of the element local coordinate system us-
ing reference vectors is given in Figure 45 (page 205).

Element Coordinate Angles

The solid-element local coordinate axes determined from the reference vectors may
be further modified by the use of three element coordinate angles, denoted a, b,
and c. In the case where the default reference vectors are used, the coordinate an-
gles define the orientation of the element local coordinate system with respect to
the global axes.

The element coordinate angles specify rotations of the local coordinate system
about its own current axes. The resulting orientation of the local coordinate system
is obtained according to the following procedure:

1. The local system is first rotated about its +3 axis by angle a
2. The local system is next rotated about its resulting +2 axis by angle b
3. The local system is lastly rotated about its resulting +1 axis by angle ¢

The order in which the rotations are performed is important. The use of coordinate
angles to orient the element local coordinate system with respect to the global sys-
tem is shown in Figure 4 (page 29).

Stresses and Strains

The Solid element models a general state of stress and strain in a three-dimensional
solid. All six stress and strain components are active for this element.

See Topic “Stresses and Strains” (page 71) in Chapter “Material Properties” for
more information.

Solid Properties
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A Solid Property is a set of material and geometric properties to be used by one or
more Solid elements. Solid Properties are defined independently of the Solid ele-
ments/objects, and are assigned to the elements.

Stresses and Strains
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Step 1: Rotation about
local 3 axis by angle a

Step 2: Rotation about new
local 2 axis by angle b

Step 3: Rotation about new
local 1 axis by angle ¢

Figure 46
Use of Element Coordinate Angles to Orient the
Solid Element Local Coordinate System

Solid Properties
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Material Properties

The material properties for each Solid Property are specified by reference to a pre-
viously-defined Material. Fully anisotropic material properties are used. The mate-
rial properties used by the Solid element are:

* The moduli of elasticity, el, €2, and e3

* The shear moduli, g12, g13, and g23

e All of the Poisson’s ratios, ul2, ul3, u23, ..., us6

» The coefficients of thermal expansion, al, a2, a3, al2, al3, and a23

* The mass density, m, used for computing element mass

* The weight density, w, used for computing Self-Weight and Gravity Loads

All material properties (except the densities) are obtained at the material tempera-
ture of each individual element.

See Chapter “Material Properties” (page 69) for more information.

Material Angles

The material local coordinate system and the element (Property) local coordinate
system need not be the same. The material coordinate system is oriented with re-
spect to the element coordinate system using the three angles a, b, and ¢ according
to the following procedure:

e The material system is first aligned with the element system;

* The material system is then rotated about its +3 axis by angle a;

» The material system is next rotated about the resulting +2 axis by angle b;

» The material system is lastly rotated about the resulting +1 axis by angle ¢;

This is shown in Figure 47 (page 209). These angles have no effect for isotropic
material properties since they are independent of orientation.

See Topic “Local Coordinate System” (page 70) in Chapter “Material Properties”
for more information.
Incompatible Bending Modes

By default each Solid element includes nine incompatible bending modes in its
stiffness formulation. These incompatible bending modes significantly improve
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Mass

3 (Element)
3 (Material) A

2 (Material)

1 (Element) 2 (Element)

Rotations are performed in the order
a-b-c about the axes shown.

1 (Material)
Figure 47
Solid Element Material Angles

the bending behavior of the element if the element geometry is of a rectangular
form. Improved behavior is exhibited even with non-rectangular geometry.

If an element is severely distorted, the inclusion of the incompatible modes should
be suppressed. The element then uses the standard isoparametric formulation. In-
compatible bending modes may also be suppressed in cases where bending is not
important, such as in typical geotechnical problems.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Solid element is lumped at the element joints. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the integral of the mass density, m, over the
volume of the element. The total mass is apportioned to the joints in a manner that is
proportional to the diagonal terms of the consistent mass matrix. See Cook,
Malkus, and Plesha (1989) for more information. The total mass is applied to each
of the three translational degrees of freedom (UX, UY, and UZ).
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For more information:

* See Topic “Mass Density” (page 76) in Chapter “Material Properties.”
» See Chapter “Load Cases” (page 289).

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a Solid
element, the self-weight is a force that is uniformly distributed over the volume of
the element. The magnitude of the self-weight is equal to the weight density, w.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:

* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the
definition of w.

* See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Solid element to activate the self-weight of the
element. Using Gravity Load, the self-weight can be scaled and applied in any di-
rection. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 210) in this Chapter for the definition of
self-weight for the Solid element.

» See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Surface Pressure Load

The Surface Pressure Load is used to apply external pressure loads upon any of the
six faces of the Solid element. The definition of these faces is shown in Figure 44
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(page 201). Surface pressure always acts normal to the face. Positive pressures are
directed toward the interior of the element.

The pressure may be constant over a face or interpolated from values given at the
joints. The values given at the joints are obtained from Joint Patterns, and need not
be the same for the different faces. Joint Patterns can be used to easily apply hydro-
static pressures.

The pressure acting on a given face is integrated over the area of that face, and the
resulting force is apportioned to the four corner joints of the face.

See Chapter “Load Patterns” (page 273) for more information.

Pore Pressure Load

The Pore Pressure Load is used to model the drag and buoyancy effects of a fluid
within a solid medium, such as the effect of water upon the solid skeleton of a soil.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. The total force acting on the element is the integral of
the gradient of this pressure field over the volume of the element. This force is ap-
portioned to each of the joints of the element. The forces are typically directed from
regions of high pressure toward regions of low pressure.

See Chapter “Load Patterns” (page 273) for more information.

Temperature Load

The Temperature Load creates thermal strain in the Solid element. This strain is
given by the product of the Material coefficient of thermal expansion and the tem-
perature change of the element. All specified Temperature Loads represent a
change in temperature from the unstressed state for a linear analysis, or from the
previous temperature in a nonlinear analysis.

See Chapter “Load Patterns” (page 273) for more information.

Stress Output

The Solid element stresses are evaluated at the standard 2 x 2 x 2 Gauss integration
points of the element and extrapolated to the joints. See Cook, Malkus, and Plesha
(1989) for more information.
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Principal values and their associated principal directions in the element local coor-
dinate system are also computed for single-valued Load Cases and Load Combina-
tions. Three direction cosines each are given for the directions of the maximum and
minimum principal stresses. The direction of the middle principal stress is perpen-
dicular to the maximum and minimum principal directions.

For more information:

* See Chapter “Load Patterns” (page 273).
* See Chapter “Load Cases” (page 289).
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The Link/Support Element—Basic

The Link element is used to connect two joints together. The Support element is
used to connect one joint to ground. Both element types use the same types of prop-
erties. Each Link or Support element may exhibit up to three different types of be-
havior: linear, nonlinear, and frequency-dependent, according to the types of prop-
erties assigned to that element and the type of analysis being performed.

This Chapter describes the basic and general features of the Link and Support ele-
ments and their linear behavior. The next Chapter describes advanced behavior,
which can be nonlinear or frequency-dependent.

Advanced Topics
* Overview
+ Joint Connectivity
» Zero-Length Elements
* Degrees of Freedom
* Local Coordinate System
* Advanced Local Coordinate System
* Internal Deformations

» Link/Support Properties
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* Coupled Linear Property
* Mass

* Self-Weight Load

e Gravity Load

* Internal Force and Deformation Output

Overview

214

A Link element is a two-joint connecting link. A Support element is a one-joint
grounded spring. Properties for both types of element are defined in the same way.
Each element is assumed to be composed of six separate “springs,” one for each of
six deformational degrees-of freedom (axial, shear, torsion, and pure bending).

There are two categories of Link/Support properties that can be defined: Lin-
ear/Nonlinear, and Frequency-Dependent. A Linear/Nonlinear property set must
be assigned to each Link or Support element. The assignment of a Fre-
quency-Dependent property set to a Link or Support element is optional.

All Linear/Nonlinear property sets contain linear properties that are used by the ele-
ment for linear analyses, and for other types of analyses if no other properties are
defined. Linear/Nonlinear property sets may have nonlinear properties that will be
used for all nonlinear analyses, and for linear analyses that continue from nonlinear
analyses.

Frequency-dependent property sets contain impedance (stiffness and damping)
properties that will be used for all frequency-dependent analyses. If a Fre-
quency-Dependent property has not been assigned to a Link/Support element, the
linear properties for that element will be used for frequency-dependent analyses.

The types of nonlinear behavior that can be modeled with this element include:

* Viscoelastic damping

* Gap (compression only) and hook (tension only)
» Multi-linear uniaxial elasticity

 Uniaxial plasticity (Wen model)

» Multi-linear uniaxial plasticity with several types of hysteretic behavior: kine-
matic, Takeda, and pivot

» Biaxial-plasticity base isolator

Overview
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* Friction-pendulum base isolator, with or without uplift prevention. This can
also be used for modeling gap-friction contact behavior

Each element has its own local coordinate system for defining the force-
deformation properties and for interpreting output.

Each Link/Support element may be loaded by gravity (in any direction).

Available output includes the deformation across the element, and the internal
forces at the joints of the element.

Joint Connectivity

Each Link/Support element may take one of the following two configurations:
* A Link connecting two joints, I and j; it is permissible for the two joints to
share the same location in space creating a zero-length element

* A Support connecting a single joint, j, to ground

Lero-Length Elements

The following types of Link/Support elements are considered to be of zero length:

» Single-joint Support elements

* Two-joint Link elements with the distance from joint I to joint j being less than
or equal to the zero-length tolerance that you specify.

The length tolerance is set using the Auto Merge Tolerance in the graphical user in-
terface. Two-joint elements having a length greater than the Auto Merge Tolerance
are considered to be of finite length. Whether an element is of zero length or finite
length affects the definition of the element local coordinate system, and the internal
moments due to shear forces.

Degrees of Freedom

The Link/Support element always activates all six degrees of freedom at each of its
one or two connected joints. To which joint degrees of freedom the element con-
tributes stiffness depends upon the properties you assign to the element. You must
ensure that restraints or other supports are provided to those joint degrees of free-
dom that receive no stiffness.
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For more information:

* See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of
Freedom.”

* See Topic “Link/Support Properties” (page 224) in this Chapter.

Local Coordinate System

Each Link/Support element has its own element local coordinate system used to
define force-deformation properties and output. The axes of this local system are
denoted 1, 2 and 3. The first axis is directed along the length of the element and cor-
responds to extensional deformation. The remaining two axes lie in the plane per-
pendicular to the element and have an orientation that you specify; these directions
correspond to shear deformation.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both
systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Link/Support elements in the most compli-
cated situations.

The simplest method, using the default orientation and the Link/Support ele-
ment coordinate angle, is described in this topic. Additional methods for defining
the Link/Support element local coordinate system are described in the next topic.

For more information:

» See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Advanced Local Coordinate System” (page 218) in this Chapter.

Longitudinal Axis |

Local axis 1 is the longitudinal axis of the element, corresponding to extensional
deformation. This axis is determined as follows:

* For elements of finite length this axis is automatically defined as the direction
from joint I to joint j
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» For zero-length elements the local 1 axis defaults to the +Z global coordinate
direction (upward)

For the definition of zero-length elements, see Topic “Zero-Length Elements”
(page 215) in this Chapter.

Default Orientation

The default orientation of the local 2 and 3 axes is determined by the relationship
between the local 1 axis and the global Z axis. The procedure used here is identical
to that for the Frame element:

* The local 1-2 plane is taken to be vertical, i.e., parallel to the Z axis

» Thelocal 2 axis is taken to have an upward (+Z) sense unless the element is ver-
tical, in which case the local 2 axis is taken to be horizontal along the global +X
direction

* The local 3 axis is always horizontal, i.e., it lies in the X-Y plane

An element is considered to be vertical if the sine of the angle between the local 1
axis and the Z axis is less than 10°.

The local 2 axis makes the same angle with the vertical axis as the local 1 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for horizontal elements.

Coordinate Angle

The Link/Support element coordinate angle, ang, is used to define element orienta-
tions that are different from the default orientation. It is the angle through which the
local 2 and 3 axes are rotated about the positive local 1 axis from the default orien-
tation. The rotation for a positive value of ang appears counterclockwise when the
local +1 axis is pointing toward you. The procedure used here is identical to that for
the Frame element.

For vertical elements, ang is the angle between the local 2 axis and the horizontal
+X axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 1 axis. See Figure 48 (page 218) for examples.
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Local 1 Axis is Parallel to +Y Axis Local 1 Axis is Not Parallel to X, Y, or Z Axes
Local 2 Axis is Rotated 90° from Z-1 Plane Local 2 Axis is Rotated 30° from Z-1 Plane

ang=90°

Local 1 Axis is Parallel to +Z Axis Local 1 Axis is Parallel to —Z Axis
Local 2 Axis is Rotated 90° from X-1 Plane Local 2 Axis is Rotated 30° from X-1 Plane

Figure 48

The Link/Support Element Coordinate Angle with Respect to the Default
Orientation

Advanced Local Coordinate System

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +X directions, as described
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in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the transverse local 2 and 3
axes with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the orientation deter-
mined by the reference vector.

This topic also describes how to change the orientation of the local 1 axis from the
default global +Z direction for zero-length elements. The local 1 axis is always di-
rected from joint I to joint j for elements of finite length.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

* See Topic “Local Coordinate System” (page 215) in this Chapter.

Axis Reference Vector

To define the local 1 axis for zero-length elements, you specify an axis reference
vector that is parallel to and has the same positive sense as the desired local 1 axis.
The axis reference vector has no effect upon finite-length elements.

To define the axis reference vector, you must first specify or use the default values
for:

* A coordinate direction axdir (the default is +Z)

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that is used to define
the plane reference vector, as described below

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvecb. If this vector is of finite
length, it is used as the reference vector V,,

Advanced Local Coordinate System 219



CSI Analysis Reference Manual

2. Otherwise, the coordinate direction axdir is evaluated at the center of the ele-
ment in fixed coordinate system csys, and is used as the reference vector V,,

The center of a zero-length element is taken to be at joint j.

The local 1 axis is given by the vector V,, after it has been normalized to unit length.

Plane Reference Vector

To define the transverse local axes 2 and 3, you specify a plane reference vector
that is parallel to the desired 1-2 or 1-3 plane. The procedure used here is identical
to that for the Frame element.

The reference vector must have a positive projection upon the corresponding trans-
verse local axis (2 or 3, respectively). This means that the positive direction of the
reference vector must make an angle of less than 90° with the positive direction of
the desired transverse axis.

To define the reference vector, you must first specify or use the default values for:

* A primary coordinate direction pldirp (the default is +Z)

* A secondary coordinate direction pldirs (the default is +X). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

» The local plane, local, to be determined by the reference vector (the default is
12, indicating plane 1-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 1, it is used as the reference vector V.

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system esys. If this direction is not parallel to
local axis 1, it is used as the reference vector V.
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pldirp = +Y
pldirs = -X 1
local = 12

V4 ang=90° \(u')\ \\‘X

2

Local 1 Axis is Not Parallel to pldirp (+Y) Local 1 Axis is Parallel to pldirp (+Y)
Local 2 Axis is Rotated 90° from Y-1 Plane L ocal 2 Axis is Rotated 90° from X-1 Plane

Figure 49
The Link/Support Element Coordinate Angle with Respect to Coordinate
Directions

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
ofthe element in fixed coordinate system esys. Ifthis direction is not parallel to
local axis 1, it is used as the reference vector V.

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis 1 if the sine of the angle between
them is less than 107,

The use of the Link/Support element coordinate angle in conjunction with coordi-
nate directions that define the reference vector is illustrated in Figure 49 (page
221). The use of joints to define the reference vector is shown in Figure 50 (page
222).

Determining Transverse Axes 2 and 3

The program uses vector cross products to determine the transverse axes 2 and 3
once the reference vector has been specified. The three axes are represented by the
three unit vectors V;, V, and V;, respectively. The vectors satisfy the cross-product
relationship:
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The following two specifications are equivalent: Plane 1-2 Vo (a)
(a) local=12, plveca=0, plvech=100 Axis 1
(b) local=13, plveca=101, plvecb=102

<V

Figure 50
Using Joints to Define the Link/Support Element Local Coordinate System

Vl = V2 X V3
The transverse axes 2 and 3 are defined as follows:

* If the reference vector is parallel to the 1-2 plane, then:
V3=V xV, and
V, =V; xV,

* If the reference vector is parallel to the 1-3 plane, then:
V,=V,xV, and
V; =V, xV,

In the common case where the reference vector is perpendicular to axis Vj, the
transverse axis in the selected plane will be equal to V.

Internal Deformations

Six independent internal deformations are defined for the Link/Support element.
These are calculated from the relative displacements of joint j with respect to:
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» Joint I for a two-joint element

* The ground for a single-joint element

For two-joint Link/Support elements the internal deformations are defined as:

* Axial: dyl = u1j—uli

* Shear in the 1-2 plane: du2 = u2j — u2i — dj2 r3j — (L — dj2) r3j
* Shear in the 1-3 plane: dy3 = u3j—u3i + dj3 r2j + (L — dj3) r2i
* Torsion: dr1 = r1j—rii

 Pure bending in the 1-3 plane:  d)2 = r2i — 12j
* Pure bending in the 1-2 plane:  d,3 = r3j—13i

where:

* uli, u2i, U3i, i, r2i, and r3j are the translations and rotations at joint I
* ul1j, u2j, usj, r'1j, r2j, and r3j are the translations and rotations at joint j
* dj2 is the distance you specify from joint j to the location where the shear de-

formation d,,2 is measured (the default is zero, meaning at joint j)

+ dj3 is the distance you specify from joint j to the location where the shear de-
formation d,,3 is measured (the default is zero, meaning at joint j)

* L is the length of the element

All translations, rotations, and deformations are expressed in terms of the element
local coordinate system.

Note that shear deformation can be caused by rotations as well as translations.
These definitions ensure that all deformations will be zero under rigid-body mo-
tions of the element.

Important! Note that dj2 is the location where pure bending behavior is measured
in the 1-2 plane, in other words, it is where the moment due to shear is taken to be
zero. Likewise, dj3 is the location where pure bending behavior is measured in the
1-3 plane.

It is important to note that the negatives of the rotations 7, and r,, have been used for
the definition of shear and bending deformations in the 1-3 plane. This provides
consistent definitions for shear and moment in both the Link/Support and Frame el-
ements.

Three of these internal deformations are illustrated in Figure 51 (page 224).
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Figure 51

Internal Deformations for a Two-Joint Link Element

For one-joint grounded-spring elements the internal deformations are the same as
above, except that the translations and rotations at joint I are taken to be zero:

* Axial: dul = ulj
* Shear in the 1-2 plane: du2 = u2j — dj2 r3j
* Shear in the 1-3 plane: du3 = u3j + dj3 r2j
 Torsion: dr1 = rij

 Pure bending in the 1-3 plane: dy2 =—r2j
* Pure bending in the 1-2 plane:  d;3 = 13j

Link/Support Properties

A Link/Support Property is a set of structural properties that can be used to define
the behavior of one or more Link or Support elements. Each Link/Support Property
specifies the force-deformation relationships for the six internal deformations.
Mass and weight properties may also be specified.
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Link/Support Properties are defined independently of the Link and Support ele-
ments and are referenced during the definition of the elements.

There are two categories of Link/Support properties that can be defined:

* Linear/Nonlinear. A Linear/Nonlinear property set must be assigned to each
Link or Support element.

* Frequency-Dependent. The assignment of a Frequency-Dependent property
set to a Link or Support element is optional.

All Linear/Nonlinear property sets contain linear properties that are used by the ele-
ment for linear analyses, and for other types of analyses if no other properties are
defined. Linear/Nonlinear property sets may also have nonlinear properties that
will be used for all nonlinear analyses, and for linear analyses that continue from
nonlinear analyses.

Frequency-dependent property sets contain impedance (stiffness and damping)
properties that will be used for all frequency-dependent analyses. If a Fre-
quency-Dependent property has not been assigned to a Link/Support element, the
linear properties for that element will be used for frequency-dependent analyses.

This is summarized in the table of Figure 52 (page 226).

Local Coordinate System

Link/Support Properties are defined with respect to the local coordinate system of
the Link or Support element. The local 1 axis is the longitudinal direction of the ele-
ment and corresponds to extensional and torsional deformations. The local 2 and 3
directions correspond to shear and bending deformations.

See Topic “Local Coordinate System” (page 215) in this Chapter.

Internal Spring Hinges

Each Link/Support Property is assumed to be composed of six internal “springs” or
“Hinges,” one for each of six internal deformations. Each “spring” may actually
consist of several components, including springs and dashpots. The force-
deformation relationships of these springs may be coupled or independent of each
other.

Figure 53 (page 227) shows the springs for three of the deformations: axial, shear in
the 1-2 plane, and pure-bending in the 1-2 plane. It is important to note that the
shear spring is located a distance dj2 from joint j. All shear deformation is assumed
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Load Case Element has | Element has Actual
Load Case .. .
Tvpe Initial Nonlinear Freq. Dep. Property
yp Conditions Properties? | Properties? Used
Zero Yes or No Yes or No Linear
Linear . No Yes or No Linear
Nonlinear
Case Yes Yes or No Nonlinear
No Yes or No Linear
Nonlinear Any
Yes Yes or No Nonlinear
No Linear
Zero Yes or No
Yes Freq. Dep.
Frequency .
Dependent No No Linear
Nonlinear Yes No Nonlinear
Case
Yes or No Yes Freq. Dep.
Figure 52

Link/Support Stiffness Properties Actually Used for Different Types of Analysis

to occur in this spring; the links connecting this spring to the joints (or ground) are
rigid in shear. Deformation of the shear spring can be caused by rotations as well as
translations at the joints. The force in this spring will produce a linearly-varying
moment along the length. This moment is taken to be zero at the shear spring, which
acts as a moment hinge. The moment due to shear is independent of, and additive
to, the constant moment in the element due to the pure-bending spring.

The other three springs that are not shown are for torsion, shear in the 1-3 plane, and
pure-bending in the 1-3 plane. The shear spring is located a distance dj3 from joint

J

The values of dj2 and dj3 may be different, although normally they would be the
same for most elements.
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Joint j
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Axial Shear Pure
1 Bending
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Jointi

or ground
Figure 53

Three of the Six Independent Spring Hinges in a Link/Support Element

Spring Force-Deformation Relationships

There are six force-deformation relationships that govern the behavior of the ele-
ment, one for each of the internal springs:

* Axial: Sul vs. dui
* Shear: Ju2 vs. dy2 , fu3 Vs. di3
* Torsional: fr1 Vs. dr1

* Pure bending: f;2 vs. dy2, fi3 VS. di3

where f,, ., and f, are the internal-spring forces; and f,, f,, and f, are the internal-

ul? 7

spring moments.

Each of these relationships may be zero, linear only, or linear/nonlinear for a given
Link/Support Property. These relationships may be independent or coupled. The
forces and moments may be related to the deformation rates (velocities) as well as
to the deformations.
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Link/Support Element Internal Forces and Moments, Shown Acting at the Joints

Element Internal Forces

The Link/Support element internal forces, P,V 2,V 3, and the internal moments, 7',
M2, M 3, have the same meaning as for the Frame element. These are illustrated in
Figure 54 (page 228). These can be defined in terms of the spring forces and mo-
ments as:

Axial:
Shear in the 1-2 plane:
Shear in the 1-3 plane:

Torsion:

Pure bending in the 1-3 plane:
Pure bending in the 1-2 plane:
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P=fu1
V2=fuz,
V3=fu3,
T=fn
M2p=f2
M3p =13

M2 = (d—dj3) fu3
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where d is the distance from joint j. The total bending-moment resultants M 2 and
M 3 composed of shear and pure-bending parts:

M2=M2 +M2,
M3=M3,+M3,

These internal forces and moments are present at every cross section along the
length of the element.

See Topic “Internal Force Output” (page 118) in Chapter “The Frame Element.”

Uncoupled Linear Force-Deformation Relationships

If each of the internal springs are linear and uncoupled, the spring force-
deformation relationships can be expressed in matrix form as:

fal Tky O 0 0 0 07(dy, (Eqn. 1)
Juz ki 0 0 dp
S| kg 00 0 |]dg
Jn kp 00 1|dy
S Sym. ko 0 |ldy
fl L k] ds

where k, k, k., k., k,, and k, are the linear stiffness coefficients of the internal

ul® “Tu2% Ttu3® TUr12 TUr2d

springs.

This can be recast in terms of the element internal forces and displacements at joint
j for a one-joint element as:

(Eqn. 2)
P (ky O 0 0 0 0 1 w
V2 ko, 0 0 0 —dj2k,» Uy
V3 ks 0 —dj3k,; 0 s
T~ k., 0 0 "
M?2 sym. ko +dj32 k3 0 -7
M3 ks +4j2% ko | | 7 j

J L

This relationship also holds for a two-joint element if all displacements at joint I are
ZETo0.
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230

Hinge at Joint j Hinge near Joint i No hinge

Figure 55
Location of Shear Spring at a Moment Hinge or Point of Inflection

Similar relationships hold for linear damping behavior, except that the stiffness
terms are replaced with damping coefficients, and the displacements are replaced
with the corresponding velocities.

Consider an example where the equivalent shear and bending springs are to be
computed for a prismatic beam with a section bending stiffness of £/ in the 1-2
plane. The stiffness matrix at joint j for the 1-2 bending plane is:

{V2} EI[ 12 —6L—|{u2}
=3 2
M3 i I L—6L 4LJ 5
From this it can be determined that the equivalent shear spring has a stiffness of

EI L . . .
ko =12— located at dj2 = > and the equivalent pure-bending spring has a stiff-
L

EI
ness of k5 = A

For an element that possesses a true moment hinge in the 1-2 bending plane, the
pure-bending stiffness is zero, and dj2 is the distance to the hinge. See Figure 55
(page 230).
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Types of Linear/Nonlinear Properties

The primary Linear/Nonlinear Link/Support Properties may be of the following
types:

* Coupled Linear

* Damper

* Gap

* Hook

* Multi-linear Elastic

* Multi-linear Plastic

 Plastic (Wen)

* Hysteretic (Rubber) Isolator

 Friction-Pendulum Isolator

* Tension/Compression Friction Pendulum Isolator
The first type, Coupled Linear, may have fully coupled linear stiffness and damp-

ing coefficients. This property type is described in Topic “Coupled Linear Prop-
erty” (page 231) in this Chapter.

All other property types are considered nonlinear. However, for each nonlinear
property type you also specify a set of uncoupled linear stiffness and damping coef-
ficients that are used instead of the nonlinear properties for linear analyses. These
substitute linear properties are called “linear effective stiffness” and “linear effec-
tive damping” properties.

For more information:

* See Topic “Coupled Linear Property” (page 231) in this Chapter.
* See Chapter “The Link/Support Element—Advanced” (page 235).

Coupled Linear Property

The Coupled Linear Link/Support Property is fully linear. It has no nonlinear be-
havior. The linear behavior is used for all linear and nonlinear analyses. It is also
used for frequency-dependent analyses unless frequency-dependent properties
have been assigned to the Link/Support element.

The stiffness matrix of Eqn. (1) (page 229) may now be fully populated:
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232

ful kul kuluZ ku1u3 kulrl kuer kulr} dul (Eqn 3)
Jur ko ko ko koo kos | de
Jus | _ ks kg ko ks |]ds
f rl k rl k rlr2 k rlr3 drl
S Sym. ko ks | 1dp
f”3 L kr3 i dr3
where k., k. k. k,, . k.. K, ---» K, are the linear stiffness coefficients of the in-

ternal springs.

The corresponding matrix of Eqn. (2) (page 229) can be developed from the rela-
tionships that give the element internal forces in terms of the spring forces and mo-
ments. See Topic “Element Internal Forces” (page 228) in this Chapter.

Similarly, the damping matrix is fully populated and has the same form as the stiff-
ness matrix. Note that the damping behavior is active for all dynamic analyses. This
is in contrast to linear effective damping, which is not active for nonlinear analyses.

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Link or Support element is lumped at the joints I and j.
No inertial effects are considered within the element itself-

For each Link/Support Property, you may specify a total translational mass, m.
Half of the mass is assigned to the three translational degrees of freedom at each of
the element’s one or two joints. For single-joint elements, half of the mass is as-
sumed to be grounded.

You may additionally specify total rotational mass moments of inertia, mr1, mr2,
and mr3, about the three local axes of each element. Half of each mass moment of
inertia is assigned to each of the element’s one or two joints. For single-joint ele-
ments, half of each mass moment of inertia is assumed to be grounded.

The rotational inertias are defined in the element local coordinate system, but will
be transformed by the program to the local coordinate systems for joint I and j. If
the three inertias are not equal and element local axes are not parallel to the joint lo-
cal axes, then cross-coupling inertia terms will be generated during this transforma-
tion. These will be discarded by the program, resulting in some error.

Mass
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It is strongly recommended that there be mass corresponding to each nonlinear de-
formation load in order to generate appropriate Ritz vectors for nonlinear modal
time-history analysis. Note that rotational inertia is needed as well as translational
mass for nonlinear shear deformations if either the element length or dj is non-zero.

For more information:

* See Chapter “Static and Dynamic Analysis” (page 289).
» See Topic “Nonlinear Deformation Loads” (page 233) in this Chapter.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For each
Link/Support Property, a total self-weight, w, may be defined. Half of this weight is
assigned to each joint of each Link/Support element using that Link/Support Prop-
erty. For single-joint elements, half of the weight is assumed to be grounded.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns” for more in-
formation.

Gravity Load

Gravity Load can be applied to each Link/Support element to activate the self-
weight of the element. Using Gravity Load, the self-weight can be scaled and ap-
plied in any direction. Different scale factors and directions can be applied to each
element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 233) in this Chapter for the definition of
self-weight for the Link/Support element.

* See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”
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Internal Force and Deformation Output

Link/Support element internal forces and deformations can be requested for Load
Cases and Load Combinations.

Results for linear analyses are based upon the linear effective-stiffness and
effective-damping properties and do not include any nonlinear effects. Only the re-
sults for nonlinear Load Cases include nonlinear behavior.

The element internal forces were defined in Subtopic “Element Internal Forces”
(page 228) of this Chapter. The internal deformations were defined in Topic “Inter-
nal Deformations” (page 222) of this Chapter.

The element internal forces are labeled P, V2, V3, T, M2, and M3 in the output. The
internal deformations are labeled U1, U2, U3, R1, R2, and R3 in the output, corre-
sponding to the values of d ,d ,, d,d, . d, andd,.

ul® “u2> u3d el 20

For more information:

» See Chapter “Load Patterns” (page 273).
» See Chapter “Load Cases” (page 289).
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Chapter XV

The Link/Support Element—Advanced

The basic, linear behavior of the Link and Support elements was described in the
previous Chapter. The present Chapter describes the use of the Link and Support el-
ements to model nonlinear behavior and frequency-dependent behavior.

Advanced Topics

Overview

Nonlinear Link/Support Properties

Linear Effective Stiffness

Linear Effective Damping

Nonlinear Viscous Damper Property

Gap Property

Hook Property

Multi-Linear Elasticity Property

Wen Plasticity Property

Multi-Linear Kinematic Plasticity Property
Multi-Linear Takeda Plasticity Property
Multi-Linear Pivot Hysteretic Plasticity Property
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» Hysteretic (Rubber) Isolator Property

* Friction-Pendulum Isolator Property

* Double-Acting Friction-Pendulum Isolator Property
* Nonlinear Deformation Loads

* Frequency-Dependent Properties

Overview

The basic features of the Link and Support elements were described in the previous
Chapter, “The Link/Support Element—Basic” (page 213).

This Chapter describes the various type of nonlinear properties that are available,
the concepts of linear effective stiffness and damping, the use of nonlinear defor-
mation loads for Ritz-vector analysis, and frequency-dependent properties.

Nonlinear Link/Support Properties

236

The nonlinear properties for each Link/Support Property must be of one of the
various types described below. The type determines which degrees of freedom may
be nonlinear and the kinds of nonlinear force-deformation relationships available
for those degrees of freedom.

Every degree of freedom may have linear effective-stiffness and effective-damping
properties specified, as described below in Subtopics “Linear Effective Stiffness”
and “Linear Effective Damping.”

During nonlinear analysis, the nonlinear force-deformation relationships are used
at all degrees of freedom for which nonlinear properties were specified. For all
other degrees of freedom, the linear effective stiffnesses are used during a nonlinear
analysis.

Linear analyses that start from zero initial conditions will use the linear effective
stiffness regardless of whether nonlinear properties were specified or not. Linear
analyses that use the stiffness from the end of a previous nonlinear analysis will use
the nonlinear properties. Linear effective damping is used for all linear analyses,
but it is not used for any nonlinear analysis.

Each nonlinear force-deformation relationship includes a stiffness coefficient, k.
This represents the linear stiffness when the nonlinear effect is negligible, e.g., for
rapid loading of the Damper; for a closed Gap or Hook; or in the absence of yield-
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ing or slipping for the Plasticl, Isolatorl, or Isolator2 properties. If k is zero, no
nonlinear force can be generated for that degree of freedom, with the exception of
the pendulum force in the Isolator2 property.

IMPORTANT! You may sometimes be tempted to specify very large values for k,
particularly for Damper, Gap, and Hook properties. Resist this temptation! If you
want to limit elastic deformations in a particular internal spring, it is usually suffi-
cient to use a value of k that is from 10’ to 10" times as large as the corresponding
stiffness in any connected elements. Larger values of k may cause numerical diffi-
culties during solution. See the additional discussion for the Damper property be-
low.

Linear Effective Stiffness

For each nonlinear type of Link/Support Property, you may specify six uncoupled
linear effective-stiffness coefficients, ke, one for each of the internal springs.

The linear effective stiffness represents the total elastic stiffness for the Link/Sup-
port element that is used for all linear analyses that start from zero initial condi-
tions. The actual nonlinear properties are ignored for these types of analysis.

If you do not specify nonlinear properties for a particular degree of freedom, then
the linear effective stiffness is used for that degree of freedom for all linear and non-
linear analyses.

The effective force-deformation relationships for the Link/Support Properties are
given by Equation 1 above with the appropriate values of ke substituted for &, & ,,
k.k,k,andk,.

u3? "r1?

Special Considerations for Modal Analyses

The effective stiffness properties are not used for nonlinear degrees of freedom dur-
ing nonlinear time-history analysis. However, nonlinear modal time-history analy-
ses do make use of the vibration modes that are computed based on the effective
stiffness if the modal analysis itself start from zero initial conditions. During time
integration the behavior of these modes is modified so that the structural response
reflects the actual stiffness and other nonlinear parameters specified. The rate of
convergence of the nonlinear iteration may be improved by changing the effective
stiffness.

Following are some guidelines for selecting the linear effective stiffness. You
should deviate from these as necessary to achieve your modeling and analysis
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goals. In particular, you should consider whether you are more interested in the re-
sults to be obtained from linear analyses, or in obtaining modes that are used as the
basis for nonlinear modal time-history analyses.

* When carrying out analyses based on the UBC ‘94 code or similar, the effective
stiffness should usually be the code-defined maximum effective stiffness

» For Gap and Hook elements the effective stiffness should usually be zero or k,
depending on whether the element is likely to be open or closed, respectively,
in normal service

» For Damper elements, the effective stiffness should usually be zero
» For other elements, the stiffness should be between zero and k

» If you have chosen an artificially large value for k, be sure to use a much
smaller value for ke to help avoid numerical problems in nonlinear modal
time-history analyses

In the above, Kk is the nonlinear stiffness property for a given degree of freedom. See
Chapter “The Link/Support Element—Basic” (page 213).

For more information, see Topic “Nonlinear Modal Time-History Analysis
(FNA)” (page 297) in Chapter “Nonlinear Time-History Analysis.”

Linear Effective Damping

238

For each nonlinear-type of Link/Support Property, you may specify six uncoupled
linear effective-damping coefficients, ce, one for each of the internal springs. By
default, each coefficient ce is equal to zero.

The linear effective damping represents the total viscous damping for the
Link/Support element that is used for response-spectrum analyses, for linear and
periodic time-history analyses, and for frequency-dependent analyses if fre-
quency-dependent properties have not been assigned to a given Link or Support el-
ement. The actual nonlinear properties are ignored for these types of analysis. Ef-
fective damping can be used to represent energy dissipation due to nonlinear damp-
ing, plasticity, or friction.

The effective force/deformation-rate relationships for the Link/Support Properties
are given by Equation 1 above with the appropriate values of ce substituted for &,
k. k k., k, and k_, and deformation rates substituted for the corresponding defor-

mations.

Linear Effective Damping
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For response-spectrum and linear modal time-history analysis, the effective damp-
ing values are converted to modal damping ratios assuming proportional damping,
i.e., the modal cross-coupling damping terms are ignored. These effective
modal-damping values are added to any other modal damping that you specify di-
rectly. The program will not permit the total damping ratio for any mode to exceed
99.995%.

Important Note: Modal cross-coupling damping terms can be very significant for
some structures. A linear analysis based on effective-damping properties may
grossly overestimate or underestimate the amount of damping present in the struc-
ture.

Nonlinear time-history analysis is strongly recommended to determine the effect of
added energy dissipation devices. Nonlinear time-history analysis does not use the
effective damping values since it accounts for energy dissipation in the elements di-
rectly, and correctly accounts for the effects of modal cross-coupling.

Nonlinear Viscous Damper Property

This element is very well suited for modeling viscous dampers that have a nonlin-
ear force-velocity relationship. For simple linear damping, you may instead want to
use the coupled linear Link Support Property. The linear property does not require
the series spring used by the nonlinear viscous damper, and it does allow you to
consider a parallel spring. See Topic “Coupled Linear Property” (page 231) for
more information

For the nonlinear viscous damper, you can specify independent damping properties
for each deformational degree of freedom. The damping properties are based on the
Maxwell model of viscoelasticity (Malvern, 1969) having a nonlinear damper in
series with a spring. See Figure 56 (page 240). If you do not specify nonlinear prop-
erties for a degree of freedom, that degree of freedom is linear using the effective
stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
fokd, —cd

where K is the spring constant, ¢ is the damping coefficient, cexp is the damping ex-
ponent, d; is the deformation across the spring, and d, is the deformation rate

across the damper. The damping exponent must be positive; the practical range is
between 0.2 and 2.0.
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Figure 56
Nonlinear Viscous Damper, Gap, and Hook Property Types,
Shown for Axial Deformations

The spring and damping deformations sum to the total internal deformation:
d=d; +d,

The series spring is very important for capturing realistic behavior of nonlinear
dampers, especially those with fractional exponents. It represents the elastic flexi-
bility of the damping device, including the fluid column and the connecting mecha-
nisms. It prevents the damping term from producing unrealistically large viscous
forces at small velocities, which can have a very significant impact on overall struc-
tural behavior.

You may be tempted to introduce a large stiffness value, k, to represent “pure”
damping, but this may result in unconservative and unrealistic behavior. It would
be better to get a realistic value of the elastic flexibility from the manufacturer of
the device and the details of the connections, or make an engineering estimate of
the value. For more information, see the SAP2000 Software Verification Manual,
where SAP2000 results are compared with experiment.

Gap Property

For each deformational degree of freedom you may specify independent gap
(“compression-only”) properties. See Figure 56 (page 240).
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All internal deformations are independent. The opening or closing of a gap for one
deformation does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
p { k (d +open) if d+open<0

0 otherwise

where k is the spring constant, and open is the initial gap opening, which must be
Zero or positive.

Hook Property

For each deformational degree of freedom you may specify independent hook
(“tension-only”) properties. See Figure 56 (page 240).

Allinternal deformations are independent. The opening or closing of a hook for one
deformation does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
7 _{k(d—open) if d—open>0

0 otherwise

where k is the spring constant, and open is the initial hook opening, which must be
Zero or positive.

Multi-Linear Elasticity Property

For each deformational degree of freedom you may specify multi-linear elastic
properties.

All internal deformations are independent. The deformation in one degree of free-
dom does not affect the behavior of any other. If you do not specify nonlinear prop-
erties for a degree of freedom, that degree of freedom is linear using the effective
stiffness, which may be zero.
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The nonlinear force-deformation relationship is given by a multi-linear curve that
you define by a set of points. The curve can take on almost any shape, with the fol-
lowing restrictions:

* One point must be the origin, (0,0)

» At least one point with positive deformation, and one point with negative de-
formation, must be defined

* The deformations of the specified points must increase monotonically, with no
two values being equal

» The forces (moments) can take on any value

The slope given by the last two specified points on the positive deformation axis is
extrapolated to infinite positive deformation. Similarly, the slope given by the last
two specified points on the negative deformation axis is extrapolated to infinite
negative deformation.

The behavior is nonlinear but it is elastic. This means that the element loads and un-
loads along the same curve, and no energy is dissipated.

Wen Plasticity Property

242

For each deformational degree of freedom you may specify independent uniaxial-
plasticity properties. The plasticity model is based on the hysteretic behavior pro-
posed by Wen (1976). See Figure 57 (page 243).

All internal deformations are independent. The yielding at one degree of freedom
does not affect the behavior of the other deformations.

If you do not specify nonlinear properties for a degree of freedom, that degree of
freedom is linear using the effective stiffness, which may be zero.

The nonlinear force-deformation relationship is given by:
f =ratio k d + (1 —ratio) yield z

where K is the elastic spring constant, yield is the yield force, ratio is the specified
ratio of post-yield stiffness to elastic stiffness (k), and z is an internal hysteretic
variable. This variable has a range of | z | < 1, with the yield surface represented by
| z| = 1. The initial value of z is zero, and it evolves according to the differential
equation:

Wen Plasticity Property
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yield,
ratio,
exp

Qv

| —

Figure 57
Wen Plasticity Property Type for Uniaxial Deformation

~yield | 4 otherwise

K {d(1—|z| Py i dz>0

where exp is an exponent greater than or equal to unity. Larger values of this expo-
nent increases the sharpness of yielding as shown in Figure 58 (page 244). The
practical limit for exp is about 20. The equation for z is equivalent to Wen’s model
with 4 =1landoa =f=0.5.

Multi-Linear Kinematic Plasticity Property

This model is based upon kinematic hardening behavior that is commonly observed
in metals. For each deformational degree of freedom you may specify multi-linear
kinematic plasticity properties. See Figure 59 (page 245).

All internal deformations are independent. The deformation in one degree of free-
dom does not affect the behavior of any other. If you do not specify nonlinear prop-
erties for a degree of freedom, that degree of freedom is linear using the effective
stiffness, which may be zero.
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Figure 58
Definition of Parameters for the Wen Plasticity Property

The nonlinear force-deformation relationship is given by a multi-linear curve that
you define by a set of points. The curve can take on almost any shape, with the fol-
lowing restrictions:

* One point must be the origin, (0,0)

* At least one point with positive deformation, and one point with negative de-
formation, must be defined

* The deformations of the specified points must increase monotonically, with no
two values being equal

* The forces (moments) at a point must have the same sign as the deformation
(they can be zero)

» The final slope at each end of the curve must not be negative
The slope given by the last two points specified on the positive deformation axis is
extrapolated to infinite positive deformation. Similarly, the slope given by the last

two points specified on the negative deformation axis is extrapolated to infinite
negative deformation.

The given curve defines the force-deformation relationship under monotonic load-
ing. The first slope on either side of the origin is elastic; the remaining segments de-
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Figure 59
Multi-linear Kinematic Plasticity Property Type for Uniaxial Deformation

fine plastic deformation. If the deformation reverses, it follows the two elastic seg-
ments before beginning plastic deformation in the reverse direction.

Under the rules of kinematic hardening, plastic deformation in one direction
“pulls” the curve for the other direction along with it. Matching pairs of points are
linked.

Consider the points labeled as follows:

* The origin is point 0
* The points on the positive axis are labeled 1, 2, 3..., counting from the origin
* The points on the negative axis are labeled —1,-2,-3..., counting from the ori-

gin.

See Figure 60 (page 246) for an example, where three points are defined on either
side of the origin. This figure shows the behavior under cyclic loading of increasing
magnitude.

In this example, the loading is initially elastic from point O to point 1. As loading
continues from point 1 to point 2, plastic deformation occurs. This is represented by
the movement of point 1 along the curve toward point 2. Point—1 is pulled by point
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Figure 60
Multi-linear Kinematic Plasticity Property Type for Uniaxial Deformation
Shown is the behavior under cyclic loading of increasing magnitude

1 to move an identical amount in both the force and deformation directions. Point O
also moves along with point 1 and —1 to preserve the elastic slopes.

When the load reverses, the element unloads along the shifted elastic line from
point 1 to point —1, then toward point —2. Point —2 has not moved yet, and will not
move until loading in the negative direction pushes it, or until loading in the posi-
tive direction pushes point 2, which in turn pulls point —2 by an identical amount.

When the load reverses again, point 1 is pushed toward point 2, then together they
are pushed toward point 3, pulling points —1 and —2 with them. This procedure is
continued throughout the rest of the analysis. The slopes beyond points 3 and -3 are
maintained even as these points move.

When you define the points on the multi-linear curve, you should be aware that
symmetrical pairs of points will be linked, even if the curve is not symmetrical.
This gives you some control over the shape of the hysteretic loop.

Multi-Linear Kinematic Plasticity Property
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Figure 61
Multi-linear Takeda Plasticity Property Type for Uniaxial Deformation

Multi-Linear Takeda Plasticity Property

This model is very similar to the Multi-Linear Kinematic model, but uses a degrad-
ing hysteretic loop based on the Takeda model, as described in Takeda, Sozen, and
Nielsen (1970). The specification of the properties is identical to that for the Kine-
matic model, only the behavior is different. In particular, when crossing the hori-
zontal axis upon unloading, the curve follows a secant path to the backbone force
deformation relationship for the opposite loading direction. See Figure 61 (page
247).

Multi-Linear Pivot Hysteretic Plasticity Property

This model is similar to the Multi-Linear Takeda model, but has additional parame-
ters to control the degrading hysteretic loop. It is particularly well suited for rein-
forced concrete members, and is based on the observation that unloading and re-
verse loading tend to be directed toward specific points, called pivots points, in the
force-deformation (or moment-rotation) plane. This model is fully described in
Dowell, Seible, and Wilson (1998).

Multi-Linear Takeda Plasticity Property 247



CSI Analysis Reference Manual

SaFyy T «P, uPy

I EEFYE
4 F':I.'2

P4 P,# L oo Py,

Figure 62
Multi-linear Takeda Plasticity Property Type for Uniaxial Deformation

The specification of the properties is identical to that for the Kinematic or Takeda
model, with the addition of the following scalar parameters:

* ol, which locates the pivot point for unloading to zero from positive force

* a2, which locates the pivot point for unloading to zero from negative force

» B1, which locates the pivot point for reverse loading from zero toward positive
force

* B2, which locates the pivot point for reverse loading from zero toward negative
force

* 1, which determines the amount of degradation of the elastic slopes after plas-
tic deformation.

These parameters are illustrated in Figure 62 (page 248).
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Figure 63
Hysteretic Isolator Property for Biaxial Shear Deformation

Hysteretic (Rubber) Isolator Property

This is a biaxial hysteretic isolator that has coupled plasticity properties for the two
shear deformations, and linear effective-stiffness properties for the remaining four
deformations. The plasticity model is based on the hysteretic behavior proposed by
Wen (1976), and Park, Wen and Ang (1986), and recommended for base-isolation
analysis by Nagarajaiah, Reinhorn and Constantinou (1991). See Figure 63 (page
249).

For each shear deformation degree of freedom you may independently specify ei-
ther linear or nonlinear behavior:

 If both shear degrees of freedom are nonlinear, the coupled force-deformation
relationship is given by:

f.o =ratio2 k2 d,, +(1-ratio2) yield2 z,
f.3 =ratio3 k3 d; +(1—ratio3) yield3 z5
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where k2 and k3 are the elastic spring constants, yield2 and yield3 are the yield
forces, ratio2 and ratio3 are the ratios of post-yield stiffnesses to elastic stiff-
nesses (k2 and k3), and z, and z;3 are internal hysteretic variables. These vari-

ables have a range of 1/222 + 232 <1, with the yield surface represented by
\Jzo> + 23> =1. The initial values of z, and z; are zero, and they evolve accord-
ing to the differential equations:
(k2 . ]
. 5 ——dp
{22}_“—412 z," "B 2 Zs—|lyleld2 L
3 {—az zy z3 1—az 232 ﬁd
yield3 *“
Where:

1 lf d.uz 22 > O
a =
2 0 otherwise

1 if dyz3>0
a =
3 0 otherwise

These equations are equivalent to those of Park, Wen and Ang (1986) with
A=landf=y=05

 Ifonly one shear degree of freedom is nonlinear, the above equations reduce to
the uniaxial plasticity behavior of the Plasticl property with exp = 2 for that de-
gree of freedom.

A linear spring relationship applies to the axial deformation, the three moment de-
formations, and to any shear deformation without nonlinear properties. All linear
degrees of freedom use the corresponding effective stiffness, which may be zero.

Friction-Pendulum Isolator Property

250

This is a biaxial friction-pendulum isolator that has coupled friction properties for
the two shear deformations, post-slip stiffness in the shear directions due the pen-
dulum radii of the slipping surfaces, gap behavior in the axial direction, and linear
effective-stiffness properties for the three moment deformations. See Figure 64

(page 251).
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Friction-Pendulum Isolator Property for Biaxial Shear Behavior
This element can be used for gap-friction contact problems

This element can also be used to model gap and friction behavior between contact-
ing surfaces by setting the radii to zero, indicating a flat surface.

The friction model is based on the hysteretic behavior proposed by Wen (1976),
and Park, Wen and Ang (1986), and recommended for base-isolation analysis by
Nagarajaiah, Reinhorn and Constantinou (1991). The pendulum behavior is as rec-
ommended by Zayas and Low (1990).

The friction forces and pendulum forces are directly proportional to the compres-
sive axial force in the element. The element cannot carry axial tension.
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Axial Behavior
The axial force, f,;, is always nonlinear, and is given by:

kKld, if d,<0

:P —
S { 0 otherwise

In order to generate nonlinear shear force in the element, the stiffness k1 must be
positive, and hence force P must be negative (compressive).

You may additionally specify a damping coefficient, cl, for the axial degree of
freedom, in which case the axial force becomes:

cld, if d;<0
0 otherwise

ful :P+{

The damping force only exists when the isolator is in compression.

Force f; is the total axial force exerted by the element on the connected joints.
However, only the stiffness force P is assumed to act on the bearing surface, caus-
ing shear resistance. The damping force is external.

The purpose of the damping coefficient is to reduce the numerical chatter (oscilla-
tion) that can be present in some analyses. You can estimate the damping coeffi-
cient needed to achieve a certain ratio, 7, of critical damping (e.g., »=0.05) from the
formula

cl

2.kl m

where m is the tributary mass for the isolator, which could be estimated from the
self-weight axial force divided by the acceleration due to gravity. It is up to you to
verify the applicability of this approach for your particular application. See the
SAP2000 Software Verification Manual for a discussion on the use of this damping
coefficient.

=

Shear Behavior

For each shear deformation degree of freedom you may independently specify ei-
ther linear or nonlinear behavior:

 If both shear degrees of freedom are nonlinear, the friction and pendulum ef-
fects for each shear deformation act in parallel:
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fuZ :fqu +fu2p
fu3 zfu3f +fu3p

The frictional force-deformation relationships are given by:

Sy =—PHy 2,

Jusp =—Pps3 z3
where 1, and py are friction coefficients, and z, and z; are internal hysteretic
variables. The friction coefficients are velocity-dependent according to:

u, = fast2 — (fast2 —slow2)e "

= fast3 —(fast3 —slow3)e "
where slow2 and slow3 are the friction coefficients at zero velocity, fast2 and

fast3 are the friction coefficients at fast velocities, v is the resultant velocity of
sliding:

72,72
V= duz + du3
r is an effective inverse velocity given by:

rate2 duzz +rate3 d’u32
V=
2
14

and rate2 and rate3 are the inverses of characteristic sliding velocities. For a
Teflon-steel interface the coefficient of friction normally increases with sliding
velocity (Nagarajaiah, Reinhorn, and Constantinou, 1991).

The internal hysteretic variables have a range of 4/ 222 + 232 < 1, with the yield
surface represented by 1/z,> + z;> = 1. The initial values of z, and z; are zero,
and they evolve according to the differential equations:
[ k2 J ]
. )
{22} |—1—a2 z,2 03 % || Pp, L

- 2
L_az 22 Z3 1—a3 Z3 [ k3 d'LBJ
Pus

Z3

where k2 and k3 are the elastic shear stiffnesses of the slider in the absence of
sliding, and
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1 lf duz 22 > O
a =
2 0 otherwise

1 if dyz3>0
a =
3 0 otherwise

These equations are equivalent to those of Park, Wen and Ang (1986) with
A=landB=7y=0.5.

This friction model permits some sliding at all non-zero levels of shear force;
the amount of sliding becomes much larger as the shear force approaches the
“yield” value of P . Sliding at lower values of shear force can be minimized by
using larger values of the elastic shear stiffnesses.

The pendulum force-deformation relationships are given by:

d
f u2p L.lz
radius2
d
f u3p L.B
radius3

A zero radius indicates a flat surface, and the corresponding shear force is zero.
Normally the radii in the two shear directions will be equal (spherical surface),
or one radius will be zero (cylindrical surface). However, it is permitted to
specify unequal non-zero radii.

» Ifonly one shear degree of freedom is nonlinear, the above frictional equations
reduce to:

Jr==—Puz

—rate d

p = fast — (fast —slow) e

_PM .

ok Jaa-z) it dz>0
d otherwise

The above pendulum equation is unchanged for the nonlinear degree of free-
dom.

Linear Behavior

A linear spring relationship applies to the three moment deformations, and to any
shear deformation without nonlinear properties. All linear degrees of freedom use
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the corresponding effective stiffness, which may be zero. The axial degree of free-
dom is always nonlinear for nonlinear analyses.

Double-Acting Friction-Pendulum Isolator Property

This is a biaxial friction-pendulum isolator that supports tension as well as com-
pression, and has uncoupled behavior in the two shear directions. The frictional re-
sistance can be different depending on whether then isolator is in tension or com-
pression. This device consists of two orthogonal, curved rails that are interlocked
together. It is intended to provide seismic isolation with uplift prevention, and is
described in detail by Roussis and Constantinou [2005].

Axial Behavior

Independent stiffnesses and gap openings may be specified for tension and com-
pression. The axial force, f,, is always nonlinear, and is given by:

klc(d, +openc) if (d, +openc)<0
fu =P=<klt(d, —opent) if (d, —opent)>0

0 otherwise

where kle is the compressive stiffness, k1t is the tensile stiffness, openc is the gap
opening in compression, and opent is the gap opening in tension. Each of the four
values may be zero or positive.

You may additionally specify a damping coefficient, ¢l, for the axial degree of
freedom, in which case the axial force becomes:

fin=P+cld,

The damping force exists whether the isolator is in tension, compression, or is gap-
ping.

Force f, is the total axial force exerted by the element on the connected joints.
However, only the stiffness force P is assumed to act on the bearing surface, caus-
ing shear resistance. The damping force is external. See Topic “Friction-Pendulum
Isolator Property” (page 250) for a discussion on the use of this damping.
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Shear Behavior

For each shear deformation degree of freedom you may independently specify ei-
ther linear or nonlinear behavior. The behavior in the two shear directions is uncou-
pled, although they both depend on the same axial force P.

For each nonlinear shear degree of freedom u2 or u3, you independently specify the
following parameters:

* Stiffness k, representing the elastic behavior before sliding begins. This value
is the same for positive or negative P.

* Friction coefficients slowc and fastc for friction under compression at different
velocities, and coefficients slowt and fastt for friction under tension at differ-
ent velocities.

* Rate parameters ratec and ratet for friction under compression and tension, re-
spectively. These are the inverses of characteristic sliding velocities. For a Tef-
lon-steel interface the coefficient of friction normally increases with sliding ve-
locity (Nagarajaiah, Reinhorn, and Constantinou, 1991).

* Radius radius, which is the same for tension and compression.

Looking at one shear direction, and considering either tension or compression us-
ing the appropriate friction parameters, the shear force f'is given by:

f=rr+f,
fr=-Punz

—rate d

p = fast — (fast —slow) e

_Pp .

k |d(-zZ%) if dz>0
d otherwise

d
radius

fp:_P

where d is the shear deformation and z is an internal hysteretic variable. In the
above, the indicators for shear degree of freedom u2 or u3, as well as for tension or
compression, have been dropped.
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Linear Behavior

A linear spring relationship applies to the three moment deformations, and to any
shear deformation without nonlinear properties. All linear degrees of freedom use
the corresponding effective stiffness, which may be zero. The axial degree of free-
dom is always nonlinear for nonlinear analyses.

Nonlinear Deformation Loads

A nonlinear deformation load is a set of forces and/or moments on the structure
that activates a nonlinear internal deformation of an Link/Support element. A non-
linear internal deformation is an Link/Support internal deformation for which non-
linear properties have been specified.

Nonlinear deformation loads are used as starting load vectors for Ritz-vector analy-
sis. Their purpose is to generate Modes that can adequately represent nonlinear be-
havior when performing nonlinear modal time-history analyses. A separate nonlin-
ear deformation load should be used for each nonlinear internal deformation of
each Link/Support element.

When requesting a Ritz-vector analysis, you may specify that the program use
built-in nonlinear deformation loads, or you may define your own Load Patterns for
this purpose. In the latter case you may need up to six of these Load Patterns per
Link/Support element in the model.

The built-in nonlinear deformation loads for a single two-joint Link element are
shown in Figure 65 (page 258). Each set of forces and/or moments is
self-equilibrating. This tends to localize the effect of the load, usually resulting in a
better set of Ritz-vectors. For a single-joint element, only the forces and/or mo-
ments acting on joint j are needed.

It is strongly recommended that mass or mass moment of inertia be present at each
degree of freedom that is acted upon by a force or moment from a nonlinear defor-
mation load. This is needed to generate the appropriate Ritz vectors.

For more information:

* See Topic “Internal Deformations” (page 222) in this Chapter.

* See Topic “Link/Support Properties” (page 224) in this Chapter.

» See Topic “Mass” (page 232) in this Chapter.

* See Topic “Ritz-Vector Analysis” (page 297) in Chapter “Load Cases.”
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* See Topic “Nonlinear Modal Time-History Analysis (FNA)” (page 297) in
Chapter “Load Cases.”

Frequency-Dependent Link/Support Properties

Each Link or Support element can have an optional set of frequency-dependent
properties assigned to it in addition to the linear/nonlinear property set that must al-
ways be assigned. Frequency-dependent properties are only used for frequency-do-
main types of analyses, such as Steady-State or Power-Spectral-Density analyses.

Frequency-dependent properties represent the complex impedance of the element.
There is areal part that represents the stiffness and inertial effects, and an imaginary
part that represents the hysteretic damping effects. Frequency-dependent proper-
ties for the six degrees of freedom of the element may be may be coupled or uncou-
pled coupled, as given by:

fa] [2a Zawe Zaws  Zun Zan Zas | [da (Eqn. 4)
f u2 Zuw Zwud Zwrl 2wz Zu2r duZ
f u3 _ 243 25311 232 Zudi3 du3
Sr 24 Zw Zam || dn
S sym. Zyy Zy3 | [dn
f r3 L Z3 dr3

where z,; =k, +ic, is the impedance term in the u1degree of freedom, and where
k,, 1s the stiffness/inertial component, ¢, is the damping component, and i is the
square root of —1. The other impedance terms are similar.

In Eqn. (4), the force terms on the left-hand side of the equation and the displace-
ment terms on the right-hand side of the equations are also complex. The real parts
of these terms represent the behavior at a phase angle of zero, with time variation
given by the cosine function, and the imaginary parts represent behavior at a phase
angle of 90°, with time variation given by the sine function.

Each of the 21 impedance terms may vary with frequency. You define the variation
for each term as a set of points giving stiffness vs. frequency and damping vs. fre-
quency. It is not unusual for the stiffness term to be negative over part of the range.

A common use for frequency-dependent properties would be in Support elements
that represent the far-field radiation-damping effect of the soil region under a rigid
foundation.
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Chapter XVl

The Tendon Object

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
and post-tensioning. These tendons attach to the other objects and impose load
upon them.

Advanced Topics
* Overview
* Geometry
 Discretization
» Tendons Modeled as Loads or Elements
* Connectivity
* Degrees of Freedom
* Local Coordinate Systems
» Section Properties
* Nonlinear Properties
e Mass

e Prestress Load
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* Self-Weight Load
» Gravity Load

» Temperature Load
* Strain Load

 Internal Force Output

Overview

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
and post-tensioning. These tendons attach to the other objects through which they
pass and impose load upon them.

You may specify whether the tendons are to be modeled as independent elements in
the analysis, or just to act upon the rest of the structure as loads. Modeling as loads
is adequate for linear analyses when you know the losses that will be caused by
elastic shortening and time-dependent effects.

Tendons should be modeled as elements if you want the program to calculate the
losses due to elastic shortening and time-dependent effects, if you want to consider
nonlinearity in the Tendons, or if you want to know the forces acting in the Tendons
due to other loading on the structure.

Tendon objects share some features with Frame elements, which will be cross-ref-
erenced in this Chapter.

Geometry

262

Any number of tendons may be defined. Each tendon is drawn or defined as a type
of line object between two joints, I and j. The two joints must not share the same lo-
cation in space. The two ends of the Tendon are denoted end I and end J, respec-
tively.

The Tendon may have an arbitrary curved or segmented shape in three dimensions
between those points, and may be offset at the ends from these joints.

Overview
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Discretization

A Tendon may be a long object with complicated geometry, but it will be automati-
cally discretized into shorter segments for purposes of analysis. You must specify
the maximum length of these discretization segments during the definition of the
Tendon. These lengths can affect how the Tendon loads the structure and the accu-
racy of the analysis results. You should choose shorter lengths for Tendons with
highly curved geometry, or Tendons that pass through parts of the structure with
complicated geometry or changes in properties. If you are not sure what value to
use, try several different values to see how they affect the results.

Tendons Modeled as Loads or Elements

You have a choice for each Tendon how it is to be modeled for analysis:

* As equivalent loads that act upon the structure

* As independent elements with stiffness, mass and loading

Modeling as loads is adequate for linear analyses when you know in advance the
losses that will be caused by elastic shortening and time-dependent effects.

Tendons should be modeled as elements if you want the program to calculate the
losses due to elastic shortening and time-dependent effects, if you want to consider
nonlinearity in the Tendons, or if you want to know the forces acting in the Tendons
due to other loading on the structure. The discretized Tendon is internally analyzed
as a series of equivalent short, straight Frame elements.

Connectivity

The Tendon connected to Frame, Shell, Plane, Asolid, and Solid elements through
which it passes along its length. This connection is made automatically by the pro-
gram. In addition, it is connected to the two end joints, I and j, if the ends of the
Tendon do not fall inside an element.

To determine the elements through which the Tendon passes, the program uses the
concept of a bounding box:

* For Frame elements, the bounding box is a rectangular prism bounded by the
length of the element and its maximum cross-sectional dimensions in the local
2 and 3 directions.
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» For Shell, Plane, and Asolid elements, it is the hexahedron bounded by the four
sides of the element and the upper and lower surfaces in the local 3 direction,
with thickness being considered.

* For Solid elements, it is the volume bounded by the six faces.

For Tendons modeled as loads, if any portion of the Tendon passes through the
bounding box of an element, load from the tendon is transferred to that element.

For Tendons modeled as elements, if any discretization point (i.e., either end of a
discretization segment) falls within the bounding box of an element, that point is
connected by an interpolation constraint to all joints of that element. This means
that for large discretizations, the tendon may not actually be connected to every ele-
ment through which it passes.

By default, the Tendon will be checked for connection against all elements in the
model. You may restrict this by specifying a group of objects to which the Tendon
may connect. The Tendon will not connect to any objects that are not in that group.
See Topic “Groups” (page 9) in Chapter “Objects and Elements” for more informa-
tion.

Degrees of Freedom

The Tendon object has six degrees of freedom along its length. However, its effect
upon the structure depends upon the elements to which it connects. When connect-
ing to Frame and Shell elements, it may transmit forces and moments to the joints in
those elements. When connecting to Planes, Asolids, and Solids, it only transmits
forces to the joints.

Even when modeled as elements, a Tendon adds no additional degrees of freedom
to a structure, since it is always constrained to act with the elements that contain it.
The exception would be if there is a portion of the Tendon which is not embedded
in any other element. At each un-contained discretization point, an internal joint
would be created with six degrees of freedom. This is not recommended.

For more information, please see Topic “Degrees of Freedom” (page 30) in Chapter
“Joints and Degrees of Freedom.”

Local Coordinate Systems

264

Each Tendon object has two local coordinate systems:

Degrees of Freedom



Chapter XVl The Tendon Object

» Base-line local coordinate system, which is fixed for the whole object

» Natural local coordinate system, which varies along the length of the Tendon

These are described in the following.

Base-line Local Coordinate System

The Tendon base-line local coordinate system is used only to define the Tendon
natural local coordinate system.

The axes of base-line system are denoted 1, 2 and 3. The first axis is directed along
the straight line connecting the joints I and j that were used to define the Tendon.
The remaining two axes lie in the plane perpendicular to this axis with an orienta-
tion that you specify. The base-line local coordinate system is fixed for the length
of the Tendon, regardless of the Tendon’s trajectory in space.

Base-line local axes are defined exactly the same as for a Frame element connected
to joints I and j, except the Tendon has zero joint offsets. Please see Topics “Local
Coordinate System” (page 85) and “Advanced Local Coordinate System” (page
86) in Chapter “The Frame Element”.

Natural Local Coordinate System

The Tendon natural local coordinate system is used to define section properties,
loads, and internal force output. This coordinate system is defined with respect to
the base-line local coordinate system as follows:

* The 1 direction is directed along the tangent to the Tendon, in the direction
from end I to end J.

* The 2 direction is parallel to the 1-2 plane of the base-line local coordinate sys-
tem.

* The 3 direction is computed as the cross product of the natural local 1 and 2 di-
rections.

See Topic “Local Coordinate Systems” (page 264) in this Chapter for more infor-
mation.
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Section Properties

266

A Tendon Section is a set of material and geometric properties that describe the
cross-section of one or more Tendon objects. Sections are defined independently of
the Tendons, and are assigned to the Tendon objects.

The cross section shape is always circular. The Section has axial, shear, bending
and torsional properties, although we are primarily interested in only the axial be-
havior.

Material Properties

The material properties for the Section are specified by reference to a previ-
ously-defined Material. Isotropic material properties are used, even if the Material
selected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

» The modulus of elasticity, el, for axial stiffness and bending stiffness

* The shear modulus, g12, for torsional stiffness and transverse shear stiffness

* The coefficient of thermal expansion, al, for axial expansion and thermal
bending strain

* The mass density, m, for computing element mass

» The weight density, w, for computing Self-Weight Loads

The material properties el, g12, and al are all obtained at the material temperature
of'each individual Tendon object, and hence may not be unique for a given Section.

See Chapter “Material Properties” (page 69) for more information.

Geometric Properties and Section Stiffnesses

The cross section shape is always circular. You may specify either the diameter or
the area, a. The axial stiffness of the Section is given by a - el.

The remaining section properties are automatically calculated for the circular
shape. These, along with their corresponding Section stiffnesses, are given by:

» The moment of inertia, i33, about the 3 axis for bending in the 1-2 plane, and
the moment of inertia, i22, about the 2 axis for bending in the 1-3 plane. The
corresponding bending stiffnesses of the Section are given by i33-el and
i22-el;

Section Properties
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* The torsional constant, j. The torsional stiffness of the Section is given by
j - g12. For a circular section, the torsional constant is the same as the polar mo-
ment of inertia.

* The shear areas, as2 and as3, for transverse shear in the 1-2 and 1-3 planes, re-
spectively. The corresponding transverse shear stiffnesses of the Section are
given by as2 -gl12 and as3 - g12.

Property Modifiers

As part of the definition of the section properties, you may specify scale factors to
modify the computed section properties. These may be used, for example, to reduce
bending stiffness, although this is generally not necessary since the tendons are
usually very slender.

Individual modifiers are available for the following eight terms:

* The axial stiffness a - el

* The shear stiffnesses as2 - g12 and as3 - g12
* The torsional stiffness j-gl12

» The bending stiffnesses i33 - el and i22 - el
* The section mass a-m

* The section weight a-w

Nonlinear Properties

Two types of nonlinear properties are available for the Tendon object: ten-
sion/compression limits and plastic hinges.

Important! Nonlinear properties only affect Tendons that are modeled as ele-
ments, not Tendons modeled as loads.

When nonlinear properties are present in the Tendon, they only affect nonlinear
analyses. Linear analyses starting from zero conditions (the unstressed state) be-
have as if the nonlinear properties were not present. Linear analyses using the stiff-
ness from the end of a previous nonlinear analysis use the stiffness of the nonlinear
property as it existed at the end of the nonlinear case.
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Tension/Compression Limits

You may specify a maximum tension and/or a maximum compression that a Ten-
don may take. In the most common case, you can define no-compression behavior
by specifying the compression limit to be zero.

If you specify a tension limit, it must be zero or a positive value. If you specify a
compression limit, it must be zero or a negative value. If you specify a tension and
compression limit of zero, the Tendon will carry no axial force.

The tension/compression limit behavior is elastic. Any axial extension beyond the
tension limit and axial shortening beyond the compression limit will occur with
zero axial stiffness. These deformations are recovered elastically at zero stiffness.

Bending, shear, and torsional behavior are not affected by the axial nonlinearity.

Plastic Hinge

Mass

You may insert plastic hinges at any number of locations along the length of the
Tendon. Detailed description of the behavior and use of plastic hinges is presented
in Chapter “Frame Hinge Properties” (page 121). For Tendons, only the use of axial
hinges generally makes sense

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
When modeled as elements, the mass contributed by the Tendon is lumped at each
discretization point along the length of the Tendon. When modeled as loads, no
mass is contributed to the model. This is not usually of any significance since the
mass of a Tendon is generally small.

The total mass of the Tendon is equal to the integral along the length of the mass
density, m, multiplied by the cross-sectional area, a.

Prestress Load

268

Each Tendon produces a set of self-equilibrating forces and moments that act on the
rest of the structure. You may assign different Prestress loading in different Load
Patterns.

Mass
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In a given Load Pattern, the Prestress Load for any Tendon is defined by the follow-
ing parameters:

Tension in the Tendon, before losses.

Jacking location, either end I or end J, where the tensioning of the Tendon will
occur

Curvature coefficient. This specifies the fraction of tension loss (due to fric-
tion) per unit of angle change (in radians) along the length of the Tendon,
measured from the jacking end.

Wobble coefficient. This specifies the fraction of tension loss (due to friction)
per unit of Tendon length, measured from the jacking end, due to imperfect
straightness of the tendon.

Anchorage set slip. This specifies the length of slippage at the jacking end of
the Tendon due to the release of the jacking mechanism.

The following additional load parameters may be specified that only apply when
the Tendon is modeled as loads:

Elastic shortening stress, due to compressive shortening in the elements that
are loaded by the Tendon. This may be due to loads from the Tendon itself or
from other loads acting on the structure.

Creep stress, due to compressive creep strains in the elements that are loaded
by the Tendon.

Shrinkage stress, due to compressive shrinkage strains in the elements that are
loaded by the Tendon.

Steel relaxation stress, due to tensile relaxation strains in the Tendon itself.

For Tendons modeled as elements, the elastic shortening stress is automatically ac-
counted for in all analyses; the time-dependent creep, shrinkage, and relaxation
stresses can be accounted for by performing a time-dependent staged-construction
analysis. See Topic “Staged Construction” (page 374) in Chapter “Nonlinear Static
Analysis” for more information.

To account for complicated jacking procedures, you can specify different prestress
loads in different Load Patterns and apply them as appropriate.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. For a
Tendon object, the self-weight is a force that is distributed along the length of the
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element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:
* See Topic “Weight Density” (page 77) in Chapter “Material Properties” for the

definition of w.

* See Topic “Section Properties” (page 266) in this Chapter for the definition of
a.

* See Topic “Self-Weight Load” (page 277) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Tendon to activate the self-weight of the
object. Using Gravity Load, the self-weight can be scaled and applied in any direc-
tion. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self~-Weight Load.

For more information:

» See Topic “Self-Weight Load” (page 110) in this Chapter for the definition of
self-weight for the Frame element.

» See Topic “Gravity Load” (page 278) in Chapter “Load Patterns.”

Temperature Load

270

Temperature Load creates thermal strain in the Tendon object. This strain is given
by the product of the Material coefficient of thermal expansion and the temperature
change of the object. All specified Temperature Loads represent a change in tem-
perature from the unstressed state for a linear analysis, or from the previous temper-
ature in a nonlinear analysis.

For any Load Pattern, you may specify a Load Temperature field that is constant
over the cross section and produces axial strains. This temperature field may be
constant along the element length or interpolated from values given at the joints.

Gravity Load
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See Chapter “Load Patterns” (page 273) for more information.

Internal Force Output

The Tendon internal forces are the forces and moments that result from integrat-
ing the stresses over the object cross section. These internal forces are:

* P, the axial force

* V2, the shear force in the 1-2 plane

» V3, the shear force in the 1-3 plane

» T, the axial torque

* M2, the bending moment in the 1-3 plane (about the 2 axis)
* M3, the bending moment in the 1-2 plane (about the 3 axis)

These internal forces and moments are present at every cross section along the
length of the Tendon, and may be plotted or tabulated as part of the analysis results.
Internal force output is defined with respect to the Tendon natural local coordinate
system. See Subtopic “Natural Local Coordinate System” (page 265) in this Chap-
ter.

Important! Internal force output is only available for Tendons that are modeled as
elements.

The sign convention is the same as for a Frame element, as illustrated in Figure 28
(page 119). Positive internal forces and axial torque acting on a positive 1 face are
oriented in the positive direction of the natural local coordinate axes. Positive inter-
nal forces and axial torque acting on a negative face are oriented in the negative di-
rection of the natural local coordinate axes. A positive 1 face is one whose outward
normal (pointing away from the object) is in the positive local 1 direction.

Positive bending moments cause compression at the positive 2 and 3 faces and ten-
sion at the negative 2 and 3 faces. The positive 2 and 3 faces are those faces in the
positive local 2 and 3 directions, respectively, from the neutral axis.
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Figure 66
Tendon Object Internal Forces and Moments
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Load Patterns

A Load Pattern is a specified spatial distribution of forces, displacements, tem-
peratures, and other effects that act upon the structure. A Load Pattern by itself does
not cause any response of the structure. Load Patterns must be applied in Load
Cases in order to produce results.

Basic Topics for All Users
* Overview
» Load Patterns, Load Cases, and Load Combinations
* Defining Load Patterns
* Coordinate Systems and Load Components
* Force Load
* Restraint Displacement Load
* Spring Displacement Load
» Self-Weight Load
* Concentrated Span Load
* Distributed Span Load

* Tendon Prestress Load
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Uniform Load

Acceleration Loads

Advanced Topics

Gravity Load

Surface Pressure Load

Pore Pressure Load
Temperature Load

Strain and Deformation Load
Rotate Load

Joint Patterns

Overview

Each Load Pattern may consist of an arbitrary combination of the available load
types:

Concentrated forces and moments acting at the joints

Displacements of the grounded ends of restraints at the joints
Displacements of the grounded ends of springs at the joints

Self-weight and/or gravity acting on all element types

Concentrated or distributed forces and moments acting on the Frame elements
Distributed forces acting on the Shell elements

Surface pressure acting on the Shell, Plane, Asolid, and Solid elements
Pore pressure acting on the Plane, Asolid, and Solid elements

Thermal expansion acting on the Frame, Shell, Plane, Asolid, and Solid ele-
ments

Prestress load due to Tendons acting in Frame, Shell, Plane, Asolid, and Solid
elements

Centrifugal forces acting on Asolid elements

For practical purposes, it is usually most convenient to restrict each Load Pattern to
a single type of load, using Load Cases and Load Combinations to create more
complicated combinations.
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Load Patterns, Load Cases, and Load Combinations

A Load Pattern is a specified spatial distribution of forces, displacements, temper-
atures, and other effects that act upon the structure. A Load Pattern by itself does
not cause any response of the structure.

Load Patterns must be applied in Load Cases in order to produce results. A Load
Case defines how the Load Patterns are to be applied (e.g., statically or dynami-
cally), how the structure responds (e.g., linearly or nonlinearly), and how the analy-
sis is to be performed (e.g., modally or by direct-integration.) A Load Case may ap-
ply a single Load Pattern or a combination of Load Patterns.

The results of Load Cases can be combined after analysis by defining Load Com-
binations, also called Combos. A Load Combination is a sum or envelope of the
results from different Load Cases. For linear problems, algebraic-sum types of
Load Combinations make sense. For nonlinear problems, it is usually best to com-
bine Load Patterns in the Load Cases, and use Load Combinations only for comput-
ing envelopes.

When printing, plotting, or displaying the response of the structure to loads, you
may request results for Load Cases and Load Combinations, but not directly for
Load Patterns.

When performing design, only the results from Load Combinations are used. Load
Combinations can be automatically created by the design algorithms, or you can
create your own. If necessary, you can define Load Combinations that contain only
a single Load Case.

» See Chapter “Load Cases” (page 289).

* See Topic “Load Combinations (Combos)” (page 299) in Chapter “Load
Cases”.

Defining Load Patterns

You can define as many Load Patterns as you want, each with a unique name that
you specify. Within each Load Pattern, any number of joints or elements may be
loaded by any number of different load types.

Each Load Pattern has a design type, such as DEAD, WIND, or QUAKE. This
identifies the type of load applied so that the design algorithms know how to treat
the load when it is applied in a Load Case.
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Coordinate Systems and Load Components

276

Certain types of loads, such as temperature and pressure, are scalars that are inde-
pendent of any coordinate system. Forces and displacements, however, are vectors
whose components depend upon the coordinate system in which they are specified.

Vector loads may be specified with respect to any fixed coordinate system. The
fixed coordinate system to be used is specified as csys. If esys is zero (the default),
the global system is used. Otherwise esys refers to an Alternate Coordinate System.

The X, Y, and Z components of a force or translation in a fixed coordinate system
are specified as ux, uy, and uz, respectively. The X, Y, and Z components of a mo-
ment or rotation are specified as rx, ry, and rz, respectively.

Most vector loads may also be specified with respect to joint and element local co-
ordinate systems. Unlike fixed coordinate systems, the local coordinate systems
may vary from joint to joint and element to element.

The 1, 2, and 3 components of a force or translation in a local coordinate system are
specified as ul, u2, and u3, respectively. The 1, 2, and 3 components of a moment
or rotation are specified as rl, r2, and r3, respectively.

You may use a different coordinate system, as convenient, for each application of a
given type of load to a particular joint or element. The program will convert all
these loads to a single coordinate system and add them together to get the total load.

See Chapter “Coordinate Systems” (page 11) for more information.

Effect upon Large-Displacements Analysis

In a large-displacements analysis, all loads specified in a joint or element local co-
ordinate system will rotate with that joint or element. All loads specified in a fixed
coordinate system will not change direction during the analysis.

For linear analyses, and analyses considering only P-delta geometric nonlinearity,
the direction of loading does not change during the analysis.

See Chapter “Geometric Nonlinearity” (page 343) for more information.

Coordinate Systems and Load Components
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Force Load

Force Load applies concentrated forces and moments to the joints. You may spec-
ify components ux, uy, uz, rx, ry, and rz in any fixed coordinate system csys, and
components ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Force
values are additive after being converted to the joint local coordinate system.

See Topic “Force Load” (page 42) in Chapter “Joints and Degrees of Freedom” for
more information.

Restraint Displacement Load

Restraint Displacement Load applies specified ground displacements (translations
and rotations) along the restrained degrees of freedom at the joints. You may spec-
ify components ux, uy, uz, rx, ry, and rz in any fixed coordinate system csys, and
components ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Dis-
placement values are additive after being converted to the joint local coordinate
system.

See Topic “Restraint Displacement Load” (page 42) in Chapter “Joints and De-
grees of Freedom” for more information.

Spring Displacement Load

Spring Displacement Load applies specified displacements (translations and rota-
tions) at the grounded end of spring supports at the joints. You may specify compo-
nents ux, uy, uz, rx, ry, and rz in any fixed coordinate system csys, and compo-
nents ul, u2, u3, rl, r2, and r3 in the joint local coordinate system. Displacement
values are additive after being converted to the joint local coordinate system.

See Topic “Spring Displacement Load” (page 43) in Chapter “Joints and Degrees
of Freedom” for more information.

Self-Weight Load

Self-Weight Load activates the self-weight of all elements in the model. Self-
weight always acts downward, in the global —Z direction. You may scale the self-
weight by a single scale factor that applies to the whole structure. No Self-Weight
Load can be produced by an element with zero weight.
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For more information:
* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Self-Weight Load” (page 110) in Chapter “The Frame Element.”
* See Topic “Self-Weight Load” (page 142) in Chapter “The Cable Element.”
* See Topic “Self-Weight Load” (page 161) in Chapter “The Shell Element.”

* See Topic “Self-Weight Load” (page 183) in Chapter “The Plane Element.”

* See Topic “Self-Weight Load” (page 194) in Chapter “The Asolid Element.”
* See Topic “Self-Weight Load” (page 210) in Chapter “The Solid Element.”

* See Topic “Self-Weight Load” (page 233) in Chapter “The Link/Support Ele-
ment—Basic.”

* See Topic “Self-Weight Load” (page 269) in Chapter “The Tendon Object.”

Gravity Load
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Gravity Load activates the self-weight of the Frame, Cable, Shell, Plane, Asolid,
Solid, and Link/Support elements. For each element to be loaded, you may specify
the gravitational multipliers ux, uy, and uz in any fixed coordinate system csys.
Multiplier values are additive after being converted to the global coordinate sys-
tem.

Each element produces a Gravity Load, having three components in system csys,
equal to its self-weight multiplied by the factors ux, uy, and uz. This load is appor-
tioned to each joint of the element. For example, if uz =-2, twice the self-weight is
applied to the structure acting in the negative Z direction of system csys. No Grav-
ity Load can be produced by an element with zero weight.

The difference between Self-Weight Load and Gravity Load is:

* Self-Weight Load acts equally on all elements of the structure and always in
the global —Z direction

» Gravity Load may have a different magnitude and direction for each element in
the structure

Both loads are proportional to the self-weight of the individual elements.
For more information:

* See Topic “Gravity Load” (page 110) in Chapter “The Frame Element.”
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» See Topic “Gravity Load” (page 143) in Chapter “The Cable Element.”
* See Topic “Gravity Load” (page 170) in Chapter “The Shell Element.”
* See Topic “Gravity Load” (page 183) in Chapter “The Plane Element.”
» See Topic “Gravity Load” (page 195) in Chapter “The Asolid Element.”
* See Topic “Gravity Load” (page 210) in Chapter “The Solid Element.”

* See Topic “Gravity Load” (page 233) in Chapter “The Link/Support Ele-
ment—DBasic.”

» See Topic “Gravity Load” (page 270) in Chapter “The Tendon Object.”

Concentrated Span Load

Concentrated Span Load applies concentrated forces and moments at arbitrary lo-
cations on Frame elements. You may specify components ux, uy, uz, rx, ry, and rz
in any fixed coordinate system csys, and components ul, u2, u3, r1, r2, and r3 in
the Frame element local coordinate system. Force values are additive after being
converted to the Frame element local coordinate system.

See Topic “Concentrated Span Load” (page 111) in Chapter “The Frame Element”
for more information.

Distributed Span Load

Distributed Span Load applies distributed forces and moments at arbitrary loca-
tions on Frame and Cable elements. You may specify components ux, uy, uz, rx,
ry, and rz in any fixed coordinate system csys, and components ul, u2, u3, rl, r2,
and r3 in the Frame element local coordinate system. Force values are additive after
being converted to the Frame element local coordinate system.

For more information, See Topic “Distributed Span Load” (page 112) in Chapter
“The Frame Element”, and Topic “Distributed Span Load” (page 143) in Chapter
“The Cable Element”

Tendon Prestress Load

Tendons are a special type of object that can be embedded inside other objects
(frames, shells, planes, asolids, and solids) to represent the effect of prestressing
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and post-tensioning. These tendons attach to the other objects and impose load
upon them.

You may specify whether the tendons are to be modeled as independent elements in
the analysis, or just to act upon the rest of the structure as loads. This affects the
types of loads that are directly imposed upon the structure.

See Topic “Prestress Load” (page 268) in Chapter “The Tendon Object” for more
information.

Uniform Load

Uniform Load applies uniformly distributed forces to the mid-surface of Shell ele-
ments. You may specify components ux, uy, and uz in any fixed coordinate system
csys, and components ul, u2, and u3 in the element local coordinate system. Force
values are additive after being converted to the element local coordinate system.

See Topic “Uniform Load” (page 170) in Chapter “The Shell Element” for more in-
formation.

Surface Pressure Load
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Surface Pressure Load applies an external pressure to any of the outer faces of the
Shell, Plane, Asolid, and Solid elements. The load on each face of an element is
specified independently.

You may specify pressures, p, that are uniform over an element face or interpolated
from pressure values given by Joint Patterns. Hydrostatic pressure fields may easily
be specified using Joint Patterns. Pressure values are additive.

For more information:
* See Topic “Surface Pressure Load” (page 170) in Chapter “The Shell Ele-

ment.”

* See Topic “Surface Pressure Load” (page 184) in Chapter “The Plane Ele-
ment.”

* See Topic “Surface Pressure Load” (page 195) in Chapter “The Asolid Ele-
ment.”

* See Topic “Surface Pressure Load” (page 210) in Chapter “The Solid Ele-
ment.”
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Flow Lines
Water Surface Earth Dam

Equipotential
Lines (Constant
f Pore Pressure)

Bedrock AN

Figure 67
Flow-net Analysis of an Earth Dam to Obtain Pore Pressures

» See Topic “Joint Patterns” (page 284) in this Chapter.

Pore Pressure Load

Pore Pressure Load models the drag and buoyancy effects of a fluid within a solid
medium, such as the effect of water upon the solid skeleton of a soil. Pore Pressure
Load may be used with Shell, Asolid, and Solid elements.

Scalar fluid-pressure values are given at the element joints by Joint Patterns, and in-
terpolated over the element. These pressure values may typically be obtained by
flow-net analysis, such as illustrated in Figure 67 (page 281). Hydrostatic pressure
fields may easily be specified using Joint Patterns. Pressure values are additive.

The total force acting on the element is the integral of the gradient of this pressure
field over the volume of the element. This force is apportioned to each of the joints
of the element. The forces are typically directed from regions of high pressure to-
ward regions of low pressure.

Note that although pressures are specified, it is the pressure gradient over an ele-
ment that causes the load. Thus a uniform pressure field over an element will cause
no load. Pressure differences between elements also cause no load. For this reason,
it is important that the pore-pressure field be continuous over the structure.
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The displacements, stresses, and reactions due to Pore Pressure Load represent the
response of the solid medium, not that of the combined fluid and solid structure. In
the case of soil, the stresses obtained are the usual “effective stresses” of soil me-
chanics (Terzaghi and Peck, 1967). Note, however, that the total soil weight and
mass density should be used for the material properties.

For more information:

* See Topic “Pore Pressure Load” (page 184) in Chapter “The Plane Element.”
* See Topic “Pore Pressure Load” (page 196) in Chapter “The Asolid Element.”
* See Topic “Pore Pressure Load” (page 211) in Chapter “The Solid Element.”
* See Topic “Joint Patterns” (page 284) in this Chapter.

Temperature Load
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Temperature Load creates thermal strains in the Frame, Cable, Shell, Plane, Asolid,
and Solid elements. These strains are given by the product of the Material coeffi-
cients of thermal expansion and the temperature change of the element. All speci-
fied Temperature Loads represent a change in temperature from the unstressed state
for a linear analysis, or from the previous temperature in a nonlinear analysis.

Load Temperature gradients may also be specified in the two transverse directions
of the Frame element, and in the thickness direction of the Shell element. These
gradients induce bending strains in the elements. Temperature gradients are speci-
fied as the linear change in temperature per unit length. Thus to specify a given dif-
ference in temperature across the depth of a Frame or Shell element, divide the tem-
perature difference by the corresponding depth, and assign this value as the temper-
ature gradient load.

The Load Temperatures and gradients may be different for each Load Pattern. You
may specify temperatures and/or gradients that are uniform over an element or that
are interpolated from values given by Joint Patterns.

For more information:

» See Topic “Temperature Load” (page 115) in Chapter “The Frame Element.”
* See Topic “Temperature Load” (page 144) in Chapter “The Cable Element.”
» See Topic “Temperature Load” (page 172) in Chapter “The Shell Element.”
* See Topic “Temperature Load” (page 184) in Chapter “The Plane Element.”
* See Topic “Temperature Load” (page 196) in Chapter “The Asolid Element.”
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* See Topic “Temperature Load” (page 211) in Chapter “The Solid Element.”
* See Topic “Temperature Load” (page 270) in Chapter “The Tendon Object.”
* See Topic “Joint Patterns” (page 284) in this Chapter.

Strain Load

Strain Load induces distributed strains in the Frame, Cable, Shell, Plane, Asolid,
and Solid elements. The imposed strains tend to cause deformation in unrestrained
elements, or create internal forces and stresses in restrained elements. The types of
strains that are available is different for each type of element.

You may specify strains that are uniform over an element or that are interpolated
from values given by Joint Patterns.

For more information:

» See Topic “Strain Load” (page 116) in Chapter “The Frame Element.”

* See Topic “Strain and Deformation Load” (page 144) in Chapter “The Cable
Element.”

* See Topic “Joint Patterns” (page 284) in this Chapter.

Deformation Load

Deformation Load is an alternative form of Strain Load where the applied deforma-
tion is specified over the whole element rather than on a per-unit-length basis. De-
formation Load is only available for Frame and Cable elements. The assumed dis-
tribution of strain over the element is fixed as described in the topics referenced be-
low. Joint Patterns are not used.

For more information:

* See Topic “Deformation Load” (page 117) in Chapter “The Frame Element.”

* See Topic “Strain and Deformation Load” (page 144) in Chapter “The Cable
Element.”

Target-Force Load

Target-Force Load is a special type of loading where you specify a desired axial
force, and deformation load is iteratively applied to achieve the target force. Since
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the axial force may vary along the length of the element, you must also specify the
relative location where the desired force is to occur. Target-Force loading is only
used for nonlinear static and staged-construction analysis. If applied in any other
type of Load Case, it has no effect.

Unlike all other types of loading, target-force loading is not incremental. Rather,
you are specifying the total force that you want to be present in the frame element at
the end of the Load Case or construction stage. The applied deformation that is cal-
culated to achieve that force may be positive, negative, or zero, depending on the
force present in the element at the beginning of the analysis. When a scale factor is
applied to a Load Pattern that contains Target-Force loads, the total target force is
scaled. The increment of applied deformation that is required may change by a dif-
ferent scale factor.

For more information:

* See Topic “Target-Force Load” (page 117) in Chapter “The Frame Element.”
* See Topic “Target-Force Load” (page 144) in Chapter “The Cable Element.”

* See Topic “Target-Force Iteration” (page 379) in Chapter “Nonlinear Static
Analysis” for more information.

Rotate Load

Rotate Load applies centrifugal force to Asolid elements. You may specify an an-
gular velocity, r, for each element. The centrifugal force is proportional to the
square of the angular velocity. The angular velocities are additive. The load on the
element is computed from the total angular velocity.

See Topic “Rotate Load” (page 196) in Chapter “The Asolid Element.”

Joint Patterns

A Joint Pattern is a named entity that consists of a set of scalar numeric values, one
value for each joint of the structure. A Joint Pattern can be used to describe how
pressures or temperatures vary over the structure. Joint Patterns may also be used to
specify joint offsets and thickness overwrite for Shell elements.

Patterns are most effective for describing complicated spatial distributions of nu-
meric values. Their use is optional and is not required for simple problems.
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V4 Zero Datum = Fluid Surface
z
Fluid weight density = g
Joint j Pressure gradient vz =—g
7 z Pressure value v;=-g(z;—2)
Global \ \ \
—
X
Figure 68

Example of a Hydrostatic Pressure Pattern

Since Pattern values are scalar quantities, they are independent of any coordinate
system. The definition of a Joint Pattern by itself causes no effect on the structure.
The pattern must be used in a pressure, temperature, or other assignment that is ap-
plied to the model.

For complicated Patterns, values could be generated in a spreadsheet program or by
some other means, and brought into the model by importing tables or by using in-
teractive table editing.

In the graphical user interface, Pattern values can be assigned to selected joints.
They are specified as a linear variation in a given gradient direction from zero at a
given datum point. An option is available to permit only positive or only negative
values to be defined. This is useful for defining hydrostatic pressure distributions.
Multiple linear variations may be assigned to the same or different joints in the
structure.

The following parameters are needed for a pattern assignment:

* The components of the gradient, A, B, and C, in the global coordinate system
* The value D of the pattern at the global origin
* The choice between:

— Setting negative values to zero

— Setting positive values to zero
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— Allow all positive and negative values (this is the default)

The component A indicates, for example, how much the Pattern value changes per
unit of distance parallel to the global X axis.

The Pattern value, v, defined for a joint,/ that has coordinates (x, y, z) is given by:

vi=Axj+Byj+Czi+D (Eqn. 1)

If you know the coordinates of the datum point, x, y, and z, in global coordinate sys-
tem at which the pattern value should be zero (say the free surface of water), then:

Vi=A-x)tB@yi-y)+C(z-2) (Eqn. 2)

from which we can calculate that:

D=-(Ax+By+Cz) (Eqn. 3)

In most cases, the gradient will be parallel to one of the coordinate axes, and only
one term in Eqn. 2 is needed.

For example, consider a hydrostatic pressure distribution caused by water im-
pounded behind a dam as shown in Figure 68 (page 285). The Z direction is up in
the global coordinate system. The pressure gradient is simply given by the fluid
weight density acting in the downward direction. Therefore, A=0,B=0,and C=
—62.4 1b/ft’ or 9810 N/m’.

The zero-pressure datum can be any point on the free surface of the water. Thus z
should be set to the elevation of the free surface in feet or meters, as appropriate,
and D =— C z. For hydrostatic pressure, you would specify that negative values be
ignored, so that any joints above the free surface will be assigned a zero value for
pressure.

Acceleration Loads

286

In addition to the Load Patterns that you define, the program automatically com-
putes three Acceleration Loads that act on the structure due to unit translational ac-
celerations in each of the global directions, and three unit rotational accelerations
about the global axes at the global origin. Acceleration Loads can be applied in a
Load Case just like Load Patterns.

Acceleration Loads are determined by d’Alembert’s principal, and are denoted
My, My, My, B, e, and mo . These loads are used for applying ground ac-
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celerations in response-spectrum (translation only) and time-history analyses, and
can be used as starting load vectors for Ritz-vector analysis.

These loads are computed for each joint and element and summed over the whole
structure. The translational Acceleration Loads for the joints are simply equal to the
negative of the joint translational masses in the joint local coordinate system. These
loads are transformed to the global coordinate system.

The translational Acceleration Loads for all elements except for the Asolid are the
same in each direction and are equal to the negative of the element mass. No coordi-
nate transformations are necessary. Rotational acceleration will generally differ
about each axis.

For the Asolid element, the Acceleration Load in the global direction correspond-
ing to the axial direction is equal to the negative of the element mass. The Accelera-
tion Loads in the radial and circumferential directions are zero, since translations in
the corresponding global directions are not axisymmetric. Similar considerations
apply to the rotational accelerations.

The Acceleration Loads can be transformed into any coordinate system. In a fixed
coordinate system (global or Alternate), the translational Acceleration Loads along
the positive X, Y, and Z axes are denoted UX, UY, and UZ, respectively; the rota-
tional Acceleration Loads about the X, Y, and Z axes are similarly denoted RX,
RY, and RZ.

In a local coordinate system defined for a response-spectrum or time-history analy-
sis, the Acceleration Loads along or about the positive local 1, 2, and 3 axes are de-
noted U1, U2, U3, R1, R2, and R3 respectively. Rotational accelerations will be ap-
plied about the origin of the coordinate system specified with the Acceleration
Load in the Load Case. Each Acceleration Load applied in a given Load Case can
use a separate coordinate system.
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Load Cases

A Load Case defines how the loads are to be applied to the structure (e.g., statically
or dynamically), how the structure responds (e.g., linearly or nonlinearly), and how
the analysis is to be performed (e.g., modally or by direct-integration.)

Basic Topics for All Users

Overview

Load Cases

Types of Analysis

Sequence of Analysis

Running Load Cases

Linear and Nonlinear Load Cases
Linear Static Analysis

Functions

Load Combinations (Combos)

Advanced Topics

Equation Solver

Linear Buckling Analysis
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Overview

290

A Load Case defines how loads are to be applied to the structure, and how the struc-
tural response is to be calculated. You may define as many named Load Cases of
any type that you wish. When you analyze the model, you may select which cases
are to be run. You may also selectively delete results for any Load Case.

Note: Load Patterns by themselves do not create any response (deflections,
stresses, etc.) You must define a Load Case to apply the load.

There are many different types of Load Cases. Most broadly, analyses are classified
as linear or nonlinear, depending upon how the structure responds to the loading.

The results of linear analyses may be superposed, i.e., added together after analysis.
The available types of linear analysis are:

» Static analysis

* Modal analysis for vibration modes, using eigenvectors or Ritz vectors

* Response-spectrum analysis for seismic response

» Time-history dynamic response analysis

* Buckling-mode analysis

* Moving-load analysis for bridge vehicle live loads

* Steady-state analysis

* Power-spectral-density analysis
The results of nonlinear analyses should not normally be superposed. Instead, all
loads acting together on the structure should be combined directly within the Load
Cases. Nonlinear Load Cases may be chained together to represent complex load-
ing sequences. The available types of nonlinear analyses are:

» Nonlinear static analysis

* Nonlinear time-history analysis
Named Load Combinations can also be defined to combine the results of Load

Cases. Results can be combined additively or by enveloping. Additive Load Com-
binations of nonlinear Load Cases is not usually justified.

Overview
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Load Cases

Each different analysis performed is called a Load Case. For each Load Case you
define, you need to supply the following type of information:

Case name: This name must be unique across all Load Cases of all types. The
case name is used to request analysis results (displacements, stresses, etc.), for
creating Load Combinations, and sometimes for use by other dependent Load
Cases.

Analysis type: This indicate the type of analysis (static, response-spectrum,
buckling, etc.), as well as available options for that type (linear, nonlinear,
etc.).

Loads applied: For most types of analysis, you specify the Load Patterns that
are to be applied to the structure.

Additional data may be required, depending upon the type of analysis being de-
fined.

Types of Analysis

There are many different types of Load Cases. Most broadly, analyses are classified
as linear or nonlinear, depending upon how the structure responds to the loading.
See Topic “Linear and Nonlinear Load Cases” (page 294) in this Chapter.

The results of linear analyses may be superposed, i.e., added together after analysis.
The available types of linear analysis are:

Static analysis

Modal analysis

Response-spectrum analysis

Time-history analysis, by modal superposition or direct integration
Buckling analysis

Moving-load analysis

Steady-state analysis

Power-spectral-density analysis

The results of nonlinear analyses should not normally be superposed. Instead, all
loads acting together on the structure should be combined directly within the Load
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Cases. Nonlinear Load Cases may be chained together to represent complex load-
ing sequences. The available types of nonlinear analyses are:

* Nonlinear static analysis

* Nonlinear time-history analysis, by modal superposition or direct integration
After you have defined a Load Case, you may change its type at any time. When
you do, the program will try to carry over as many parameters as possible from the

old type to the new type. Parameters that cannot be carried over will be set to de-
fault values, which you can change.

For more information:

» See Topic “Linear Static Analysis” (page 296) in this Chapter
* See Topic “Buckling Analysis” (page 297) in this Chapter

* See Chapter “Modal Analysis” (page 305)

* See Chapter “Response-Spectrum Analysis” (page 321)

* See Chapter “Linear Time-History Analysis” (page 331)

» See Chapter “Nonlinear Static Analysis” (page 359)

* See Chapter “Nonlinear Time-History Analysis” (page 381)

* See Chapter “Frequency-Domain Analysis” (page 397)

» See Chapter “Bridge Analysis” (page 409)

Sequence of Analysis

A Load Case may be dependent upon other Load Cases in the following situations:
* A modal-superposition type of Load Case (response-spectrum or modal
time-history) uses the modes calculated in a modal Load Case

* A nonlinear Load Case may continue from the state at the end of another non-
linear case

* A linear Load Cases may use the stiffness of the structure as computed at the
end of a nonlinear case

A Load Case which depends upon another case is called dependent. The case upon
which it depends is called a prerequisite case.

When the program performs analysis, it will always run the cases in the proper or-
der so that dependent cases are run after any of their prerequisite cases.
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You can build up one or more sequences of Load Cases that can be as simple or as
complicated as you need. However, each sequence must ultimately start with a
Load Case that itself starts from zero and does not have any prerequisite cases.

Example

A common example would be to define a nonlinear static Load Case with the fol-
lowing main features:

* The name is, say, “PDELTA”
* The type is nonlinear static

* The loads applied are Load Pattern “DEAD” scaled by 1.0 plus Load Pattern
“LIVE” scaled by 0.25. These represent a typical amount of gravity load on the
structure

* The only nonlinearity considered is the P-delta effect of the loading

We are not necessarily interested in the response of Load Case PDELTA, but rather
we will use the stiffness at the end this case for a series of linear Load Cases that we
are interested in. These may include linear static cases for all loads of interest (dead,
live, wind, snow, etc.), a modal Load Case, and a response-spectrum Load Case.

Because these cases have all been computed using the same stiffness, their results
are superposable, making it very simple to create any number of Load Combina-
tions for design purposes.

Running Load Cases

After you have defined a structural model and one or more Load Cases, you must
explicitly run the Load Cases to get results for display, output, and design pur-
poses.

When an analysis is run, the program converts the object-based model to finite ele-
ments, and performs all calculations necessary to determine the response of the
structure to the loads applied in the Load Cases. The analysis results are saved for
each case for subsequent use.

By default, all Load Cases defined in the model are run each time you perform an
analysis. However, you can change this behavior. For each Load Case, you can set
a flag that indicates whether or not it will be run the next time you perform an analy-
sis. This enables you to define as many different cases as you need without having
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to run all of them every time. This is particularly useful if you have nonlinear cases
that may take a long time to run.

If you select a case to be run, the program will also run all prerequisite cases that
have not yet been run, whether you select them or not.

You can create new Load Cases without deleting the results of other cases that have
already been run. You can also modify existing Load Cases. However, the results
for the modified case and all cases that depend upon it will be deleted.

When an analysis is performed, the cases will be run in an order that is automati-
cally determined by the program in order to make sure all prerequisite cases are run
before their dependent cases. If any prerequisite cases fail to complete, their de-
pendent cases will not be run. However, the program will continue to run other
cases that are not dependent upon the failed cases.

You should always check the analysis log (.LOG) file to see statistics, warnings,
and error messages that were reported during the analysis. You can also see a sum-
mary of the cases that have been run, and whether or not they completed success-
fully, using the Analysis commands in the graphical user interface.

Whenever possible, the program will re-use the previously solved stiffness matrix
while running Load Cases. Because of this, the order in which the cases are run may
not be the same each time you perform an analysis.

See Topic “Sequence of Analysis” (page 399) in this Chapter for more information.

Linear and Nonlinear Load Cases

294

Every Load Case is considered to be either linear or nonlinear. The difference be-
tween these two options is very significant in SAP2000, as described below.

All Load Case types may be linear. Only static analysis and time-history analysis
may be nonlinear.

Structural properties

Linear: Structural properties (stiffness, damping, etc.) are constant during the
analysis.

Nonlinear: Structural properties may vary with time, deformation, and load-
ing. How much nonlinearity actually occurs depends upon the properties you
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have defined, the magnitude of the loading, and the parameters you have speci-
fied for the analysis.

Initial conditions

Linear: The analysis starts with zero stress. It does not contain loads from any
previous analysis, even if it uses the stiffness from a previous nonlinear analy-
sis.

Nonlinear: The analysis may continue from a previous nonlinear analysis, in
which case it contains all loads, deformations, stresses, etc., from that previous
case.

Structural response and superposition

Linear: All displacements, stresses, reactions, etc., are directly proportional to
the magnitude of the applied loads. The results of different linear analyses may
be superposed.

Nonlinear: Because the structural properties may vary, and because of the pos-
sibility of non-zero initial conditions, the response may not be proportional to
the loading. Therefore, the results of different nonlinear analyses should not
usually be superposed.

Linear Static Analysis

The linear static analysis of a structure involves the solution of the system of linear
equations represented by:

Ku=r

where K is the stiffness matrix, r is the vector of applied loads, and u is the vector of
resulting displacements. See Bathe and Wilson (1976).

You may create any number of linear static Load Cases. For each case you may
specify a combination of one or more Load Patterns and/or Acceleration Loads that
make up the load vector ». Normally, you would specify a single Load Pattern with
a scale factor of one.

Every time you define a new Load Pattern, the program automatically creates a cor-
responding linear static Load Case of the same name. This Load Case applies the
Load Case with a unit scale factor. If you delete or modify the Load Case, the analy-
sis results will not be available, even though the Load Case may still exist.
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For a new model, the program creates a default Load Pattern call DEAD which ap-
plies the self weight of the structure. The corresponding linear static Load Case is
also called DEAD.

For each linear static Load Case, you may specify that the program use the stiffness
matrix of the full structure in its unstressed state (the default), or the stiffness of the
structure at the end of a nonlinear Load Case. The most common reasons for using
the stiffness at the end of a nonlinear case are:

* To include P-delta effects from an initial P-delta analysis

* To include tension-stiffening effects in a cable structure

* To consider a partial model that results from staged construction

See Chapter “Nonlinear Static Analysis” (page 359) for more information.

Multi-Step Static Analysis
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Certain types of Load Patterns are multi-stepped, meaning that they actually repre-
sent many separate spatial loading patterns applied in sequence. These include the
Bridge-Live and Wave types of Load Patterns.

You can apply multi-stepped Load Patterns in a Multi-Step Static Load Case. This
type of Load Case will perform a series of independent linear analyses, one for each
step of the Load Pattern:

K u; =r;
where r; is the load at step /, and u; is the resulting solution.

You can apply any linear combination of Load Patterns in the same Load Case,
each with an independent scale factor. These will be summed together as follows:
all multi-stepped Load Patterns will be synchronized, applying the load for the
same step number at the same time, and all single-stepped Load Patterns (e.g., dead
load) will be applied in every step.

The number of solution steps for the Load Case will be equal to the largest number
of load steps of any of the applied multi-stepped Load Patterns.

Although the multi-stepped Load Patterns represent a time series of loads,
Multi-Step Static Analysis does not include any dynamical effects. You can con-
sider dynamics by converting the Multi-Step Static Load Case to a Time-History
Load Case, which can be linear or nonlinear.
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Linear Buckling Analysis

Linear buckling analysis seeks the instability modes of a structure due to the P-delta
effect under a specified set of loads. Buckling analysis involves the solution of the
generalized eigenvalue problem:

[K-LG@®]¥=0

where K is the stiffness matrix, G(r) is the geometric (P-delta) stiffness due to the

load vector r, A is the diagonal matrix of eigenvalues, and ¥ is the matrix of corre-
sponding eigenvectors (mode shapes).

Each eigenvalue-eigenvector pair is called a buckling mode of the structure. The
modes are identified by numbers from 1 to » in the order in which the modes are
found by the program.

The eigenvalue A is called the buckling factor. It is the scale factor that must multi-
ply the loads in r to cause buckling in the given mode. It can also be viewed as a
safety factor: if the buckling factor is greater than one, the given loads must be in-
creased to cause buckling; if it is less than one, the loads must be decreased to pre-
vent buckling. The buckling factor can also be negative. This indicates that buck-
ling will occur if the loads are reversed.

You may create any number of linear buckling Load Cases. For each case you spec-
ify a combination of one or more Load Patterns and/or Acceleration Loads that
make up the load vector r. You may also specify the number of modes to be found
and a convergence tolerance. It is strongly recommended that you seek more than
one buckling mode, since often the first few buckling modes may have very similar
buckling factors. A minimum of six modes is recommended.

It is important to understand that buckling modes depend upon the load. There is
not one set of buckling modes for the structure in the same way that there is for nat-
ural vibration modes. Y ou must explicitly evaluate buckling for each set of loads of
concern.

For each linear buckling Load Case, you may specify that the program use the stiff-
ness matrix of the full structure in its unstressed state (the default), or the stiffness
of the structure at the end of a nonlinear Load Case. The most common reasons for
using the stiffness at the end of a nonlinear case are:

* To include P-delta effects from an initial P-delta analysis

* To include tension-stiffening effects in a cable structure

* To consider a partial model that results from staged construction
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See Chapter “Nonlinear Static Analysis” (page 359) for more information.
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A Function is a series of digitized abscissa-ordinate pairs that may represent:

* Pseudo-spectral acceleration vs. period for response-spectrum analysis, or
* Load vs. time for time-history analysis
* Load vs. frequency for steady-state analysis

» Power density (load squared per frequency) vs. frequency for power-spec-
tral-density analysis

You may define any number of Functions, assigning each one a unique label. You
may scale the abscissa and/or ordinate values whenever the Function is used.

The abscissa of a Function is always time, period, or frequency. The abscissa-
ordinate pairs must be specified in order of increasing abscissa value.

If the increment between abscissa values is constant and the Function starts at ab-
scissa zero, you need only specify the abscissa increment, dt, and the successive
function values (ordinates) starting at abscissa zero. The function values are speci-
fied as:

0, f1,f2, ..., fn
corresponding to abscissas:
0,dt,2dt, ..., ndt
where n + 1 is the number of values given.

If the abscissa increment is not constant or the Function does not start at abscissa
zero, you must specify the pairs of abscissa and function value as:

t0, 10, t1, f1, €2, f2, .., tn, fn

where n + 1 is the number of pairs of values given.

Functions
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Load Combinations (Combos)

A Load Combination (Combo) is a named combination of the results from Load
Cases or other Load Combinations. Combo results include all displacements and
forces at the joints and internal forces or stresses in the elements.

You may define any number of Combos. To each one of these you assign a unique
name, that also should not be the same as any Load Case. Combos can combine the
results of Load Cases and also those of other Combos, provided a circular depend-
ency is not created.

Each Combo produces a pair of values for each response quantity: a maximum and
a minimum. These two values may be equal for certain type of Combos, as dis-
cussed below.

Contributing Cases

Each contributing Load Case or Combo supplies one or two values to the Combo
for each response quantity:

* Linear static cases, individual modes from Modal or Buckling cases, individual
steps from multi-stepped Load Cases, and additive Combos of these types of
results provide a single value. For the purposes of defining the Combos below,
this single value can be considered to be two equal values

* Response-spectrum cases provide two values: the maximum value used is the
positive computed value, and the minimum value is just the negative of the
maximum.

* Envelopes of results from multi-stepped Load Cases provide two values: a
maximum and minimum.

* For Moving-Load Load Cases, the values used are the maximum and minimum
values obtained for any vehicle loading of the lanes permitted by the parame-
ters of the analysis.

For some types of Combos, both values are used. For other types of Combos, only
the value with the larger absolute value is used.

Each contributing case is multiplied by a scale factor, sf, before being included in a
Combo.
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Types of Combos

Five types of Combos are available. For each individual response quantity (force,
stress, or displacement component) the two Combo values are calculated as fol-
lows:

Additive type: The Combo maximum is an algebraic linear combination of the
maximum values for each of the contributing cases. Similarly, Combo mini-
mum is an algebraic linear combination of the minimum values for each of the
contributing cases.

Absolute type: The Combo maximum is the sum of the larger absolute values
for each of the contributing cases. The Combo minimum is the negative of the
Combo maximum.

SRSS type: The Combo maximum is the square root of the sum of the squares
of the larger absolute values for each of the contributing cases. The Combo
minimum is the negative of the Combo maximum.

Range type: The Combo maximum is the sum of the positive maximum values
for each of the contributing cases (a case with a negative maximum does not
contribute.) Similarly, the Combo minimum is the sum of the negative mini-
mum values for each of the contributing cases (a case with a positive minimum
does not contribute.)

Envelope type: The Combo maximum is the maximum of all of the maximum
values for each of the contributing cases. Similarly, Combo minimum is the
minimum of all of the minimum values for each of the contributing cases.

Only additive Combos of single-valued Load Cases produce a single-valued result,
i.e., the maximum and minimum values are equal. All other Combos will generally
have different maximum and minimum values.

Examples

For example, suppose that the values, after scaling, for the displacement at a partic-
ular joint are 3.5 for Linear Static Load Case LL and are 2.0 for Response-spectrum
case QUAKE. Suppose that these two cases have been included in an additive-type
Combo called COMBI and an envelope-type Combo called COMB2. The results
for the displacement at the joint are computed as follows:

COMBI1: The maximumis 3.5+2.0=15.5, and the minimumis 3.5-2.0=1.5

COMB2: The maximum is max (3.5, 2.0) = 3.5, and the minimum is min (3.5, —
2.0)=-2.0
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As another example, suppose that Linear Static Cases GRAV, WINDX and
WINDY are gravity load and two perpendicular, transverse wind loads, respec-
tively; and that a response-spectrum case named EQ has been performed. The fol-
lowing four Combos could be defined:

* WIND: An SRSS-type Combo of the two wind loads, WINDX and WINDY.
The maximum and minimum results produced for each response quantity are
equal and opposite

* GRAVEQ: An additive-type Combo of the gravity load, GRAV, and the
response-spectrum results, EQ. The Combo automatically accounts for the
positive and negative senses of the earthquake load

* GRAVWIN: An additive-type Combo of the gravity load, GRAV, and the
wind load given by Combo WIND, which already accounts for the positive and
negative senses of the load

* SEVERE: An envelope-type Combo that produces the worst case of the two
additive Combos, GRAVEQ and GRAVWIN

Suppose that the values of axial force in a frame element, after scaling, are 10, 5, 3,
and 7 for cases GRAV, WINDX, WINDY, and EQ, respectively. The following re-
sults for axial force are obtained for the Combos above:

« WIND: maximum =v5° +3%> =58 , minimum = -5.8

* GRAVEQ: maximum=10+7=17 , minimum=10—-7=3

¢ GRAVWIN: maximum =10 +5.8 =158, minimum =10-5.8=4.2

* SEVERE: maximum = max(17,15.8) =17 , minimum =min(3,4.2) =3
Range-type Combos enable you to perform skip-pattern loading very efficiently.
For example, suppose you have a four-span continuous beam, and you want to
know what pattern of uniform loading on the various spans creates the maximum
response:

* Create four Load Patterns, each with uniform loading on a single span

* Create four corresponding Linear Static Load Cases, each applying a single
Load Pattern.

* Create a single range Combo, combining the results of the four Load Cases
The effect of this Combo is the same as enveloping all additive combinations of any
single span loaded, any two spans loaded, any three spans loaded, and all four spans

loaded. This range Combo could be added or enveloped with other Load Cases and
Combos.
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As you can see, using Combos of Combos gives you considerable power and flexi-
bility in how you can combine the results of the various Load Cases.

Additional Considerations

Moving-Load Load Cases should not normally be added together, in order to avoid
multiple loading of the lanes. Additive combinations of Moving Loads should only
be defined within the Moving-Load Load Case itself. Therefore, it is recommended
that only a single Moving Load be included in any additive-, absolute-, SRSS-, or
range-type Combo, whether referenced directly as a Moving Load or indirectly
through another Combo. Multiple Moving Loads may be included in any
envelope-type Combo, since they are not added.

Nonlinear Load Cases should not normally be added together, since nonlinear re-
sults are not usually superposable. Instead, you should combine the applied loads
within a nonlinear Load Case so that their combined effect can be properly ana-
lyzed. This may require defining many different Load Cases instead of many dif-
ferent Combos. Nonlinear Load Cases may be included in any envelope-type
Combo, since they are not added.

When Combos are used for design, they may be treated somewhat differently than
has been described here for output purposes. For example, every time step in a His-
tory may be considered under certain circumstances. Similarly, corresponding re-
sponse quantities at the same location in a Moving-Load Load Case may be used
for design purposes. See the SAP2000 Steel Design Manual and the SAP2000 Con-
crete Design Manual for more information.

Equation Solvers
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Some versions of CSI programs include the option to use the advanced equation
solver. This solver can be one or two orders of magnitude faster than the standard
solver for larger problems, and it also uses less disk space.

Because the two solvers perform numerical operations in a different order, it is pos-
sible that sensitive problems may yield slightly different results with the two solv-
ers due to numerical roundoff. In extremely sensitive, nonlinear, history-dependent
problems, the differences may be more pronounced.

All verification examples have been run and checked using both solvers. The re-
sults using the advanced solver are reported for comparison in the verification man-
uals.

Equation Solvers
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The advanced solver is based on proprietary CSI technology. It uses, in part, code
derived from TAUCS family of solvers. Please see the copyright notice at the end
of Chapter “References” (page 453) for more information.

Accessing the Assembled Stiffness and Mass Matrices

When using the advanced equation solver, you may request that the program pro-
duce the assembled stiffness and mass matrices in the form of text files. This can be
done for a single linear static, modal, or buckling Load Case. To get the stiffness
and mass matrices for a nonlinear case, define a linear case that uses the stiffness
from the final state of the desired nonlinear case.

The assembled matrices are provided in five text files that have the same name as
the model file, but with the following extensions and contents:

» Extension .TXA: This file includes the counts of the number of joints and
equations in the model, and also describes the format and contents of the other
four files.

* Extension .TXE: This file gives the equation numbers for each degree of free-
dom (DOF) at each joint. Equation numbers are positive for active DOF that
are present in the stiffness and mass matrices, negative for constrained DOF
that are computed as linear combinations of active DOF, and zero for restrained
or null DOF.

* Extension .TXC: This file defines the constraint equations, and is only present
if there are constraints in the model.

» Extension .TXK: This file gives the lower half of the symmetric stiffness ma-
trix.

» Extension . TXM: This file gives the lower half of the symmetric mass matrix.

Each of the latter four files contains a single header line that begins with “Note:”
and defines the data columns. All subsequent lines provide Tab-delimited data for
easy import into text editors or spreadsheet programs.
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Chapter XIX

Modal Analysis

Modal analysis is used to determine the vibration modes of a structure. These
modes are useful to understand the behavior of the structure. They can also be used
as the basis for modal superposition in response-spectrum and modal time-history
Load Cases.

Basic Topics for All Users
* Overview
» Eigenvector Analysis
* Ritz-Vector Analysis
* Modal Analysis Output

Overview

A modal analysis is defined by creating a Load Case and setting its type to
“Modal”. You can define multiple modal Load Cases, resulting in multiple sets of
modes.

There are two types of modal analysis to choose from when defining a modal Load
Case:
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» Eigenvector analysis determines the undamped free-vibration mode shapes
and frequencies of the system. These natural modes provide an excellent in-
sight into the behavior of the structure.

» Ritz-vector analysis seeks to find modes that are excited by a particular load-
ing. Ritz vectors can provide a better basis than do eigenvectors when used for
response-spectrum or time-history analyses that are based on modal superposi-
tion

Modal analysis is always linear. A modal Load Case may be based on the stiffness
of the full unstressed structure, or upon the stiffness at the end of a nonlinear Load
Case (nonlinear static or nonlinear direct-integration time-history).

By using the stiffness at the end of a nonlinear case, you can evaluate the modes un-
der P-delta or geometric stiffening conditions, at different stages of construction, or
following a significant nonlinear excursion in a large earthquake.

See Chapter “Load Cases” (page 289) for more information.

Eigenvector Analysis
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Eigenvector analysis determines the undamped free-vibration mode shapes and fre-
quencies of the system. These natural Modes provide an excellent insight into the
behavior of the structure. They can also be used as the basis for response-spectrum
or time-history analyses, although Ritz vectors are recommended for this purpose.

Eigenvector analysis involves the solution of the generalized eigenvalue problem:
[K-Q*M]D=0

where K is the stiffness matrix, M is the diagonal mass matrix, 0 is the diagonal
matrix of eigenvalues, and @ is the matrix of corresponding eigenvectors (mode
shapes).

Each eigenvalue-eigenvector pair is called a natural Vibration Mode of the struc-
ture. The Modes are identified by numbers from 1 to z in the order in which the
modes are found by the program.

The eigenvalue is the square of the circular frequency, o, for that Mode (unless a
frequency shift is used, see below). The cyclic frequency, f, and period, 7, of the
Mode are related to  by:
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T=i and f=g
f 2n

You may specify the number of modes to be found, a convergence tolerance, and
the frequency range of interest. These parameters are described in the following
subtopics.

Number of Modes
You may specify the maximum and minimum number of modes to be found.

The program will not calculate more than the specified maximum number of
modes. This number includes any static correction modes requested. The program
may compute fewer modes if there are fewer mass degrees of freedom, all dynamic
participation targets have been met, or all modes within the cutoff frequency range
have been found.

The program will not calculate fewer than the specified minimum number of
modes, unless there are fewer mass degrees of freedom in the model.

A mass degree of freedom is any active degree of freedom that possesses transla-
tional mass or rotational mass moment of inertia. The mass may have been assigned
directly to the joint or may come from connected elements.

Only the modes that are actually found will be available for use by any subsequent
response-spectrum or modal time-history Load Cases.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom.”

Frequency Range

Y ou may specify a restricted frequency range in which to seek the Vibration Modes
by using the parameters:

+ shift: The center of the cyclic frequency range, known as the shift frequency

 cut: The radius of the cyclic frequency range, known as the cutoff frequency
The program will only seek Modes with frequencies f that satisfy:
| / —shift |< cut

The default value of cut = 0 does not restrict the frequency range of the Modes.
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Modes are found in order of increasing distance of frequency from the shift. This
continues until the cutoff is reached, the requested number of Modes is found, or
the number of mass degrees of freedom is reached.

A stable structure will possess all positive natural frequencies. When performing a
seismic analysis and most other dynamic analyses, the lower-frequency modes are
usually of most interest. It is then appropriate to the default shift of zero, resulting
in the lowest-frequency modes of the structure being calculated. If the shift is not
zero, response-spectrum and time-history analyses may be performed; however,
static, moving-load, and p-delta analyses are not allowed.

If the dynamic loading is known to be of high frequency, such as that caused by vi-
brating machinery, it may be most efficient to use a positive shift near the center of
the frequency range of the loading.

A structure that is unstable when unloaded will have some modes with zero fre-
quency. These modes may correspond to rigid-body motion of an inadequately
supported structure, or to mechanisms that may be present within the structure. It is
not possible to compute the static response of such a structure. However, by using a
small negative shift, the lowest-frequency vibration modes of the structure, includ-
ing the zero-frequency instability modes, can be found. This does require some
mass to be present that is activated by each instability mode.

A structure that has buckled under P-delta load will have some modes with zero or
negative frequency. During equation solution, the number of frequencies less than
the shift is determined and printed in the log file. If you are using a zero or negative
shift and the program detects a negative-frequency mode, it will stop the analysis
since the results will be meaningless. If you use a positive shift, the program will
permit negative frequencies to be found; however, subsequent static and dynamic
results are still meaningless.

When using a frequency shift, the stiffness matrix is modified by subtracting from
it the mass matrix multiplied by c002 , where o, =2 mshift. If the shift is very near a

natural frequency of the structure, the solution becomes unstable and will complain
during equation solution. Run the analysis again using a slightly different shift
frequency.

The circular frequency, ®, of a Vibration Mode is determined from the shifted ei-
genvalue, |, as:

=4/ u+0302
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Automatic Shifting

As an option, you may request that the eigen-solver use automatic shifting to speed
up the solution and improve the accuracy of the results. This is particularly helpful
when seeking a large number of modes, for very large structures, or when there are
a lot of closely spaced modes to be found.

The solver will start with the requested shift frequency, shift (default zero), and
then successively then shift to the right (in the positive direction) as needed to im-
prove the rate of convergence.

If no cutoff frequency has been specified (cut = 0), automatic shifting will only be
to the right, which means that eigenvalues to the left of the initial shift may be
missed. This is not usually a problem for stable structures starting with an initial
shift of zero.

If a cutoff frequency has been specified (cut > 0), automatic shifting will be to the
right until all eigenvalues between shift and shift + cut have been found, then the
automatic shifting will return to the initial shift and proceed to the left from there.

In either case, automatic shifting may not find eigenvalues in the usual order of in-
creasing distance from the initial shift.

Convergence Tolerance

SAP2000 solves for the eigenvalue-eigenvectors pairs using an accelerated sub-
space iteration algorithm. During the solution phase, the program prints the ap-
proximate eigenvalues after each iteration. As the eigenvectors converge they are
removed from the subspace and new approximate vectors are introduced. For de-
tails of the algorithm, see Wilson and Tetsuji (1983).

You may specify the relative convergence tolerance, tol, to control the solution; the
default value is tol = 10”. The iteration for a particular Mode will continue until the
relative change in the eigenvalue between successive iterations is less than 2 - tol,
that is until:

T —u;

2 M

< tol

where 1 is the eigenvalue relative to the frequency shift, and i and i + 1 denote suc-
cessive iteration numbers.
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In the usual case where the frequency shift is zero, the test for convergence be-
comes approximately the same as:

T, " ‘le_fi
/i

i+l _Ti

< tol o < tol

i+l

provided that the difference between the two iterations is small.

Note that the error in the eigenvectors will generally be larger than the error in the
eigenvalues. The relative error in the global force balance for a given Mode gives a
measure of the error in the eigenvector. This error can usually be reduced by using a
smaller value of tol, at the expense of more computation time.

Static-Correction Modes

Y ou may request that the program compute the static-correction modes for any Ac-
celeration Load or Load Pattern. A static-correction mode is the static solution to
that portion of the specified load that is not represented by the found eigenvectors.

When applied to acceleration loads, static-correction modes are also known as
missing-mass modes or residual-mass modes.

Static-correction modes are of little interest in their own right. They are intended to
beused as part of a modal basis for response-spectrum or modal time-history analy-
sis for high frequency loading to which the structure responds statically. Although
a static-correction mode will have a mode shape and frequency (period) like the
eigenvectors do, it is not a true eigenvector.

Y ou can specify for which Load Patterns and/or Acceleration Loads you want static
correction modes calculated, if any. One static-correction mode will be computed
for each specified Load unless all eigenvectors that can be excited by that Load
have been found. Static-correction modes count against the maximum number of
modes requested for the Load Case.

As an example, consider the translational acceleration load in the UX direction, m .
Define the participation factor for mode 7 as:

T
fxn =0¢, m,

The static-correction load for UX translational acceleration is then:

n—-M
m,,=m, — fonq)n

n=1
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The static-correction mode-shape vector, ¢, is the solution to:

K(PxO =my

If m , is found to be zero, all of the modes necessary to represent UX acceleration
have been found, and no residual-mass mode is needed or will be calculated.

The static-correction modes for any other acceleration load or Load Pattern are de-
fined similarly.

Each static-correction mode is assigned a frequency that is calculated using the
standard Rayleigh quotient method. When static-correction modes are calculated,
they are used for Response-spectrum and Time-history analysis just as the
eigenvectors are.

The use of static-correction modes assures that the static-load participation ratio
will be 100% for the selected acceleration loads. However, static-correction modes
do not generally result in mass-participation ratios or dynamic-load participation
ratios of 100%. Only true dynamic modes (eigen or Ritz vectors) can increase these
ratios to 100%.

See Topic “Modal Analysis Output” (page 297) in this Chapter for more informa-
tion on modal participation ratios.

Note that Ritz vectors, described next, always include the residual-mass effect for
all starting load vectors.

Ritz-Vector Analysis

Research has indicated that the natural free-vibration mode shapes are not the best
basis for a mode-superposition analysis of structures subjected to dynamic loads. It
has been demonstrated (Wilson, Yuan, and Dickens, 1982) that dynamic analyses
based on a special set of load-dependent Ritz vectors yield more accurate results
than the use of the same number of natural mode shapes. The algorithm is detailed
in Wilson (1985).

The reason the Ritz vectors yield excellent results is that they are generated by tak-
ing into account the spatial distribution of the dynamic loading, whereas the direct
use of the natural mode shapes neglects this very important information.

In addition, the Ritz-vector algorithm automatically includes the advantages of the
proven numerical techniques of static condensation, Guyan reduction, and static
correction due to higher-mode truncation.
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The spatial distribution of the dynamic load vector serves as a starting load vector
to initiate the procedure. The first Ritz vector is the static displacement vector cor-
responding to the starting load vector. The remaining vectors are generated from a
recurrence relationship in which the mass matrix is multiplied by the previously ob-
tained Ritz vector and used as the load vector for the next static solution. Each static
solution is called a generation cycle.

When the dynamic load is made up of several independent spatial distributions,
each of these may serve as a starting load vector to generate a set of Ritz vectors.
Each generation cycle creates as many Ritz vectors as there are starting load vec-
tors. If a generated Ritz vector is redundant or does not excite any mass degrees of
freedom, it is discarded and the corresponding starting load vector is removed from
all subsequent generation cycles.

Standard eigen-solution techniques are used to orthogonalize the set of generated
Ritz vectors, resulting in a final set of Ritz-vector Modes. Each Ritz-vector Mode
consists of a mode shape and frequency. The full set of Ritz-vector Modes can be
used as a basis to represent the dynamic displacement of the structure.

When a sufficient number of Ritz-vector Modes have been found, some of them
may closely approximate natural mode shapes and frequencies. In general, how-
ever, Ritz-vector Modes do not represent the intrinsic characteristics of the struc-
ture in the same way the natural Modes do. The Ritz-vector modes are biased by the
starting load vectors.

Y ou may specity the number of Modes to be found, the starting load vectors to be
used, and the number of generation cycles to be performed for each starting load
vector. These parameters are described in the following subtopics.

Number of Modes

You may specify the maximum and minimum number of modes to be found.

The program will not calculate more than the specified maximum number of
modes. The program may compute fewer modes if there are fewer mass degrees of
freedom, all dynamic participation targets have been met, or the maximum number
of cycles has been reached for all loads.

The program will not calculate fewer than the specified minimum number of
modes, unless there are fewer mass degrees of freedom in the model.
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A mass degree of freedom is any active degree of freedom that possesses
translational mass or rotational mass moment of inertia. The mass may have been
assigned directly to the joint or may come from connected elements.

Only the modes that are actually found will be available for use by any subsequent
response-spectrum or modal time-history Load Cases.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom.”

Starting Load Vectors

You may specify any number of starting load vectors. Each starting load vector
may be one of the following:

* An Acceleration Load in the global X, Y, or Z direction
e A Load Pattern

A built-in nonlinear deformation load, as described below

For response-spectrum analysis, only the Acceleration Loads are needed. For
modal time-history analysis, one starting load vector is needed for each Load Pat-
tern or Acceleration Load that is used in any modal time-history.

If nonlinear modal time-history analysis is to be performed, an additional starting
load vector is needed for each independent nonlinear deformation. You may spec-
ify that the program use the built-in nonlinear deformation loads, or you may define
your own Load Patterns for this purpose. See Topic “Nonlinear Deformation
Loads” (page 233) in Chapter “The Link/Support Element—Basic” for more infor-
mation.

If you define your own starting load vectors, do the following for each nonlinear
deformation:

* Explicitly define a Load Pattern that consists of a set of self-equilibrating
forces that activates the desired nonlinear deformation
» Specify that Load Pattern as a starting load vector

The number of such Load Patterns required is equal to the number of independent
nonlinear deformations in the model.

If several Link/Support elements act together, you may be able to use fewer starting
load vectors. For example, suppose the horizontal motion of several base isolators
are coupled with a diaphragm. Only three starting load vectors acting on the dia-
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phragm are required: two perpendicular horizontal loads and one moment about the
vertical axis. Independent Load Cases may still be required to represent any vertical
motions or rotations about the horizontal axes for these isolators.

It is strongly recommended that mass (or mass moment of inertia) be present at
every degree of freedom that is loaded by a starting load vector. This is automatic
for Acceleration Loads, since the load is caused by mass. If a Load Pattern or non-
linear deformation load acts on a non-mass degree of freedom, the program issues a
warning. Such starting load vectors may generate inaccurate Ritz vectors, or even
no Ritz vectors at all.

Generally, the more starting load vectors used, the more Ritz vectors must be re-
quested to cover the same frequency range. Thus including unnecessary starting
load vectors is not recommended.

In each generation cycle, Ritz vectors are found in the order in which the starting
load vectors are specified. In the last generation cycle, only as many Ritz vectors
will be found as required to reach the total number of Modes, n. For this reason, the
most important starting load vectors should be specified first, especially if the
number of starting load vectors is not much smaller than the total number of Modes.

For more information:

* See Topic “Nonlinear Modal Time-History Analysis (FNA)” (page 123) in
Chapter “Nonlinear Time-History Analysis”.

* See Chapter “Load Patterns” (page 273).

Number of Generation Cycles

Y ou may specify the maximum number of generation cycles, neye, to be performed
for each starting load vector. This enables you to obtain more Ritz vectors for some
starting load vectors than others. By default, the number of generation cycles per-
formed for each starting load vector is unlimited, i.e., until the total number, n, of
requested Ritz vectors have been found.

As an example, suppose that two linear time-history analyses are to be performed:

(1) Gravity load is applied quasi-statically to the structure using Load Patterns DL
and LL

(2) Seismic load is applied in all three global directions

The starting load vectors required are the three Acceleration Loads and Load Pat-
terns DL and LL. The first generation cycle creates the static solution for each start-
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ing load vector. This is all that is required for Load Patterns DL and LL in the first
History, hence for these starting load vectors neye = 1 should be specified. Addi-
tional Modes may be required to represent the dynamic response to the seismic
loading, hence an unlimited number of cycles should be specified for these starting
load vectors. If 12 Modes are requested (n = 12), there will be one each for DL and
LL, three each for two of the Acceleration Loads, and four for the Acceleration
Load that was specified first as a starting load vector.

Starting load vectors corresponding to nonlinear deformation loads may often need
only a limited number of generation cycles. Many of these loads affect only a small
local region and excite only high-frequency natural modes that may respond
quasi-statically to typical seismic excitation. If this is the case, you may be able to
specify neye =1 or 2 for these starting load vectors. More cycles may be required if
you are particularly interested in the dynamic behavior in the local region.

You must use your own engineering judgment to determine the number of Ritz vec-
tors to be generated for each starting load vector. No simple rule can apply to all
cases.

Modal Analysis Output

Various properties of the Vibration Modes are available as analysis results. This in-
formation is the same regardless of whether you use eigenvector or Ritz-vector
analysis, and is described in the following subtopics.

Periods and Frequencies
The following time-properties are printed for each Mode:

e Period, 7, in units of time
» Cyclic frequency, f, in units of cycles per time; this is the inverse of T’
 Circular frequency, m, in units of radians per time; ® =2 1 f°

. 2 . . . .
* FEigenvalue, ®°, in units of radians-per-time squared

Participation Factors

The modal participation factors are the dot products of the three Acceleration
Loads with the modes shapes. The participation factors for Mode n corresponding
to Acceleration Loads in the global X, Y, and Z directions are given by:
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T
fxn =0, m,

T
fyn =0, m,

T
fzn =0, m,

where @, is the mode shape and m , m , and, m_are the unit Acceleration Loads.

These factors are the generalized loads acting on the Mode due to each of the Accel-
eration Loads.

These values are called “factors” because they are related to the mode shape and to
a unit acceleration. The modes shapes are each normalized, or scaled, with respect
to the mass matrix such that:

¢, Mo, =1

The actual magnitudes and signs of the participation factors are not important.
What is important is the relative values of the three factors for a given Mode.

Participating Mass Ratios

The participating mass ratio for a Mode provides a measure of how important the
Mode is for computing the response to the Acceleration Loads in each of the three
global directions. Thus it is useful for determining the accuracy of response-
spectrum analyses and seismic time-history analyses. The participating mass ratio
provides no information about the accuracy of time-history analyses subjected to
other loads.

The participating mass ratios for Mode # corresponding to Acceleration Loads in
the global X, Y, and Z directions are given by:

(faw)
rxn -
Mx
(fyn)
Fyn = 7My
)
zn M

z
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where f,, f,, and f. are the participation factors defined in the previous subtopic;
and M, M, and M_ are the total unrestrained masses acting in the X, Y, and Z direc-
tions. The participating mass ratios are expressed as percentages.

The cumulative sums of the participating mass ratios for all Modes up to Mode n
are printed with the individual values for Mode n. This provides a simple measure
of how many Modes are required to achieve a given level of accuracy for ground-
acceleration loading.

If all eigen Modes of the structure are present, the participating mass ratio for each
of the three Acceleration Loads should generally be 100%. However, this may not
be the case in the presence of Asolid elements or certain types of Constraints where
symmetry conditions prevent some of the mass from responding to translational ac-
celerations.

Static and Dynamic Load Participation Ratios

The static and dynamic load participation ratios provide a measure of how adequate
the calculated modes are for representing the response to time-history analyses.
These two measures are printed in the output file for each of the following spatial
load vectors:

* The three unit Acceleration Loads

» Three rotational acceleration loads

* All Load Patterns specified in the definition of the modal Load Case

* All nonlinear deformation loads, if they are specified in the definition of the

modal Load Case

The Load Patterns and Acceleration Loads represent spatial loads that you can ex-
plicitly specify in a modal time-history analysis, whereas the last represents loads
that can act implicitly in a nonlinear modal time-history analysis. The load partici-
pation ratios are expressed as percentages.

For more information:

* See Topic “Nonlinear Deformation Loads” (page 233) in Chapter “The
Link/Support Element—Basic.”

* See Chapter “Load Patterns” (page 273).

* See Topic “Acceleration Loads” (page 286) in Chapter “Load Patterns.”

» See Topic “Linear Modal Time-History Analysis” (page 337) in Chapter “Lin-
ear Time-History Analysis” .
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* See Topic “Nonlinear Modal Time-History Analysis” (page 123) in Chapter
“Nonlinear Time-History Analysis”.

Static Load Participation Ratio

The static load participation ratio measures how well the calculated modes can rep-
resent the response to a given static load. This measure was first presented by Wil-
son (1997). For a given spatial load vector p, the participation factor for Mode # is
given by

fn :(PnTp

where ¢, is the mode shape (vector) of Mode n. This factor is the generalized load
acting on the Mode due to load p. Note that f), is just the usual participation factor

when p is one of the unit acceleration loads.
The static participation ratio for this mode is given by
2
(2]
rS _ \wn )

n T
up

where u is the static solution given by Ku = p. This ratio gives the fraction of the to-
tal strain energy in the exact static solution that is contained in Mode 7. Note that
the denominator can also be represented as u' Ku.

Finally, the cumulative sum of the static participation ratios for all the calculated
modes is printed in the output file:

]

T
n=1 u p

where N is the number of modes found. This value gives the fraction of the total
strain energy in the exact static solution that is captured by the N modes.

When solving for static solutions using quasi-static time-history analysis, the value

of R® should be close to 100% for any applied static Loads, and also for all nonlin-
ear deformation loads if the analysis is nonlinear.
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Note that when Ritz-vectors are used, the value of RS will always be 100% for all
starting load vectors. This may not be true when eigenvectors are used. In fact, even
using all possible eigenvectors will not give 100% static participation if load p acts
on any massless degrees-of-freedom.

Dynamic Load Participation Ratio

The dynamic load participation ratio measures how well the calculated modes can
represent the response to a given dynamic load. This measure was developed for
SAP2000, and it is an extension of the concept of participating mass ratios. It is as-
sumed that the load acts only on degrees of freedom with mass. Any portion of load
vector p that acts on massless degrees of freedom cannot be represented by this
measure and is ignored in the following discussion.

For a given spatial load vector p, the participation factor for Mode 7 is given by
T
Jn=@n P

where ¢, is the mode shape for Mode n. Note that f,, is just the usual participation
factor when p is one of the unit acceleration loads.

The dynamic participation ratio for this mode is given by

(/)

D_
T =777
ap

n

where a is the acceleration given by Ma = p. The acceleration a is easy to calculate
since M is diagonal. The values of @ and p are taken to be zero at all massless de-
grees of freedom. Note that the denominator can also be represented as a' Ma.

Finally, the cumulative sum of the dynamic participation ratios for all the calcu-
lated modes is printed in the output file:

N T 2
N Z ((pl‘l p)
D D =1
R = Z r, = <
n=l1 a p

where N is the number of modes found. When p is one of the unit acceleration

loads, #P is the usual mass participation ratio, and R” is the usual cumulative mass
participation ratio.
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When R” is 100%, the calculated modes should be capable of exactly representing

the solution to any time-varying application of spatial load p. If R” is less than
100%, the accuracy of the solution will depend upon the frequency content of the
time-function multiplying load p. Normally it is the high frequency response that is

not captured when R is less than 100%.

The dynamic load participation ratio only measures how the modes capture the spa-
tial characteristics of p, not its temporal characteristics. For this reason, R? serves
only as a qualitative guide as to whether enough modes have been computed. You
must still examine the response to each different dynamic loading with varying
number of modes to see if enough modes have been used.
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Response-Spectrum Analysis

Response-spectrum analysis is a statistical type of analysis for the determination of
the likely response of a structure to seismic loading.

Basic Topics for All Users

Overview

Local Coordinate System
Response-Spectrum Curve
Modal Damping

Modal Combination
Directional Combination

Response-Spectrum Analysis Output

Overview

The dynamic equilibrium equations associated with the response of a structure to
ground motion are given by:

K u(0)+C is(0)+ M ii(t) =m iig, (1) +m , ii g (1) + m_ ii g (1)
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where K is the stiffness matrix; C is the proportional damping matrix; M is the di-
agonal mass matrix; u, u, and # are the relative displacements, velocities, and accel-
erations with respect to the ground; m, m , and m_are the unit Acceleration Loads;

and ii gy, ii 4, and ii 5, are the components of uniform ground acceleration.

Response-spectrum analysis seeks the likely maximum response to these equations
rather than the full time history. The earthquake ground acceleration in each direc-
tion is given as a digitized response-spectrum curve of pseudo-spectral acceleration
response versus period of the structure.

Even though accelerations may be specified in three directions, only a single, posi-
tive result is produced for each response quantity. The response quantities include
displacements, forces, and stresses. Each computed result represents a statistical
measure of the likely maximum magnitude for that response quantity. The actual
response can be expected to vary within a range from this positive value to its nega-
tive.

No correspondence between two different response quantities is available. No in-
formation is available as to when this extreme value occurs during the seismic load-
ing, or as to what the values of other response quantities are at that time.

Response-spectrum analysis is performed using mode superposition (Wilson and
Button, 1982). Modes may have been computed using eigenvector analysis or
Ritz-vector analysis. Ritz vectors are recommended since they give more accurate
results for the same number of Modes. You must define a Modal Load Case that
computes the modes, and then refer to that Modal Load Case in the definition of the
Response-Spectrum Case.

Any number of response-spectrum Load Cases can be defined. Each case can differ
in the acceleration spectra applied and in the way that results are combined. Differ-
ent cases can also be based upon different sets of modes computed in different
Modal Load Cases. For example, this would enable you to consider the response at
different stages of construction, or to compare the results using eigenvectors and
Ritz vectors.

Local Coordinate System

322

Each Spec has its own response-spectrum local coordinate system used to define
the directions of ground acceleration loading. The axes of this local system are de-
noted 1, 2, and 3. By default these correspond to the global X, Y, and Z directions,
respectively.

Local Coordinate System



Chapter XX Response-Spectrum Analysis

Global

Figure 69
Definition of Response Spectrum Local Coordinate System

You may change the orientation of the local coordinate system by specifying:

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

* A coordinate angle, ang (the default is zero)

The local 3 axis is always the same as the Z axis of coordinate system csys. The lo-
cal 1 and 2 axes coincide with the X and Y axes of ¢sys if angle ang is zero. Other-
wise, ang is the angle from the X axis to the local 1 axis, measured counterclock-
wise when the +Z axis is pointing toward you. This is illustrated in Figure 69 (page
323).

Response-Spectrum Curve

The response-spectrum curve for a given direction is defined by digitized points of
pseudo-spectral acceleration response versus period of the structure. The shape of
the curve is given by specifying the name of a Function. All values for the abscissa
and ordinate of this Function must be zero or positive.

If no Function is specified, a constant function of unit acceleration value for all pe-
riods is assumed.

Youmay specify a scale factor sf to multiply the ordinate (pseudo spectral accelera-
tion response) of the function. This is often needed to convert values given in terms
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Figure 70
Digitized Response-Spectrum Curve

of the acceleration due to gravity to units consistent with the rest of the model. See
Figure (page 324).

If the response-spectrum curve is not defined over a period range large enough to
cover the Vibration Modes of the structure, the curve is extended to larger and
smaller periods using a constant acceleration equal to the value at the nearest de-
fined period.

See Topic “Functions” (page 298) in this Chapter for more information.

Damping

The response-spectrum curve chosen should reflect the damping that is present in
the structure being modeled. Note that the damping is inherent in the shape of the
response-spectrum curve itself. As part of the Load Case definition, you must spec-
ify the damping value that was used to generate the response-spectrum curve. Dur-
ing the analysis, the response-spectrum curve will automatically be adjusted from
this damping value to the actual damping present in the model.

Response-Spectrum Curve
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Modal Damping
Damping in the structure has two effects on response-spectrum analysis:

It affects the shape of the response-spectrum input curve

+ [t affects the amount of statistical coupling between the modes for certain
methods of response-spectrum modal combination (CQC, GMC)

The damping in the structure is modeled using uncoupled modal damping. Each
mode has a damping ratio, damp, which is measured as a fraction of critical damp-
ing and must satisfy:

0<damp<1

Modal damping has three different sources, which are described in the following.
Damping from these sources are added together. The program automatically makes
sure that the total is less than one.

Modal Damping from the Load Case

For each response-spectrum Load Case, you may specify modal damping ratios
that are:

» Constant for all modes

* Linearly interpolated by period or frequency. You specify the damping ratio at
a series of frequency or period points. Between specified points the damping is
linearly interpolated. Outside the specified range, the damping ratio is constant
at the value given for the closest specified point.

* Mass and stiffness proportional. This mimics the proportional damping used
for direct-integration, except that the damping value is never allowed to exceed
unity.

In addition, you may optionally specify damping overrides. These are specific val-
ues of damping to be used for specific modes that replace the damping obtained by
one of the methods above. The use of damping overrides is rarely necessary.

Composite Modal Damping from the Materials

Modal damping ratios, if any, that have been specified for the Materials are con-
verted automatically to composite modal damping. Any cross coupling between the
modes is ignored. These modal-damping values will generally be different for each
mode, depending upon how much deformation each mode causes in the elements
composed of the different Materials.
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Effective Damping from the Link/Support Elements

Linear effective-damping coefficients, if any, that have been specified for
Link/Support elements in the model are automatically converted to modal damp-
ing. Any cross coupling between the modes is ignored. These effective
modal-damping values will generally be different for each mode, depending upon
how much deformation each mode causes in the Link/Support elements.

Modal Combination

326

For a given direction of acceleration, the maximum displacements, forces, and
stresses are computed throughout the structure for each of the Vibration Modes.
These modal values for a given response quantity are combined to produce a single,
positive result for the given direction of acceleration using one of the following
methods.

CQC Method

The Complete Quadratic Combination technique is described by Wilson, Der Kiu-
reghian, and Bayo (1981). This is the default method of modal combination.

The CQC method takes into account the statistical coupling between closely-
spaced Modes caused by modal damping. Increasing the modal damping increases
the coupling between closely-spaced modes. If the damping is zero for all Modes,
this method degenerates to the SRSS method.

GMC Method

The General Modal Combination technique is the complete modal combination
procedure described by Equation 3.31 in Gupta (1990). The GMC method takes
into account the statistical coupling between closely-spaced Modes similarly to the
CQC method, but also includes the correlation between modes with rigid-response
content.

Increasing the modal damping increases the coupling between closely-spaced
modes.

In addition, the GMC method requires you to specify two frequencies, f1 and 12,
which define the rigid-response content of the ground motion. These must satisfy
0 < f1 < £2. The rigid-response parts of all modes are assumed to be perfectly corre-
lated.

Modal Combination
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The GMC method assumes no rigid response below frequency fl, full rigid re-
sponse above frequency f2, and an interpolated amount of rigid response for fre-
quencies between f1 and f2.

Frequencies f1 and f2 are properties of the seismic input, not of the structure. Gupta
defines f1 as:

fl — SAmax
2nS Vmax

where S ..x 18 the maximum spectral acceleration and Sy, 1s the maximum spec-
tral velocity for the ground motion considered. The default value for f1 is unity.

Gupta defines f2 as:
1 2
f2=—1f1+—
;143 I

where f,. is the rigid frequency of the seismic input, i.e., that frequency above
which the spectral acceleration is essentially constant and equal to the value at zero
period (infinite frequency). Others have defined f2 as:

fz:fr

The default value for f2 is zero, indicating infinite frequency. For the default value
of f2, the GMC method gives results similar to the CQC method.

SRSS Method

This method combines the modal results by taking the square root of the sum of
their squares. This method does not take into account any coupling of the modes,
but rather assumes that the response of the modes are all statistically independent.

Absolute Sum Method

This method combines the modal results by taking the sum of their absolute values.
Essentially all modes are assumed to be fully correlated. This method is usually
over-conservative.

NRC Ten-Percent Method

This is the Ten-Percent method of the U.S. Nuclear Regulatory Commission Regu-
latory Guide 1.92.
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The Ten-Percent method assumes full, positive coupling between all modes whose
frequencies differ from each other by 10% or less of the smaller of the two frequen-
cies. Modal damping does not affect the coupling.

NRC Double-Sum Method

This is the Double-Sum method of the U.S. Nuclear Regulatory Commission Regu-
latory Guide 1.92.

The Double-Sum method assumes a positive coupling between all modes, with cor-
relation coefficients that depend upon damping in a fashion similar to the CQC and
GMC methods, and that also depend upon the duration of the earthquake. You
specify this duration as parameter td as part of the Load Cases definition.

Directional Combination

For each displacement, force, or stress quantity in the structure, modal combination
produces a single, positive result for each direction of acceleration. These direc-
tional values for a given response quantity are combined to produce a single, posi-
tive result. Use the directional combination scale factor, dirf, to specify which
method to use.

SRSS Method

Specity dirf = 0 to combine the directional results by taking the square root of the
sum of their squares. This method is invariant with respect to coordinate system,
i.e., the results do not depend upon your choice of coordinate system when the
given response-spectrum curves are the same. This is the recommended method for
directional combination, and is the default.

Absolute Sum Method

Specify dirf = 1 to combine the directional results by taking the sum of their abso-
lute values. This method is usually over-conservative.

Scaled Absolute Sum Method

Specify 0 < dirf < 1 to combine the directional results by the scaled absolute sum
method. Here, the directional results are combined by taking the maximum, over all
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directions, of the sum of the absolute values of the response in one direction plus
dirf times the response in the other directions.

For example, if dirf = 0.3, the spectral response, R, for a given displacement, force,
or stress would be:

R=max(R,R,,R;)
where:
R =R, +03(R, +Ry)
R, =R, +0.3(R, +Ry)
Ry =Ry +0.3(R, +R,)
and R, R,, and R; are the modal-combination values for each direction.

The results obtained by this method will vary depending upon the coordinate sys-
tem you choose. Results obtained using dirf = 0.3 are comparable to the SRSS
method (for equal input spectra in each direction), but may be as much as 8% un-
conservative or 4% over-conservative, depending upon the coordinate system.
Larger values of dirf tend to produce more conservative results.

Response-Spectrum Analysis Output

Certain information is available as analysis results for each response-spectrum
Load Case. This information is described in the following subtopics.

Damping and Accelerations

The modal damping and the ground accelerations acting in each direction are given
for every Mode.

The damping value printed for each Mode is the sum of the specified damping for
the Load Case, plus the modal damping contributed by effective damping in the
Link/Support elements, if any, and the composite modal damping specified in the
Material Properties, if any.

The accelerations printed for each Mode are the actual values as interpolated at the
modal period from the response-spectrum curves after scaling by the specified val-
ues of sf and tf. The accelerations are always referred to the local axes of the
response-spectrum analysis. They are identified in the output as U1, U2, and U3.
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Modal Amplitudes

The response-spectrum modal amplitudes give the multipliers of the mode shapes
that contribute to the displaced shape of the structure for each direction of Accel-
eration. For a given Mode and a given direction of acceleration, this is the product
of the modal participation factor and the response-spectrum acceleration, divided
by the eigenvalue, o’, of the Mode.

The acceleration directions are always referred to the local axes of the response-
spectrum analysis. They are identified in the output as U1, U2, and U3.

For more information:

* See the previous Topic “Damping and Acceleration” for the definition of the
response-spectrum accelerations.

* See Topic “Modal Analysis Output” (page 297) in Chapter “Modal Analysis”
for the definition of the modal participation factors and the eigenvalues.

Modal Correlation Factors

The modal correlation matrix is printed out. This matrix shows the coupling as-
sumed between closely-spaced modes. The correlation factors are always between
zero and one. The correlation matrix is symmetric.

Base Reactions

The base reactions are the total forces and moments about the global origin required
of the supports (Restraints and Springs) to resist the inertia forces due to response-
spectrum loading.

These are reported separately for each individual Mode and each direction of load-
ing without any combination. The total response-spectrum reactions are then re-
ported after performing modal combination and directional combination.

The reaction forces and moments are always referred to the local axes of the
response-spectrum analysis. They are identified in the output as F1, F2, F3, M1,
M2, and M3.

Response-Spectrum Analysis Output
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Linear Time-History Analysis

Time-history analysis is a step-by-step analysis of the dynamical response of a
structure to a specified loading that may vary with time. The analysis may be linear
or nonlinear. This Chapter describes time-history analysis in general, and linear
time-history analysis in particular. See Chapter “Nonlinear Time-History Analy-
sis” (page 381) for additional information that applies only to nonlinear time-his-
tory analysis.

Basic Topics for All Users

Overview

Advanced Topics

Loading

Initial Conditions

Time Steps

Modal Time-History Analysis

Direct-Integration Time-History Analysis
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Overview

Time-history analysis is used to determine the dynamic response of a structure to
arbitrary loading. The dynamic equilibrium equations to be solved are given by:

K u(t) +C a(t)+ M ii(t) = r(t)

where K is the stiffness matrix; C is the damping matrix; M is the diagonal mass
matrix; u, u, and # are the displacements, velocities, and accelerations of the struc-
ture; and r is the applied load. If the load includes ground acceleration, the
displacements, velocities, and accelerations are relative to this ground motion.

Any number of time-history Load Cases can be defined. Each time-history case can
differ in the load applied and in the type of analysis to be performed.

There are several options that determine the type of time-history analysis to be per-
formed:

¢ Linear vs. Nonlinear.

* Modal vs. Direct-integration: These are two different solution methods, each
with advantages and disadvantages. Under ideal circumstances, both methods
should yield the same results to a given problem.

» Transient vs. Periodic: Transient analysis considers the applied load as a
one-time event, with a beginning and end. Periodic analysis considers the load
to repeat indefinitely, with all transient response damped out.

Periodic analysis is only available for linear modal time-history analysis.

This Chapter describes linear analysis; nonlinear analysis is described in Chapter
“Nonlinear Time-History Analysis” (page 381). However, you should read the
present Chapter first.

Loading

332

The load, r(?), applied in a given time-history case may be an arbitrary function of
space and time. It can be written as a finite sum of spatial load vectors, p;, multi-
plied by time functions, f;(?), as:

r()=2. /(1) p; (Eqn. 1)

Overview
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The program uses Load Patterns and/or Acceleration Loads to represent the spatial
load vectors. The time functions can be arbitrary functions of time or periodic func-
tions such as those produced by wind or sea wave loading.

If Acceleration Loads are used, the displacements, velocities, and accelerations are
all measured relative to the ground. The time functions associated with the Accel-
eration Loads m_, m , and m_are the corresponding components of uniform ground

acceleration, i g Ugys and i e

Defining the Spatial Load Vectors

To define the spatial load vector, p, for a single term of the loading sum of Equation
1, you may specify either:

* The label of a Load Pattern using the parameter load, or

* An Acceleration Load using the parameters csys, ang, and acc, where:

— csys is a fixed coordinate system (the default is zero, indicating the global
coordinate system)

— ang is a coordinate angle (the default is zero)
— accis the Acceleration Load (U1, U2, or U3) in the acceleration local coor-
dinate system as defined below

Each Acceleration Load in the loading sum may have its own acceleration local co-
ordinate system with local axes denoted 1, 2, and 3. The local 3 axis is always the
same as the Z axis of coordinate system csys. The local 1 and 2 axes coincide with
the X and Y axes of esys if angle ang is zero. Otherwise, ang is the angle from the X
axis to the local 1 axis, measured counterclockwise when the +Z axis is pointing to-
ward you. This is illustrated in Figure 71 (page 334).

The response-spectrum local axes are always referred to as 1, 2, and 3. The global
Acceleration Loads m, m, and m_are transformed to the local coordinate system
for loading.

It is generally recommended, but not required, that the same coordinate system be
used for all Acceleration Loads applied in a given time-history case.

Load Patterns and Acceleration Loads may be mixed in the loading sum.
For more information:

* See Chapter “Load Patterns” (page 273).
» See Topic “Acceleration Loads” (page 286) in Chapter “Load Patterns”.
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Global

Figure 71
Definition of History Acceleration Local Coordinate System

Defining the Time Functions

To define the time function, f(?), for a single term of the loading sum of Equation 1,
you may specify:

* The label of a Function, using the parameter func, that defines the shape of the
time variation (the default is zero, indicating the built-in ramp function defined
below)

* A scale factor, sf, that multiplies the ordinate values of the Function (the de-
fault is unity)

* A time-scale factor, tf, that multiplies the time (abscissa) values of the Function
(the default is unity)

* Anarrival time, at, when the Function begins to act on the structure (the default
is zero)

The time function, f/(?), is related to the specified Function, func(t), by:
fi(t) = st - func(t)
The analysis time, ¢, is related to the time scale, t, of the specified Function by:

t=at+tf-t
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fi(t) A

Ramp function after scaling

~V

Figure 72
Built-in Ramp Function before and after Scaling

If the arrival time is positive, the application of Function func is delayed until after
the start of the analysis. If the arrival time is negative, that portion of Function func
occurring before t =— at / tf is ignored.

For a Function funec defined from initial time ¢, to final time ¢, the value of the
Function for all time t <t, is taken as zero, and the value of the Function for all time
t >t is held constant at f, the value at t,.

If no Function is specified, or func = 0, the built-in ramp function is used. This
function increases linearly from zero at t = 0 to unity at t = 1and for all time thereaf-
ter. When combined with the scaling parameters, this defines a function that in-
creases linearly from zero at ¢ = at to a value of sf at = at + tf and for all time there-
after, as illustrated in Figure 72 (page 335). This function is most commonly used
to gradually apply static loads, but can also be used to build up triangular pulses and
more complicated functions.

See Topic “Functions” (page 298) in Chapter “Load Cases” for more information.
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Initial Conditions

The initial conditions describe the state of the structure at the beginning of a
time-history case. These include:

» Displacements and velocities

* Internal forces and stresses

* Internal state variables for nonlinear elements
* Energy values for the structure

» External loads

The accelerations are not considered initial conditions, but are computed from the
equilibrium equation.

For linear transient analyses, zero initial conditions are always assumed.

For periodic analyses, the program automatically adjusts the initial conditions at
the start of the analysis to be equal to the conditions at the end of the analysis

If you are using the stiffness from the end of a nonlinear analysis, nonlinear ele-
ments (if any) are locked into the state that existed at the end of the nonlinear analy-
sis. For example, suppose you performed a nonlinear analysis of a model contain-
ing tension-only frame elements (compression limit set to zero), and used the stiff-
ness from this case for a linear time-history analysis. Elements that were in tension
at the end of the nonlinear analysis would have full axial stiffness in the linear
time-history analysis, and elements that were in compression at the end of the non-
linear analysis would have zero stiffness. These stiffnesses would be fixed for the
duration of the linear time-history analysis, regardless of the direction of loading.

Time Steps

336

Time-history analysis is performed at discrete time steps. You may specify the
number of output time steps with parameter nstep and the size of the time steps
with parameter dt.

The time span over which the analysis is carried out is given by nstep-dt. For peri-
odic analysis, the period of the cyclic loading function is assumed to be equal to this
time span.

Responses are calculated at the end of each dt time increment, resulting in nstep+1
values for each output response quantity.

Initial Conditions
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Response is also calculated, but not saved, at every time step of the input time func-
tions in order to accurately capture the full effect of the loading. These time steps
are call load steps. For modal time-history analysis, this has little effect on effi-
ciency.

For direct-integration time-history analysis, this may cause the stiffness matrix to
be re-solved if the load step size keeps changing. For example, if the output time
step is 0.01 and the input time step is 0.005, the program will use a constant internal
time-step of 0.005. However, if the input time step is 0.075, then the input and out-
put steps are out of synchrony, and the loads steps will be: 0.075, 0.025, 0.05, 0.05,
0.025, 0.075, and so on. For this reason, it is usually advisable to choose an output
time step that evenly divides, or is evenly divided by, the input time steps.

Modal Time-History Analysis

Modal superposition provides a highly efficient and accurate procedure for per-
forming time-history analysis. Closed-form integration of the modal equations is
used to compute the response, assuming linear variation of the time functions,
[ (1), between the input data time points. Therefore, numerical instability problems
are never encountered, and the time increment may be any sampling value that is
deemed fine enough to capture the maximum response values. One-tenth of the
time period of the highest mode is usually recommended; however, a larger value
may give an equally accurate sampling if the contribution of the higher modes is
small.

The modes used are computed in a Modal Load Case that you define. They can be
the undamped free-vibration Modes (eigenvectors) or the load-dependent Ritz-vec-
tor Modes.

If all of the spatial load vectors, p;, are used as starting load vectors for Ritz-vector
analysis, then the Ritz vectors will always produce more accurate results than if the
same number of eigenvectors is used. Since the Ritz-vector algorithm is faster than
the eigenvector algorithm, the former is recommended for time-history analyses.

It is up to you to determine if the Modes calculated by the program are adequate to
represent the time-history response to the applied load. You should check:

* That enough Modes have been computed

» That the Modes cover an adequate frequency range

* That the dynamic load (mass) participation mass ratios are adequate for the
Load Patterns and/or Acceleration Loads being applied

Modal Time-History Analysis 337



CSI Analysis Reference Manual

* That the modes shapes adequately represent all desired deformations

See Chapter “Modal Analysis” (page 305) for more information.

Modal Damping

The damping in the structure is modeled using uncoupled modal damping. Each
mode has a damping ratio, damp, which is measured as a fraction of critical damp-
ing and must satisfy:

0<damp<1

Modal damping has three different sources, which are described in the following.
Damping from these sources is added together. The program automatically makes
sure that the total is less than one.

Modal Damping from the Load Case

For each linear modal time-history Load Case, you may specify modal damping ra-
tios that are:

e Constant for all modes

* Linearly interpolated by period or frequency. You specify the damping ratio at
a series of frequency or period points. Between specified points the damping is
linearly interpolated. Outside the specified range, the damping ratio is constant
at the value given for the closest specified point.

* Mass and stiffness proportional. This mimics the proportional damping used
for direct-integration, except that the damping value is never allowed to exceed
unity.

In addition, you may optionally specify damping overrides. These are specific val-
ues of damping to be used for specific modes that replace the damping obtained by
one of the methods above. The use of damping overrides is rarely necessary.

Composite Modal Damping from the Materials

Modal damping ratios, if any, that have been specified for the Materials are con-
verted automatically to composite modal damping. Any cross coupling between the
modes is ignored. These modal-damping values will generally be different for each
mode, depending upon how much deformation each mode causes in the elements
composed of the different Materials.
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Effective Damping from the Link/Support Elements

Linear effective-damping coefficients, if any, that have been specified for
Link/Support elements in the model are automatically converted to modal damp-
ing. Any cross coupling between the modes is ignored. These effective
modal-damping values will generally be different for each mode, depending upon
how much deformation each mode causes in the Link/Support elements.

Direct-Integration Time-History Analysis

Direct integration of the full equations of motion without the use of modal superpo-
sition is available in SAP2000. While modal superposition is usually more accurate
and efficient, direct-integration does offer the following advantages for linear prob-
lems:

* Full damping that couples the modes can be considered

» Impact and wave propagation problems that might excite a large number of
modes may be more efficiently solved by direct integration

For nonlinear problems, direct integration also allows consideration of more types
of nonlinearity that does modal superposition.

Direct integration results are extremely sensitive to time-step size in a way that is
not true for modal superposition. You should always run your direct-integration
analyses with decreasing time-step sizes until the step size is small enough that re-
sults are no longer affected by it.

In particular, you should check stiff and localized response quantities. For exam-
ple, a much smaller time step may be required to get accurate results for the axial
force in a stiff member than for the lateral displacement at the top of a structure.

Time Integration Parameters

A variety of common methods are available for performing direct-integration
time-history analysis. Since these are well documented in standard textbooks, we
will not describe them further here, except to suggest that you use the default
“Hilber-Hughes-Taylor alpha” (HHT) method, unless you have a specific prefer-
ence for a different method.

The HHT method uses a single parameter called alpha. This parameter may take
values between 0 and -1/3.
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For alpha = 0, the method is equivalent to the Newmark method with gamma = 0.5
and beta = 0.25, which is the same as the average acceleration method (also called
the trapezoidal rule.) Using alpha = 0 offers the highest accuracy of the available
methods, but may permit excessive vibrations in the higher frequency modes, i.e.,
those modes with periods of the same order as or less than the time-step size.

For more negative values of alpha, the higher frequency modes are more severely
damped. This is not physical damping, since it decreases as smaller time-steps are
used. However, it is often necessary to use a negative value of alpha to encourage a
nonlinear solution to converge.

For best results, use the smallest time step practical, and select alpha as close to zero
as possible. Try different values of alpha and time-step size to be sure that the solu-
tion is not too dependent upon these parameters.

Damping

In direct-integration time-history analysis, the damping in the structure is modeled
using a full damping matrix. Unlike modal damping, this allows coupling between
the modes to be considered.

Direct-integration damping has three different sources, which are described in the
following. Damping from these sources is added together.

Proportional Damping from the Load Case

For each direct-integration time-history Load Case, you may specify proportional
damping coefficients that apply to the structure as a whole. The damping matrix is
calculated as a linear combination of the stiffness matrix scaled by a coefficient that
you specify, and the mass matrix scaled by a second coefficient that you specify.

You may specify these two coefficients directly, or they may be computed by spec-
ifying equivalent fractions of critical modal damping at two different periods or fre-
quencies.

Stiffness proportional damping is linearly proportional to frequency. It is related to
the deformations within the structure. Stiffness proportional damping may exces-
sively damp out high frequency components.

Mass proportional damping is linearly proportional to period. It is related to the
motion of the structure, as if the structure is moving through a viscous fluid. Mass
proportional damping may excessively damp out long period components.
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Proportional Damping from the Materials

You may specify stiffness and mass proportional damping coefficients for individ-
ual materials. For example, you may want to use larger coefficients for soil materi-
als than for steel or concrete. The same interpretation of these coefficients applies
as described above for the Load Case damping.

Effective Damping from the Link/Support Elements

Linear effective-damping coefficients, if any, that have been specified for
Link/Support elements are directly used in the damping matrix.
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Chapter XXII

Geometric Nonlinearity

SAP2000 is capable of considering geometric nonlinearity in the form of either
P-delta effects or large-displacement/rotation effects. Strains within the elements
are assumed to be small. Geometric nonlinearity can be considered on a
step-by-step basis in nonlinear static and direct-integration time-history analysis,
and incorporated in the stiffness matrix for linear analyses.

Advanced Topics

Overview

Nonlinear Load Cases
The P-Delta Effect
Initial P-Delta Analysis

Large Displacements

Overview

When the load acting on a structure and the resulting deflections are small enough,
the load-deflection relationship for the structure is linear. For the most part,
SAP2000 analyses assume such linear behavior. This permits the program to form
the equilibrium equations using the original (undeformed) geometry of the struc-

Overview 343



CSI Analysis Reference Manual

344

ture. Strictly speaking, the equilibrium equations should actually refer to the geom-
etry of the structure after deformation.

The linear equilibrium equations are independent of the applied load and the result-
ing deflection. Thus the results of different static and/or dynamic loads can be
superposed (scaled and added), resulting in great computational efficiency.

If the load on the structure and/or the resulting deflections are large, then the
load-deflection behavior may become nonlinear. Several causes of this nonlinear
behavior can be identified:

* P-delta (large-stress) effect: when large stresses (or forces and moments) are
present within a structure, equilibrium equations written for the original and
the deformed geometries may differ significantly, even if the deformations are
very small.

» Large-displacement effect: when a structure undergoes large deformation (in
particular, large strains and rotations), the usual engineering stress and strain
measures no longer apply, and the equilibrium equations must be written for
the deformed geometry. This is true even if the stresses are small.

* Material nonlinearity: when a material is strained beyond its proportional
limit, the stress-strain relationship is no longer linear. Plastic materials strained
beyond the yield point may exhibit history-dependent behavior. Material
nonlinearity may affect the load-deflection behavior of a structure even when
the equilibrium equations for the original geometry are still valid.

* Other effects: Other sources of nonlinearity are also possible, including non-
linear loads, boundary conditions and constraints.

The large-stress and large-displacement effects are both termed geometric (or kine-
matic) nonlinearity, as distinguished from material nonlinearity. Kinematic
nonlinearity may also be referred to as second-order geometric effects.

This Chapter deals with the geometric nonlinearity effects that can be analyzed us-
ing SAP2000. For each nonlinear static and nonlinear direct-integration time-his-
tory analysis, you may choose to consider:

* No geometric nonlinearity

» P-delta effects only

e Large displacement and P-delta effects

The large displacement effect in SAP2000 includes only the effects of large transla-
tions and rotations. The strains are assumed to be small in all elements.

Overview
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Material nonlinearity is discussed in Chapters “The Frame Element” (page 81),
“Frame Hinge Properties” (page 121), and “The Link/Support Element—Basic”
(page 213). Since small strains are assumed, material nonlinearity and geometric
nonlinearity effects are independent.

Once a nonlinear analysis has been performed, its final stiffness matrix can be used
for subsequent linear analyses. Any geometric nonlinearity considered in the non-
linear analysis will affect the linear results. In particular, this can be used to include
relatively constant P-delta effects in buildings or the tension-stiffening effects in
cable structures into a series of superposable linear analyses.

For more information:

» See Chapter “Load Cases” (page 289)
* See Chapter “Nonlinear Static Analysis” (page 359)
» See Chapter “Nonlinear Time-History Analysis” (page 381)

Nonlinear Load Cases

For nonlinear static and nonlinear direct-integration time-history analysis, you may
choose the type of geometric nonlinearity to consider:

* None: All equilibrium equations are considered in the undeformed configura-
tion of the structure

* P-delta only: The equilibrium equations take into partial account the deformed
configuration of the structure. Tensile forces tend to resist the rotation of ele-
ments and stiffen the structure, and compressive forces tend to enhance the ro-
tation of elements and destabilize the structure. This may require a moderate
amount of iteration.

* Large displacements: All equilibrium equations are written in the deformed
configuration of the structure. This may require a large amount of iteration;
Newton-Raphson iterations are usually most effective. Although large dis-
placement and large rotation effects are modeled, all strains are assumed to be
small. P-delta effects are included.

When continuing one nonlinear Load Case from another, it is recommended that
they both have the same geometric-nonlinearity settings.

The large displacement option should be used for any structures undergoing signif-
icant deformation; and for buckling analysis, particularly for snap-through buck-
ling and post-buckling behavior. Cables (modeled by frame elements) and other el-
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Geometry for Cantilever Beam Example

ements that undergo significant relative rotations within the element should be di-
vided into smaller elements to satisfy the requirement that the strains and relative
rotations within an element are small.

For most other structures, the P-delta option is adequate, particularly when material
nonlinearity dominates.

If reasonable, it is recommended that the analysis be performed first without geo-
metric nonlinearity, adding P-delta, and possibly large-displacement effects later.

Geometric nonlinearity is not available for nonlinear modal time-history (FNA)
analyses, except for the fixed effects that may have been included in the stiffness
matrix used to generate the modes.

Note that the catenary Cable element does not require P-delta or Large Displace-
ments to exhibit its internal geometric nonlinearity. The choice should be deter-
mined by the rest of the structure.

Nonlinear Load Cases
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The P-Delta Effect

The P-Delta effect refers specifically to the nonlinear geometric effect of a large
tensile or compressive direct stress upon transverse bending and shear behavior. A
compressive stress tends to make a structural member more flexible in transverse
bending and shear, whereas a tensile stress tends to stiffen the member against
transverse deformation.

This option is particularly useful for considering the effect of gravity loads upon
the lateral stiffness of building structures, as required by certain design codes (ACI
2002; AISC 2003). It can also be used for the analysis of some cable structures,
such as suspension bridges, cable-stayed bridges, and guyed towers. Other applica-
tions are possible.

The basic concepts behind the P-Delta effect are illustrated in the following exam-
ple. Consider a cantilever beam subject to an axial load P and a transverse tip load F
as shown in Figure 73 (page 346). The internal axial force throughout the member
is also equal to P.

If equilibrium is examined in the original configuration (using the undeformed ge-
ometry), the moment at the base is M =FL, and decreases linearly to zero at the
loaded end. If, instead, equilibrium is considered in the deformed configuration,
there is an additional moment caused by the axial force P acting on the transverse
tip displacement, A. The moment no longer varies linearly along the length; the
variation depends instead upon the deflected shape. The moment at the base is now
M =FL — PA. The moment diagrams for various cases are shown in Figure 74 (page
348).

Note that only the transverse deflection is considered in the deformed configura-
tion. Any change in moment due to a change in length of the member is neglected
here.

If the beam is in tension, the moment at the base and throughout the member is re-
duced, hence the transverse bending deflection, A, is also reduced. Thus the mem-
ber is effectively stiffer against the transverse load F.

Conversely, if the beam is in compression, the moment throughout the member,
and hence the transverse bending deflection, A, are now increased. The member is
effectively more flexible against the load F.

If the compressive force is large enough, the transverse stiffness goes to zero and
hence the deflection A tends to infinity; the structure is said to have buckled. The
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Figure 74
Moment Diagrams for Cantilever Beam Examples

theoretical value of P at which this occurs is called the Euler buckling load for the
beam; it is denoted by P, and is given by the formula

n® EI
Pcrz_ 5
41
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where E1 is the bending stiffness of the beam section.

The exact P-Delta effect of the axial load upon the transverse deflection and stiff-
ness is a rather complicated function of the ratio of the force P to the buckling load
P,,.. The true deflected shape of the beam, and hence the effect upon the moment
diagram, is described by cubic functions under zero axial load, hyperbolic func-
tions under tension, and trigonometric functions under compression.

The P-Delta effect can be present in any other beam configuration, such as simply-
supported, fixed-fixed, etc. The P-Delta effect may apply locally to individual
members, or globally to the structural system as a whole.

The key feature is that a large axial force, acting upon a small transverse deflection,
produces a significant moment that affects the behavior of the member or structure.
If the deflection is small, then the moment produced is proportional to the deflec-
tion.

P-Delta Forces in the Frame Element

The implementation of the P-Delta effect in the Frame element is described in the
following subtopics.

Cubic Deflected Shape

The P-Delta effect is integrated along the length of each Frame element, taking into
account the deflection within the element. For this purpose the transverse deflected
shape is assumed to be cubic for bending and linear for shear between the rigid ends
of the element. The length of the rigid ends is the product of the rigid-end factor and
the end offsets, and is usually zero. See Topic “End Offsets” (page 102) in Chapter
“The Frame Element” for more information.

The true deflected shape may differ somewhat from this assumed cubic/linear de-
flection in the following situations:

* The element has non-prismatic Section properties. In this case the P-Delta de-
flected shape is computed as if the element were prismatic using the average of
the properties over the length of the element

* Loads are acting along the length of the element. In this case the P-Delta de-
flected shape is computed using the equivalent fixed-end forces applied to the
ends of the element.
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* A large P-force is acting on the element. The true deflected shape is actually de-
scribed by trigonometric functions under large compression, and by hyperbolic
functions under large tension.

The assumed cubic shape is usually a good approximation to these shapes except
under a compressive P-force near the buckling load with certain end restraints. Ex-
cellent results, however, can be obtained by dividing any structural member into
two or more Frame elements. See the SAP2000 Software Verification Manual for
more detail.

Computed P-Delta Axial Forces

The P-Delta axial force in each Frame element is determined from the axial dis-
placements computed in the element. For meaningful results, it is important to use
realistic values for the axial stiffness of these elements. The axial stiffness is deter-
mined from the Section properties that define the cross-sectional area and the
modulus of elasticity. Using values that are too small may underestimate the
P-Delta effect. Using values that are too large may make the P-Delta force in the el-
ement very sensitive to the iteration process.

Elements that have an axial force release, or that are constrained against axial de-
formation by a Constraint, will have a zero P-Delta axial force and hence no
P-Delta effect.

The P-Delta axial force also includes loads that act within the element itself. These
may include Self-Weight and Gravity Loads, Concentrated and Distributed Span
Loads, Prestress Load, and Temperature Load.

The P-Delta axial force is assumed to be constant over the length of each Frame ele-
ment. If the P-Delta load combination includes loads that cause the axial force to
vary, then the average axial force is used for computing the P-Delta effect. If the
difference in axial force between the two ends of an element is small compared to
the average axial force, then this approximation is usually reasonable. This would
normally be the case for the columns in a building structure. If the difference is
large, then the element should be divided into many smaller Frame elements wher-
ever the P-Delta effect is important. An example of the latter case could be a flag-
pole under self-weight.

For more information:

» See Topic “Section Properties” (page 90) in Chapter “The Frame Element.”
* See Topic “End Releases” (page 106) in Chapter “The Frame Element.”
* See Chapter “Constraints and Welds” (page 49).
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Prestress

When Prestress Load is included in the P-Delta load combination, the combined
tension in the prestressing cables tends to stiffen the Frame elements against trans-
verse deflections. This is true regardless of any axial end releases. Axial compres-
sion of the Frame element due to Prestress Load may reduce this stiffening effect,
perhaps to zero.

See Topic “Prestress Load” (page 114) in Chapter “The Frame Element” for more
information.

Directly Specified P-delta Axial Forces

You may directly specify P-delta forces known to be acting on Frame elements.
This is an old-fashioned feature that can be used to model cable structures where
the tensions are large and well-known. No iterative analysis is required to include
the effect of directly specified P-Delta axial forces.

Use of this feature is not usually recommended! The program does not check if the
forces you specify are in equilibrium with any other part of the structure. The di-
rectly specified forces apply in all analyses and are in addition to any P-delta af-
fects calculated in a nonlinear analysis.

We recommend instead that you perform a nonlinear analysis including P-delta or
large-displacement effects.

If you use directly specified P-delta forces, you should treat them as if they were a
section property that always affects the behavior of the element.

You can assign directly specified P-Delta force to any Frame element using the fol-
lowing parameters:
* The P-Delta axial force, p

* A fixed coordinate system, csys (the default is zero, indicating the global coor-
dinate system)

* The projection, px, of the P-Delta axial force upon the X axis of csys
» The projection, py, of the P-Delta axial force upon the Y axis of csys
* The projection, pz, of the P-Delta axial force upon the Z axis of csys

Normally only one of the parameters p, px, py, or pz should be given for each
Frame element. If you do choose to specify more than one value, they are additive:
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PX py pz

e ¢, C

where P, is the P-Delta axial force, and ¢, ¢, and c_ are the cosines of the angles be-
tween the local 1 axis of the Frame element and the X, Y, and Z axes of coordinate
system esys, respectively. To avoid division by zero, you may not specify the pro-
jection upon any axis of esys that is perpendicular to the local 1 axis of the element.

The use of the P-delta axial force projections is convenient, for example, when
specifying the tension in the main cable of a suspension bridge, since the horizontal
component of the tension is usually the same for all elements.

It is important when directly specifying P-Delta axial forces that you include all
significant forces in the structure. The program does not check for equilibrium of
the specified P-Delta axial forces. In a suspension bridge, for example, the cable
tension is supported at the anchorages, and it is usually sufficient to consider the
P-Delta effect only in the main cable (and possibly the towers). On the other hand,
the cable tension in a cable-stayed bridge is taken up by the deck and tower, and it is
usually necessary to consider the P-Delta effect in all three components.

P-Delta Forces in the Link/Support Element

P-delta effects can only be considered in a Link/Support element if there is stiffness
in the axial (Ul) degree of freedom to generate an axial force. A transverse dis-
placement in the U2 or U3 direction creates a moment equal to the axial force (P)
times the amount of the deflection (delta).

The total P-delta moment is distributed to the joints as the sum of:

* A pair of equal and opposite shear forces at the two ends that cause a moment
due to the length of the element

* A moment at End |

* A moment at End J

The shear forces act in the same direction as the shear displacement (delta), and the
moments act about the respectively perpendicular bending axes.

For each direction of shear displacement, you can specify three corresponding
fractions that indicate how the total P-delta moment is to be distributed between the
three moments above. These fractions must sum to one.
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For any element that has zero length, the fraction specified for the shear forces will
be ignored, and the remaining two fractions scaled up so that they sum to one. If
both of these fractions are zero, they will be set to 0.5.

You must consider the physical characteristics of the device being modeled by a
Link/Support element in order to determine what fractions to specify. Long brace
or link objects would normally use the shear force. Short stubby isolators would
normally use moments only. A friction-pendulum isolator would normally take all
the moment on the dish side rather than on the slider side.

Other Elements

For element types other than the Frame and Link/Support, the stresses in the each
element are first determined from the displacements computed in the previous iter-
ation. These stresses are then integrated over the element, with respect to the deriv-
atives of the isoparametric shape functions for that element, to compute a standard
geometric stiffness matrix that represents the P-delta effect. This is added to the
original elastic stiffness matrix of the element. This formulation produces only
forces, no moments, at each joint in the element.

Shell elements that are modeling only plate bending will not produce any P-delta
effects, since no in-plane stresses will be developed.

Initial P-Delta Analysis

For many applications, it is adequate to consider the P-delta effect on the structure
under one set of loads (usually gravity), and to consider all other analyses as linear
using the stiffness matrix developed for this one set of P-delta loads. This enables
all analysis results to be superposed for the purposes of design.

To do this, define a nonlinear static Load Case that has, at least, the following fea-
tures:

* Set the name to, say, “PDELTA”

 Start from zero initial conditions

* Apply the Load Patterns that will cause the P-delta effect; often this will be
dead load and a fraction of live load

* For geometric nonlinearity, choose P-delta effects

Other parameters include the number of saved steps, the number of iterations al-
lowed per step, and the convergence tolerance. If the P-delta effect is reasonably
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small, the default values are adequate. We are not considering staged construction
here, although that could be added.

We will refer to this nonlinear static case as the initial P-delta case. You can then
define or modify other linear Load Cases so that they use the stiffness from case
PDELTA:

* Linear static cases

* A modal Load Cases, say called “PDMODES”

* Linear direct-integration time-history cases

* Moving-Load Load Cases
Other linear Load Cases can be defined that are based on the modes from case
PDMODES:

* Response-spectrum cases

* Modal time-history cases

Results from all of these cases are superposable, since they are linear and are based
upon the same stiffness matrix.

You may also want to define a buckling Load Case that applies the same loads as
does case PDELTA, and that starts from zero conditions (not from case PDELTA).
The resulting buckling factors will give you an indication of how far from buckling
are the loads that cause the P-delta effect.

Below are some additional guidelines regarding practical use of the P-Delta analy-
sis option. See also the SAP2000 Software Verification Manual for example prob-
lems.

Building Structures

For most building structures, especially tall buildings, the P-Delta effect of most
concern occurs in the columns due to gravity load, including dead and live load.
The column axial forces are compressive, making the structure more flexible
against lateral loads.

Building codes (ACI 2002; AISC 2003) normally recognize two types of P-Delta
effects: the first due to the overall sway of the structure and the second due to the
deformation of the member between its ends. The former effect is often significant;
it can be accounted for fairly accurately by considering the total vertical load at a
story level, which is due to gravity loads and is unaffected by any lateral loads. The
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latter effect is significant only in very slender columns or columns bent in single
curvature (not the usual case); this requires consideration of axial forces in the
members due to both gravity and lateral loads.

SAP2000 can analyze both of these P-Delta effects. However, it is recommended
that the former effect be accounted for in the SAP2000 analysis, and the latter effect
be accounted for in design by using the applicable building-code moment-magnifi-
cation factors (White and Hajjar 1991). This is how the SAP2000 design processors
for steel frames and concrete frames are set up.

The P-Delta effect due to the sway of the structure can be accounted for accurately
and efficiently, even if each column is modeled by a single Frame element, by using
the factored dead and live loads in the initial P-delta Load Case. The iterative
P-Delta analysis should converge rapidly, usually requiring few iterations.

As an example, suppose that the building code requires the following load combi-
nations to be considered for design:

(1) 1.4 dead load

(2) 1.2 dead load + 1.6 live load

(3) 1.2 dead load + 0.5 live load + 1.3 wind load
(4) 1.2 dead load + 0.5 live load — 1.3 wind load
(5) 0.9 dead load + 1.3 wind load

(6) 0.9 dead load + 1.3 wind load

For this case, the P-Delta effect due to overall sway of the structure can usually be
accounted for, conservatively, by specifying the load combination in the initial
P-delta Load Case to be 1.2 times the dead load plus 0.5 times the live load. This
will accurately account for this effect in load combinations 3 and 4 above, and will
conservatively account for this effect in load combinations 5 and 6. This P-delta ef-
fect is not generally important in load combinations 1 and 2 since there is no lateral
load.

The P-Delta effect due to the deformation of the member between its ends can be
accurately analyzed only when separate nonlinear Load Cases are run for each load
combination above. Six cases would be needed for the example above. Also, at
least two Frame elements per column should be used. Again, it is recommended
that this effect be accounted for instead by using the SAP2000 design features.
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Cable Structures

The P-Delta effect can be a very important contributor to the stiffness of suspension
bridges, cable-stayed bridges, and other cable structures. The lateral stiffness of ca-
bles is due almost entirely to tension, since they are very flexible when unstressed.

In many cable structures, the tension in the cables is due primarily to gravity load,
and it is relatively unaffected by other loads. If this is the case, it is appropriate to
define an initial P-delta Load Case that applies a realistic combination of the dead
load and live load. It is important to use realistic values for the P-delta load combi-
nation, since the lateral stiffness of the cables is approximately proportional to the
P-delta axial forces.

P-delta effects are inherent in any nonlinear analysis of Cable elements. P-delta
analysis of the whole structure should be considered if you are concerned about
compression in the tower, or in the deck of a cable-stayed bridge.

Because convergence tends to be slower for stiffening than softening structures, the
nonlinear P-delta analysis may require many iterations. Twenty or more iterations
would not be unusual.

Guyed Towers

Large

356

In guyed towers and similar structures, the cables are under a large tension pro-
duced by mechanical methods that shorten the length of the cables. These structures
can be analyzed by the same methods discussed above for cabled bridges.

A Strain or Deformation load can be used to produce the requisite shortening. The
P-delta load combination should include this load, and may also include other loads
that cause significant axial force in the cables, such as gravity and wind loads. Sev-
eral analyses may be required to determine the magnitude of the length change
needed to produce the desired amount of cable tension.

Displacements

Large-displacements analysis considers the equilibrium equations in the deformed
configuration of the structure. Large displacements and rotations are accounted for,
but strains are assumed to be small. This means that if the position or orientation of
an element changes, its effect upon the structure is accounted for. However, if the
element changes significantly in shape or size, this effect is ignored.

Large Displacements
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The program tracks the position of the element using an updated Lagrangian for-
mulation. For Frame, Shell, and Link/Support elements, rotational degrees of free-
dom are updated assuming that the change in rotational displacements between
steps is small. This requires that the analysis use smaller steps than might be re-
quired for a P-delta analysis. The accuracy of the results of a large-displacement
analysis should be checked by re-running the analysis using a smaller step size and
comparing the results.

Large displacement analysis is also more sensitive to convergence tolerance than is
P-delta analysis. You should always check your results by re-running the analysis
using a smaller convergence tolerance and comparing the results.

Applications

Large-displacement analysis is well suited for the analysis of some cable or mem-
brane structures. Cable structures can be modeled with Frame elements, and mem-
brane structures with full Shell elements (you could also use Plane stress elements).
Be sure to divide the cable or membrane into sufficiently small elements so that the
relative rotations within each element are small.

The catenary Cable element does not require large-displacements analysis. For
most structures with cables, P-delta analysis is sufficient unless you expect signifi-
cant deflection or rotation of the structure supporting or supported by the cables.

Snap-through buckling problems can be considered using large-displacement anal-
ysis. For nonlinear static analysis, this usually requires using displacement control
of the load application. More realistic solutions can be obtained using nonlinear di-
rect-integration time-history analysis.

Initial Large-Displacement Analysis

The discussion in Topic “Initial P-Delta Analysis” (page 353) in this Chapter ap-
plies equally well for an initial large-displacement analysis. Define the initial non-
linear static Load Case in the same way, select large-displacement effects instead of
P-delta effects, and make sure the convergence tolerance is small enough. This case
can be used as the basis for all subsequent linear analyses.
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Nonlinear Static Analysis

Nonlinear static analysis is can be used for a wide variety of purposes, including: to
analyze a structure for material and geometric nonlinearity; to form the P-delta
stiffness for subsequent linear analyses; to investigate staged (incremental) con-
struction with time-dependent material behavior; to perform cable analysis; to per-
form static pushover analysis; and more.

Although much of this Chapter is advanced, basic knowledge of nonlinear static
analysis is essential for P-delta analysis and modeling of tension-only braces and
cables.

Basic Topics for All Users

* Overview

* Nonlinearity

* Important Considerations
* Loading

* Initial Conditions

e Output Steps
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Advanced Topics
* Load Application Control
» Staged Construction
* Nonlinear Solution Control
* Hinge Unloading Method

* Static Pushover Analysis

Overview

Nonlinear static analysis can be used for many purposes:
* To perform an initial P-delta or large-displacement analysis to get the stiffness
used for subsequent superposable linear analyses

» To perform staged (incremental, segmental) construction analysis, including
material time-dependent effects like aging, creep and shrinkage

» To analyze structures with tension-only bracing
* To analyze cable structures

* To perform static pushover analysis

* To perform snap-through buckling analyses

» To establish the initial conditions for nonlinear direct-integration time-history
analyses

» For any other static analysis that considers the effect of material or geometric
nonlinear behavior

Any number of nonlinear Static Load Cases can be defined. Each case can include
one or more of the features above. In a nonlinear analysis, the stiffness and load
may all depend upon the displacements. This requires an iterative solution to the
equations of equilibrium.

Nonlinearity

360

The following types of nonlinearity are available in SAP2000:

* Material nonlinearity
— Various type of nonlinear properties in Link/Support elements

— Tension and/or compression limits in Frame elements

Overview
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— Plastic hinges in Frame elements
* Geometric nonlinearity

— P-delta effects

— Large displacement effects
» Staged construction

— Changes in the structure

— Aging, creep, and shrinkage

All material nonlinearity that has been defined in the model will be considered in a
nonlinear static Load Case.

You have a choice of the type of geometric nonlinearity to be considered:

¢ None
e P-delta effects

» Large displacement effects

If you are continuing from a previous nonlinear analysis, it is strongly recom-
mended that you select the same geometric nonlinearity parameters for the current
case as for the previous case. See Chapter “Geometric Nonlinearity” (page 343) for
more information.

Staged construction is available as an option. Even if the individual stages are lin-
ear, the fact that the structure changes from one stage to the next is considered to be
a type of nonlinearity.

Important Considerations

Nonlinear analysis takes time and patience. Each nonlinear problem is different.
You can expect to need a certain amount of time to learn the best way to approach
each new problem.

Start with a simple model and build up gradually. Make sure the model performs as
expected under linear static loads and modal analysis. Rather than starting with
nonlinear properties everywhere, add them in increments beginning with the areas
where you expect the most nonlinearity.

If you are using frame hinges, start with models that do not lose strength for pri-
mary members; you can modify the hinge models later or redesign the structure.
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When possible, perform your initial analyses without geometric nonlinearity. Add
P-delta effects, and possibly large deformations, much later. Start with modest tar-
get displacements and a limited number of steps. In the beginning, the goal should
be to perform the analyses quickly so that you can gain experience with your
model. As your confidence grows with a particular model you can push it further
and consider more extreme nonlinear behavior.

Mathematically, nonlinear static analysis does not always guarantee a unique solu-
tion. Inertial effects in dynamic analysis and in the real world limit the path a struc-
ture can follow. But this is not true for static analysis, particularly in unstable cases
where strength is lost due to material or geometric nonlinearity. If a nonlinear static
analysis continues to cause difficulties, change it to a direct-integration time-his-
tory analysis and apply the load quasi-statically (very slowly.)

Small changes in properties or loading can cause large changes in nonlinear re-
sponse. For this reason, it is extremely important that you consider many different
loading cases, and that you perform sensitivity studies on the effect of varying the
properties of the structure.

Loading

You may apply any combination of Load Patterns, Acceleration Loads, and modal
loads.

A modal load is a specialized type of loading used for pushover analysis. It is a pat-
tern of forces on the joints that is proportional to the product of a specified mode

shape times its circular frequency squared (0)2) times the mass tributary to the joint.

The specified combination of loads is applied simultaneously. Normally the loads
are applied incrementally from zero to the full specified magnitude. For specialized
purposes (e.g., pushover or snap-though buckling), you have the option to control
the loading by monitoring a resulting displacement in the structure. See Topic
“Load Application Control” (page 362) in this Chapter for more information.

Load Application Control

You may choose between a load-controlled or displacement-controlled nonlinear
static analysis. For both options, the pattern of loads acting on the structure is deter-
mined by the specified combination of loads. Only the scaling is different.
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Normally you would choose load control. It is the most common, physical situa-
tion.

Displacement control is an advanced feature for specialized purposes.

Load Control

Select load control when you know the magnitude of load that will be applied and
you expect the structure to be able to support that load. An example would be when
applying gravity load, since it is governed by nature.

Under load control, all loads are applied incrementally from zero to the full speci-
fied magnitude.

Displacement Control

Select displacement control when you know how far you want the structure to
move, but you don’t know how much load is required. This is most useful for struc-
tures that become unstable and may lose load-carrying capacity during the course
of the analysis. Typical applications include static pushover analysis and
snap-through buckling analysis.

To use displacement control, you must select a displacement component to moni-
tor. This may be a single degree of freedom at a joint, or a generalized displacement
that you have previously defined. See Topic “Generalized Displacement” (page 45)
in Chapter “Joints and Degrees of Freedom” for more information.

You must also give the magnitude of the displacement that is your target for the
analysis. The program will attempt to apply the load to reach that displacement.
The load magnitude may be increased and decreased during the analysis.

Be sure to choose a displacement component that monotonically increases during
loading. If this is not possible, you may need to divide the analysis into two or more
sequential cases, changing the monitored displacement in the different cases. The
use of the conjugate displacement control, described below, may automatically
solve this problem for you.

Important note: Using displacement control is NOT the same thing as applying
displacement loading on the structure! Displacement control is simply used to
MEASURE the displacement at one point that results from the applied loads, and to
adjust the magnitude of the loading in an attempt to reach a certain measured dis-
placement value. The overall displaced shape of the structure will be different for
different patterns of loading, even if the same displacement is controlled.
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Conjugate Displacement Control

If the analysis is having trouble converging, you can choose the option for the pro-
gram to use the conjugate displacement for control. The conjugate displacement is
a weighted average of all displacements in the structure, each displacement degree
of freedom being weighted by the load acting on that degree of freedom. In other
words, it is a measure of the work done by the applied load.

When significant changes in the deformation pattern of the structure are detected,
such as when a hinge yields or unloads, conjugate displacement control will auto-
matically adjust to find a monotonically increasing displacement component to
control. This is a new feature, and may cause slight changes in analysis results
compared to previous versions.

If you choose to use the conjugate displacement for load control, it will be used to
determine whether the load should be increased or decreased. The specified moni-
tored displacement will still be used to set the target displacement, i.e., how far the
structure should move. However, this target may not be matched exactly.

Initial Conditions

364

The initial conditions describe the state of the structure at the beginning of a Load
Case. These include:

* Displacements and velocities

* Internal forces and stresses

* Internal state variables for nonlinear elements

* Energy values for the structure

» External loads
For a static analysis, the velocities are always taken to be zero.

For nonlinear analyses, you may specify the initial conditions at the start of the
analysis. You have two choices:

» Zero initial conditions: the structure has zero displacement and velocity, all el-
ements are unstressed, and there is no history of nonlinear deformation.

* Continue from a previous nonlinear analysis: the displacements, velocities,
stresses, loads, energies, and nonlinear state histories from the end of a previ-
ous analysis are carried forward.

Initial Conditions
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Nonlinear static and nonlinear direct-integration time-history cases may be chained
together in any combination, i.e., both types of analysis are compatible with each
other. It is strongly recommended that you select the same geometric nonlinearity
parameters for the current case as for the previous case.

When continuing from a previous case, all applied loads specified for the present
Load Case are incremental, i.e., they are added to the loads already acting at the end
of the previous case.

Nonlinear static cases cannot be chained together with nonlinear modal time-his-
tory (FNA) cases.

Output Steps

Normally, only the final state is saved for a nonlinear static analysis. This is the re-
sult after the full load has been applied.

You can choose instead to save intermediate results to see how the structure re-
sponded during loading. This is particularly important for static pushover analysis,
where you need to develop the capacity curve.

If you are only interested in the saving the final result, you can skip the rest of this
topic.
Saving Multiple Steps

If you choose to save multiple states, the state at the beginning of the analysis (step
0) will be saved, as well as a number of intermediate states. From a terminology
point of view, saving five steps means the same thing as saving six states (steps 0 to
5): the step is the increment, and the state is the result.

The number of saved steps is determined by the parameters:

* Minimum number of saved steps
* Maximum number of saved steps

» Option to save positive increments only

These are described in the following.
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Minimum and Maximum Saved Steps

The Minimum Number of Saved Steps and Maximum Number of Saved Steps pro-
vide control over the number of points actually saved in the analysis. If the mini-
mum number of steps saved is too small, you may not have enough points to ade-
quately represent a pushover curve. If the minimum and maximum number of
saved steps is too large, then the analysis may consume a considerable amount of
disk space, and it may take an excessive amount of time to display results.

The program automatically determines the spacing of steps to be saved as follows.
The maximum step length is equal to total force goal or total displacement goal di-
vided by the specified Minimum Number of Saved Steps. The program starts by
saving steps at this increment. If a significant event occurs at a step length less than
this increment, then the program will save that step too and continue with the maxi-
mum increment from there. For example, suppose the Minimum Number of Saved
Steps and Maximum Number of Saved Steps are set at 20 and 30 respectively, and
the target is to be to a displacement of 10 inches. The maximum increment of saved
steps will be 10 / 20 = 0.5 inches. Thus, data is saved at 0.5, 1, 1.5, 2, 2.5 inches.
Suppose that a significant event occurs at 2.7 inches. Then data is also saved at 2.7
inches, and continues on from there being saved at 3.2, 3.7, 4.2,4.7,5.2,5.7, 6.2,
6.7,7.2,7.7,8.2,8.7,9.2,9.7 and 10.0 inches.

The Maximum Number of Saved Steps controls the number of significant events
for which data will be saved. The program will always reach the force or displace-
ment goal within the specified number of maximum saved steps, however, in doing
so it could have to skip saving steps at later events. For example, suppose the Mini-
mum Saved Steps is set to 20, the Maximum Number of Saved Steps is set to 21,
and the pushover is to be to a displacement of 10 inches. The maximum increment
of saved steps will be 10 / 20 = 0.5 inches. Thus, data is saved at 0.5, 1, 1.5, 2, 2.5
inches. Suppose that a significant event occurs at 2.7 inches. Then data is also saved
at 2.7 inches, and continues on from there being saved at 3.2 and 3.7 inches. Sup-
pose another significant event occurs at 3.9 inches. The program will not save the
data at 3.9 inches because if it did it would not be able to limit the maximum incre-
ment to 0.5 inches and still get through the full pushover in no more than 21 steps.
Note that if a second significant event occurred at 4.1 inches rather than 3.9 inches,
then the program would be able to save the step and still meet the specified criteria
for maximum increment and maximum number of steps.

Save Positive Increments Only

This option is primarily of interest for pushover analysis under displacement con-
trol. In the case of extreme nonlinearity, particularly when a frame hinge sheds
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load, the pushover curve may show negative increments in the monitored displace-
ment while the structure is trying to redistribute the force from a failing component.

You may choose whether or not you want to save only the steps having positive in-
crements. The negative increments often make the pushover curve look confusing.
However, seeing them can provide insight into the performance of the analysis and
the structure.

You may want to choose to Save Positive Increments Only in most cases except
when the analysis is having trouble converging.

Nonlinear Solution Control

The specified combination of applied loads is applied incrementally, using as many
steps as necessary to satisfy equilibrium and to produce the requested number of
saved output steps.

The nonlinear equations are solved iteratively in each load step. This may require
re-forming and re-solving the stiffness matrix. The iterations are carried out until
the solution converges. If convergence cannot be achieved, the program divides the
step into smaller substeps and tries again.

Several parameters are available for you to control the iteration and substepping
process. These are described in the following. We recommend that you use the de-
fault values of these parameters to start, except that you may often need to increase
the maximum number of total steps and null steps for more complex models.

If you are having convergence difficulties, you may try varying the iteration control
parameters below. However, you should also consider that the model itself may
need improvement. Look for instabilities due to inadequate support, buckling, and
excessively large stiffnesses. If you have hinges that lose strength, make sure that
this behavior is really necessary and that the negative slopes are not unrealistically
too steep.

Maximum Total Steps

This is the maximum number of steps allowed in the analysis. It may include saved
steps as well as intermediate substeps whose results are not saved. The purpose of
setting this value is to give you control over how long the analysis will run.

Start with a smaller value to get a feel for the time the analysis will take. If an analy-
sis does not reach its target load or displacement before reaching the maximum
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number of steps, you can re-run the analysis after increasing this maximum number
of saved steps. The length of time it takes to run a nonlinear static analysis is ap-
proximately proportional to the total number of steps.

Maximum Null (Zero) Steps

Null (zero) steps occur during the nonlinear solution procedure when:

* A frame hinge is trying to unload
* An event (yielding, unloading, etc.) triggers another event
* Iteration does not converge and a smaller step size is attempted

An excessive number of null steps may indicate that the solution is stalled due to
catastrophic failure or numerical sensitivity.

You can set the Maximum Null (Zero) Steps so that the solution will terminate
early if it is having trouble converging. Set this value equal to the Maximum Total
Steps if you do not want the analysis to terminate due to null steps.

Maximum Iterations Per Step

Iteration is used to make sure that equilibrium is achieved at each step of the analy-
sis. For each step, constant-stiffness iteration is tried first. If convergence is not
achieved, Newton-Raphson (tangent-stiffness) iteration is tried next. If both fail,
the step size is reduced, and the process is repeated.

You can separately control the number of constant-stiffness and Newton-Raphson
iterations allowed in each step. Setting either parameter to zero prevents that type
of iteration. Setting both to zero causes the program to automatically determine the
number and type of iterations to allow. Constant-stiffness iterations are faster than
Newton-Raphson iterations, but the latter are usually more effective, especially for
cables and geometric nonlinearity. The default values work well in many situa-
tions.

Iteration Convergence Tolerance

Iteration is used to make sure that equilibrium is achieved at each step of the analy-
sis. You can set the relative convergence tolerance that is used to compare the mag-
nitude of force error with the magnitude of the force acting on the structure.

Nonlinear Solution Control



Chapter XXIll  Nonlinear Static Analysis

You may need to use significantly smaller values of convergence tolerance to get
good results for large-displacements problems than for other types of nonlinearity.
Try decreasing this value until you get consistent results.

Event-to-Event Iteration Control

The nonlinear solution algorithm uses an event-to-event strategy for the frame
hinges. If you have a large number of hinges in your model, this could result in a
huge number of solution steps. You can specify an event-lumping tolerance that is
used to group events together in order to reduce solution time.

When one hinge yields or moves to another segment of the force-displacement
(moment-rotation) curve, an event is triggered. If other hinges are close to experi-
encing their own event, to within the event-lumping tolerance, they will be treated
as if they have reached the event. This induces a small amount of error in the force
(moment) level at which yielding or the change in segment occurs.

Specifying a smaller event-lumping tolerance will increase the accuracy of the
analysis, at the expense of more computational time.

You can turn event-to-event stepping off completely, in which case the program
will iterated on the frame hinges. This may be helpful in models with a large num-
ber of hinges, but it is not recommended if you expect hinges to lose strength with
steep drops.

Hinge Unloading Method

This option is primarily intended for pushover analysis using frame hinge proper-
ties that exhibit sharp drops in their load-carrying capacity.

When a hinge unloads, the program must find a way to remove the load that the
hinge was carrying and possibly redistribute it to the rest of the structure. Hinge un-
loading occurs whenever the stress-strain (force-deformation or moment-rotation)
curve shows a drop in capacity, such as is often assumed from point C to point D, or
from point E to point F (complete rupture).

Such unloading along a negative slope may be unstable in a static analysis, and a
unique solution is not always mathematically guaranteed. In dynamic analysis (and
the real world) inertia provides stability and a unique solution.

For static analysis, special methods are needed to solve this unstable problem. Dif-
ferent methods may work better with different problems. Different methods may
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produce different results with the same problem. SAP2000 provides three different
methods to solve this problem of hinge unloading, which are described next.

If all stress-strain slopes are positive or zero, these methods are not used unless the
hinge passes point E and ruptures. Instability caused by geometric effects is not
handled by these methods.

Note: If needed during a nonlinear direct-integration time-history analysis,
SAP2000 will use the Apply-Local-Redistribution method.

Unload Entire Structure

When a hinge reaches a negative-sloped portion of the stress-strain curve, the pro-
gram continues to try to increase the applied load. If this results in increased strain
(decreased stress) the analysis proceeds. If the strain tries to reverse, the program
instead reverses the load on the whole structure until the hinge is fully unloaded to
the next segment on the stress-strain curve. At this point the program reverts to in-
creasing the load on the structure. Other parts of the structure may now pick up the
load that was removed from the unloading hinge.

Whether the load must be reversed or not to unload the hinge depends on the rela-
tive flexibility of the unloading hinge compared with other parts of the structure
that act in series with the hinge. This is very problem-dependent, but it is automati-
cally detected by the program.

This method is the most efficient of the three methods available, and is usually the
first method you should try. It generally works well if hinge unloading does not re-
quire large reductions in the load applied to the structure. It will fail if two hinges
compete to unload, i.e., where one hinge requires the applied load to increase while
the other requires the load to decrease. In this case, the analysis will stop with the
message “UNABLE TO FIND A SOLUTION”, in which case you should try one
of the other two methods.

This method uses a moderate number of null steps.

Apply Local Redistribution

This method is similar to the first method, except that instead of unloading the en-
tire structure, only the element containing the hinge is unloaded. When a hinge is
on a negative-sloped portion of the stress-strain curve and the applied load causes
the strain to reverse, the program applies a temporary, localized, self-equilibrating,
internal load that unloads the element. This causes the hinge to unload. Once the
hinge is unloaded, the temporary load is reversed, transferring the removed load to
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neighboring elements. This process is intended to imitate how local inertia forces
might stabilize a rapidly unloading element.

This method is often the most effective of the three methods available, but usually
requires more steps than the first method, including a lot of very small steps and a
lot of null steps. The limit on null steps should usually be set between 40% and 70%
of the total steps allowed.

This method will fail if two hinges in the same element compete to unload, i.c.,
where one hinge requires the temporary load to increase while the other requires the
load to decrease. In this case, the analysis will stop with the message “UNABLE
TO FIND A SOLUTION?”, after which you should divide the element so the hinges
are separated and try again. Check the .LOG file to see which elements are having
problems. The easiest approach is to assign Frame Hinge Overwrites, and choose to
automatically subdivide at the hinges.

Restart Using Secant Stiffness

This method is quite different from the first two. Whenever any hinge reaches a
negative-sloped portion of the stress-strain curve, all hinges that have become non-
linear are reformed using secant stiffness properties, and the analysis is restarted.

The secant stiffness for each hinge is determined as the secant from point O to point
X on the stress strain curve, where: Point O is the stress-stain point at the beginning
of the Load Case (which usually includes the stress due to gravity load); and Point
X is the current point on the stress-strain curve if the slope is zero or positive, or else
it is the point at the bottom end of a negatively-sloping segment of the stress-strain
curve.

When the load is re-applied from the beginning of the analysis, each hinge moves
along the secant until it reaches point X, after which the hinge resumes using the
given stress-strain curve.

This method is similar to the approach suggested by the FEMA-356 guidelines, and
makes sense when viewing pushover analysis as a cyclic loading of increasing am-
plitude rather than as a monotonic static push.

This method is the least efficient of the three, with the number of steps required in-
creasing as the square of the target displacement. It is also the most robust (least
likely to fail) provided that the gravity load is not too large. This method may fail
when the stress in a hinge under gravity load is large enough that the secant from O
to X is negative. On the other hand, this method may be able to provide solutions
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where the other two methods fail due to hinges with small (nearly horizontal) nega-
tive slopes.

Static Pushover Analysis

372

Nonlinear static pushover analysis is a specialized procedure used in perfor-
mance-based design for seismic loading. SAP2000 provides the following tools
needed for pushover analysis:

* Material nonlinearity at discrete, user-defined hinges in Frame elements. The
hinge properties were created with pushover analysis in mind. Default hinge
properties are provided based on FEMA-356 criteria. See Chapter “Frame
Hinge Properties” (page 121).

* Nonlinear static analysis procedures specially designed to handle the sharp
drop-off in load carrying capacity typical of frame hinges used in pushover
analysis. See Topic “Hinge Unloading Method” (page 369) in this Chapter.

» Nonlinear static analysis procedures that allow displacement control, so that
unstable structures can be pushed to desired displacement targets. See Topic
“Load Application Control” (page 362) in this Chapter.

 Display capabilities in the graphical user interface to generate and plot push-
over curves, including demand and capacity curves in spectral ordinates. See
the online Help facility in the graphical user interface for more information.

» Capabilities in the graphical user interface to plot and output the state of every
hinge at each step in the pushover analysis. See Chapter “Frame Hinge Prop-
erties” (page 121) and the online Help facility in the graphical user interface for
more information.

In addition to these specialized features, the full nonlinearity of the program can be
used, including nonlinear Link/Support behavior, geometric nonlinearity, and
staged construction. In addition, you are not restricted to static pushover analysis:
you can also perform full nonlinear time-history analysis.

The following general sequence of steps is involved in performing nonlinear static
pushover analysis using SAP2000:

1. Create a model just like you would for any other analysis.

2. Define frame hinge properties and assign them to the frame elements.
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10.

11.

. Define any Load Patterns and static and dynamic Load Cases that may be

needed for steel or concrete design of the frame elements, particularly if default
hinges are used.

Run the Load Cases needed for design.

. If any concrete hinge properties are based on default values to be computed by

the program, you must perform concrete design so that reinforcing steel is de-
termined.

If any steel hinge properties are based on default values to be computed by the
program for Auto-Select frame section properties, you must perform steel de-
sign and accept the sections chosen by the program.

Define the Load Patterns that are needed for use in the pushover analysis,
including:

* QGravity loads and other loads that may be acting on the structure before the
lateral seismic loads are applied. You may have already defined these Load
Patterns above for design.

» Lateral loads that will be used to push the structure. If you are going to use
Acceleration Loads or modal loads, you don’t need any new Load Patterns,
although modal loads require you to define a Modal Load Case.

. Define the nonlinear static Load Cases to be used for pushover analysis, includ-

ing:

* A sequence of one or more cases that start from zero and apply gravity and
other fixed loads using load control. These cases can include staged con-
struction and geometric nonlinearity.

* One or more pushover cases that start from this sequence and apply lateral
pushover loads. These loads should be applied under displacement control.
The monitored displacement is usually at the top of the structure and will
be used to plot the pushover curve.

Run the pushover Load Cases.

Review the pushover results: Plot the pushover curve, the deflected shape
showing the hinge states, force and moment plots, and print or display any
other results you need.

Revise the model as necessary and repeat.
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It is important that you consider several different lateral pushover cases to represent
different sequences of response that could occur during dynamic loading. In partic-
ular, you should push the structure in both the X and Y directions, and possibly at
angles in between. For non-symmetrical structures, pushing in the positive and
negative direction may yield different results. When pushing in a given direction,
you may want to consider different vertical distributions of the lateral load, such as
the first and second mode in that direction.

Staged Construction
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Staged construction is a special type of nonlinear static analysis that requires a sep-
arate add-on module for this feature to become available in the program.

Staged construction allows you to define a sequence of stages wherein you can add
or remove portions of the structure, selectively apply load to portions of the struc-
ture, and to consider time-dependent material behavior such as aging, creep, and
shrinkage. Staged construction is variously known as incremental construction, se-
quential construction, or segmental construction.

Normally the program analyzes the whole structure in all Load Cases. If you do not
want to perform staged-construction analysis, you can skip the rest of this topic.

Staged construction is considered a type of nonlinear static analysis because the
structure may change during the course of the analysis. However, consideration of
material and geometric nonlinearity is optional. Because staged construction is a
type of nonlinear static analysis, it may be part of a sequence of other nonlinear
static and direct-integration time-history Load Cases, and it may also be used as a
stiffness basis for linear Load Cases.

If you continue any nonlinear analysis from a staged construction analysis, or per-
form a linear analysis using its stiffness, only the structure as built at the end of the
staged construction will be used.

Stages

For each nonlinear staged-construction Load Case, you define a sequence of stages.
These are analyzed in the order defined. You can specify as many stages as you
want in a single Load Case. Staged construction can also continue from one Load
Case to another.

For each stage you specify the following:

Staged Construction
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* A duration, in days. This is used for time-dependent effects. If you do not want
to consider time-dependent effects in a given stage, set the duration to zero.

* Any number of objects to be added to the structure, or none. The age of the ob-
jects at the time they are added can be specified, if time-dependent effects are to
be considered.

* Any number of objects to be removed from the structure, or none

* Any number of objects to be loaded by specified Load Patterns, or none. You
may specify that all objects in the group are to be loaded, or only those objects
in the group that are being added to the structure in this stage.

* Property-Modifier Named Sets may be assigned to any number of frame or
shell objects. See Chapters “The Frame Element” and “The Shell Element” for
more information.

* End-Release Named Sets may be assigned to any number of frame objects. See
Chapter “The Frame Element” for more information.

* Section properties may be changed for any number of frame, shell, or tendon
objects.

Objects may be specified individually or by using groups. In most cases, the use of
groups is convenient, so the first step to setting up staged-construction analysis is to
define groups for that purpose. See Topic “Groups” (page 9) in Chapter “Objects
and Elements” for more information. Note that there is always a built-in group
called "ALL" that includes the whole structure. When an operation only pertains to
some object types, only objects of those types in a group will be affected.

When you specify staged construction, the analysis starts with the structure as built
from the previous Load Case. If you are starting from zero, then the structure starts
with no objects.

Each stage is analyzed separately in the order the stages are defined. The analysis of
a stage has two parts:

(1) Changes to the structure and application of loads are analyzed. These occur in-
stantaneously in time, i.e., the analysis may be incremental, but no time elapses
from the point-of-view of the material

(2) If non-zero duration has been specified, time-dependent material effects are
then analyzed. During this time, the structure does not change and applied
loads are held constant. However, internal stress redistribution may occur.

The instantaneous part (1) of the stage is analyzed as follows (reference to groups
includes individual objects as well):

Staged Construction 375



CSI Analysis Reference Manual

376

* The objects to be added, if any, are processed. Only new objects in the specified
groups (not already present in the structure) are added. For each non-joint ob-
jectadded, all joints connected to that object are also added, even if they are not
explicitly included in the group.

» The groups to be removed, if any, are processed. Only objects actually present
in the structure are removed. When objects are removed, their stiffness, mass,
loads, and internal forces are removed from the structure and replaced with
equivalent forces. These forces are linearly reduced to zero during the course of
the analysis. Joints that were automatically added will be removed when all
connected objects are removed.

» Section properties changes, if any, are processed as described below.
* Named set assignments, if any, are processed.

» All specified loads will be increased linearly during the course of the analysis.
Loads specified on all objects in a group will only be applied to objects that are
actually present in the structure or are being added in this stage. Loads speci-
fied on added objects in a group will only be applied to objects that are being
added in this stage.

If an object is included in more than one group that is being added or removed, the
object will only be added or removed once. Whether it is added or removed de-
pends on which operation occurs last in the order you have specified them. For ex-
ample, if an object is included in three groups that are being added and one group
that is being removed, the object will be removed if that was the last operation spec-
ified for that stage. Changing section properties acts as a removal and addition, and
it will occur in sequence with explicit addition and removal depending on the order
of operations you specify. See below for more information.

If an object is included in more than one group that is being loaded, the object will
be multiply loaded.

Load application must be by load control. Displacement control is not allowed.

Changing Section Properties

The main purpose for changing section properties is to be able to model multiple
configurations of the same structure. This can be accomplished changing the prop-
erties of newly added, unstressed objects. You may, however, change section
properites for stressed objects, and it is important that you understand exactly what
the analysis is doing so that you can achieve the results you want.

Section property changes on each object are processed as follows:
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 Ifthe object is present, it is removed and replaced with equilalent forces so that
the structure does not deflect.

* The object is added again, this time with the new section property, but un-
stressed and without any loading that may have been acting on the object when
it was removed. The object will be added even if it was not previously present
in the structure.

* The equivalent forces, if any, are then reversed. This will usually deform the
object and cause the structure will deflect.

You would normally want to reapply self-weight to any object whose section prop-
erties are changed, since previous loading is discarded.

This operation is essentially removing a stressed object and replacing it with an un-
stressed object. You can apply forces to unload the object before changing its sec-
tion if you want to simulate removing an unstressed object.

Changing section properties is useful for analysis purposes. However, the object
will be treated as if it has its original section property for all display, output, and de-
sign purposes.

Output Steps

The specification of output steps is similar to that described earlier in this Chapter
in Topic “Output Steps” (page 365), except that you can individually control the
number of steps to be saved for the two parts of each stage:

(1) How many steps to save during changes to the structure and instantaneous ap-
plication of load

(2) How many steps to save during the time-dependent analysis for aging, creep
and shrinkage.

The number of steps requested for these two parts of each stage applies equally to
all stages in the Load Case.

Important! The time step used for the time-dependent analysis is based on the
number of steps saved. For statically indeterminate structures where significant
stress redistribution may occur due to creep and shrinkage, it is important to use
small-enough time steps, especially during the youth of the structure where large
changes may be occurring. You may want to re-run the analysis with increasing
numbers of steps saved until you are satisfied that the results have converged.
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Example

Let’s build a simple bridge. Define four groups: “BENTS,” “DECK1,” “DECK2,”
“SHORING,” and “APPURTS.” The structure can be linear or nonlinear. Time-de-
pendent properties are assumed for the concrete material.

Also define three Load Patterns:

“GRAVITY?”, to apply dead load
“TENSION”, to apply post-tensioning cable loads

“EQUIPMENT?”, to apply the weight of temporary construction equipment on
the deck

Define a staged-construction Load Case called “BUILD” that starts from zero, and
contains the following stages:

1.

(a) Add group “BENTS” with an age of 10 days.

(b) Apply load “GRAVITY” to added elements in group “ALL”.

©) No time-dependent effects need to be considered—we can assume these al-
ready happened in the first 10 days.

. (a) Add group “SHORING” with an age of 10 days.

(b) Apply load “GRAVITY” to added elements in group “ALL”.
©) No time-dependent effects need to be considered for the shoring.

. (a) Add group “DECK1” with an age of 0 days (wet concrete).

(b) Apply load “GRAVITY” to added elements in group “ALL”.
©) Apply load “EQUIPMENT” to all elements in group “DECKI1"".
(d) Allow 3 days duration for aging, creep, and shrinkage.

. (a) Add group “DECK2” with an age of 0 days (wet concrete).

(b) Apply load “GRAVITY” to added elements in group “ALL”.

©) Remove load “EQUIPMENT” from all elements in group “DECK1” (apply
with a scale factor of -1.0).

(d) Apply load “EQUIPMENT” to all elements in group “DECK2”.

(e) Allow 3 days duration for aging, creep, and shrinkage.

. (a) Remove load “EQUIPMENT” from all elements in group “DECK2” (apply

with a scale factor of -1.0).
(b) Apply load “TENSION” to all elements in group “ALL”.

. (a) Remove group “SHORING”.

(b) Allow 3 days duration for aging, creep, and shrinkage.
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5. (a) Add group “APPURTS” with an age of 10 days.
(b) Allow 30 days duration for aging, creep, and shrinkage.

6. (a) Allow 300 days duration for aging, creep, and shrinkage.
7. (a) Allow 3000 days duration for aging, creep, and shrinkage.

The reason for adding several stages with increasing length of time at the end is to
get long term effects at increasing time-step size, since the number of output steps is
the same for all stages.

Case BUILD can now be used to define the stiffness matrix for any number of lin-
ear analyses, including modal, response-spectrum, moving-load, and other types.
You can also continue case BUILD with a nonlinear direct-integration time-history
analysis for seismic load, or even more nonlinear static cases that may include
pushover analysis or more staged construction for the purposes of retrofit.

Target-Force Iteration

When any Load Pattern containing target-force loads is applied in a nonlinear static
Load Case, internal deformation load is iteratively applied to achieve the target
force. In a staged-construction analysis, the iteration occurs individually over any
stage for which target-force loads are applied. Otherwise, the iteration is for the
whole nonlinear static Load Case.

Trial deformation loads are applied to those elements for which target forces have
been assigned, and a complete nonlinear analysis (or stage thereof) is performed.
At the end of the analysis, and assuming that convergence for equilibrium has been
achieved, forces in the targeted elements are compared with their desired targets. A
relative error is computed that is the root-mean-square over all the elements of the
difference between the target and the actual force, divided by the larger of the two
values. If this error is greater than the relative convergence tolerance that you speci-
fied, a revised deformation load is computed and the complete nonlinear analysis
(or stage thereof) is performed again. This process is repeated until the error is less
than the tolerance, or the specified maximum number of iterations is reached.

As part of the definition of the nonlinear static Load Case, you may specify the fol-
lowing parameters to control target-force iteration:

» Relative convergence tolerance: This is the error you are willing to accept in
the target forces. Since target forces represent your desire, and not a natural re-
quirement like equilibrium, a large value such as 0.01 to 0.10 is recommended.
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* Maximum number of iterations: Many iterations may be required for some
structures, and each iteration may take some time. Start with a moderate value,
such as 5 to 10, and increase it as necessary.

* Acceleration factor: The difference between the target force and the force actu-
ally achieved is converted to deformation load and applied in the next iteration.
You can increase or decrease this load by the acceleration factor. Use a value
greater than one if conference is slow, such as when pulling or pushing against
a flexible structure. Use a value less than one if the solution is diverging, i.e.,
the unbalance is growing or oscillating between iterations.

* Whether to continue the analysis if convergence is not achieved: Since achiev-
ing the target forces is not a natural requirement, and may not even be possible,
you may want to continue the analysis even if the target is not reached.

You should be realistic in your expectations for target-force iteration. You cannot
arbitrarily specify the forces in a statically determinate structure, such as a truss.
Convergence will be slow when target forces are specified in elements connected to
very flexible supports, or that act against other target-force elements. Best results
will be obtained in stiff, redundant structures.

Target-force loads can be applied at the same time as other loads. However, better
convergence behavior may be obtained by applying target-force loads in a separate
stage or Load Case when this is possible.

For more information:

* See Topic “Target-Force Load” (page 117) in Chapter “The Frame Element.”
* See Topic “Target-Force Load” (page 144) in Chapter “The Cable Element.”
* See Topic “Target-Force Load” (page 283) in Chapter “Load Patterns.”
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Nonlinear Time-History Analysis

Time-history analysis is a step-by-step analysis of the dynamical response of a
structure to a specified loading that may vary with time. The analysis may be linear
or nonlinear. The Chapter describes concepts that apply only to nonlinear time-his-
tory analysis. You should first read Chapter “Linear Time-History Analysis” (page
331) which describes concepts that apply to all time-history analyses.

Advanced Topics

* Overview

» Nonlinearity

* Loading

* Initial Conditions

* Time Steps

» Nonlinear Modal Time-History Analysis (FNA)

* Nonlinear Direct-Integration Time-History Analysis
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Overview

Time-history analysis is used to determine the dynamic response of a structure to
arbitrary loading. The dynamic equilibrium equations to be solved are given by:

K u(t) +C a(t)+ M ii(t) = r(t)

where K is the stiffness matrix; C is the damping matrix; M is the diagonal mass
matrix; u, u, and # are the displacements, velocities, and accelerations of the struc-
ture; and r is the applied load. If the load includes ground acceleration, the
displacements, velocities, and accelerations are relative to this ground motion.

Any number of time-history Load Cases can be defined. Each time-history case can
differ in the load applied and in the type of analysis to be performed.

There are several options that determine the type of time-history analysis to be per-
formed:

¢ Linear vs. Nonlinear.

* Modal vs. Direct-integration: These are two different solution methods, each
with advantages and disadvantages. Under ideal circumstances, both methods
should yield the same results to a given problem.

» Transient vs. Periodic: Transient analysis considers the applied load as a
one-time event, with a beginning and end. Periodic analysis considers the load
to repeat indefinitely, with all transient response damped out.

In a nonlinear analysis, the stiffness, damping, and load may all depend upon the
displacements, velocities, and time. This requires an iterative solution to the equa-
tions of motion.

Before reading this Chapter on nonlinear analysis, you should first read Chapter
“Linear Time-History Analysis” (page 331) which describes concepts that apply to
all time-history analyses

Nonlinearity

382

The following types of nonlinearity are available in SAP2000:

* Material nonlinearity
— Various type of nonlinear properties in Link/Support elements

— Tension and/or compression limits in Frame elements

Overview
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— Plastic hinges in Frame elements
* Geometric nonlinearity

— P-delta effects

— Large displacement effects

For nonlinear direct-integration time-history analysis, all of the available
nonlinearities may be considered.

For nonlinear modal time-history analysis, only the nonlinear behavior of the
Link/Support elements is included. If the modes used for this analysis were com-
puted using the stiffness from the end of a nonlinear analysis, all other types of
nonlinearities are locked into the state that existed at the end of that nonlinear anal-
ysis.

Loading

The application of load for nonlinear time-history analysis is identical to that used
for linear time-history analysis. Please see Topic “Loading” (page 332) in Chapter
“Linear Time-History Analysis” for more information.

Initial Conditions

The initial conditions describe the state of the structure at the beginning of a
time-history case. These include:

» Displacements and velocities

 Internal forces and stresses

* Internal state variables for nonlinear elements

» Energy values for the structure

» External loads

The accelerations are not considered initial conditions, but are computed from the
equilibrium equation.

For nonlinear analyses, you may specify the initial conditions at the start of the
analysis. You have two choices:

» Zero initial conditions: the structure has zero displacement and velocity, all el-
ements are unstressed, and there is no history of nonlinear deformation.
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* Continue from a previous nonlinear analysis: the displacements, velocities,
stresses, loads, energies, and nonlinear state histories from the end of a previ-
ous analysis are carried forward.

There are some restrictions when continuing from a previous nonlinear case:

* Nonlinear static and nonlinear direct-integration time-history cases may be
chained together in any combination, i.e., both types of analysis are compatible
with each other.

* Nonlinear modal time-history (FNA) cases can only continue from other FNA
cases that use modes from the same modal Load Case.

When continuing from a previous case, all applied loads specified for the present
Load Case are incremental, i.e., they are added to the loads already acting at the end
of the previous case.

When performing a nonlinear time-history analysis, such as for earthquake load-
ing, it is often necessary to start from a nonlinear static state, such as due to gravity
loading. For nonlinear direct-integration analysis, you can continue from a nonlin-
ear static Load Case. But since FNA analyses can only continue from other FNA
cases, special consideration must be given to how to model static loading using
FNA. See Topic “Nonlinear Modal Time-History Analysis (FNA)” (page 123) for
more information.

Note that, by contrast, linear time-history analyses always start from zero initial
conditions.

Time Steps

384

The choice of output time steps is the same for linear and nonlinear time-history
analysis. Please see Topic “Time Steps” (page 336) in Chapter “Linear Time-His-
tory Analysis” for more information.

The nonlinear analysis will internally solve the equations of motion at each output
time step and at each load function time step, just as for linear analysis. In addition,
you may specify a maximum substep size that is smaller than the output time step in
order to reduce the amount of nonlinear iteration, and also to increase the accuracy
of direct-integration analysis. The program may also choose smaller substeps sizes
automatically when it detects slow convergence.

Time Steps
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Nonlinear Modal Time-History Analysis (FNA)

The method of nonlinear time-history analysis used in SAP2000 is an extension of
the Fast Nonlinear Analysis (FNA) method developed by Wilson (Ibrahimbegovic
and Wilson, 1989; Wilson, 1993). The method is extremely efficient and is de-
signed to be used for structural systems which are primarily linear elastic, but
which have a limited number of predefined nonlinear elements. For the FNA
method, all nonlinearity is restricted to the Link/Support elements. A short descrip-
tion of the method follows.

The dynamic equilibrium equations of a linear elastic structure with predefined
nonlinear Link/Support elements subjected to an arbitrary load can be written as:

K, u(t)+C u(t)+ M ii(t)+ry (1) =r(t)

where K ; is the stiffness matrix for the linear elastic elements (all elements except
the Links/Supports); C is the proportional damping matrix; M is the diagonal mass
matrix; ry is the vector of forces from the nonlinear degrees of freedom in the
Link/Support elements; u, &, and i are the relative displacements, velocities, and
accelerations with respect to the ground; and r is the vector of applied loads. See
Topic “Loading” (page 332) in Chapter “Linear Time-History Analysis” for the
definition of r.

Initial Conditions

See Topic “Initial Conditions” (page 123) in this Chapter for a general discussion
of initial conditions.

Because FNA analyses can only continue from other FNA analyses, special consid-
eration must be given to how you can model static loads that may act on the struc-
ture prior to a dynamic analysis.

It is actually very simple to perform static analysis using FNA. The load is applied
quasi-statically (very slowly) with high damping. To define a quasi-static FNA
analysis:

* Define a ramp-type time-history function that increases linearly from zero to
one over a length of time that is long (say ten times) compared to the first period
of the structure, and then holds constant for an equal length of time. Call this
function “RAMPQS”

* Define a nonlinear modal time-history (FNA) case:
— Call this case “HISTQS”
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Start from zero or another FNA case
— Apply the desired Load Pattern(s) using function “RAMPQS”

Use as few or as many time steps as you wish, but make sure the total time
is at least twice the ramp-up time of function “RAMPQS”

Use high modal damping, say 0.99
You can use case “HISTQS” as the initial conditions for other FNA cases.

This approach is particularly useful for nonlinear analysis where the behavior of
certain Link/Support elements, especially the Gap, Hook and Friction types, is
strongly dependent on the fotal force or displacement acting on the elements.

Link/Support Effective Stiffness

For the purposes of analysis, a linear effective stiffness is defined for each degree
of freedom of the nonlinear elements. The effective stiffness at nonlinear degrees of
freedom is arbitrary, but generally varies between zero and the maximum nonlinear
stiffness of that degree of freedom.

The equilibrium equation can then be rewritten as:
Ku(t)+Cu(t)+ M u(t)=r(t)—[ry(t)—Ky u(t)]

where K = K; + K 5, with K ; being the stiffness of all the linear elements and for
the linear degrees of freedom of the Link/Support elements, and K ; being the lin-
ear effective-stiffness matrix for all of the nonlinear degrees of freedom.

See Chapter “The Link/Support Element—Basic” (page 213) for more informa-
tion.

Mode Superposition

Modal analysis is performed using the full stiffness matrix, K, and the mass matrix,
M. 1t is strongly recommended that the Ritz-vector method be used to perform the
modal analysis.

Using standard techniques, the equilibrium equation can be written in modal form
as:

Q% a(t)+ Aa(t)+ 1 d(1)=q(t) — g (1)

where Q7 is the diagonal matrix of squared structural frequencies given by:
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Q=o' Kd

A is the modal damping matrix which is assumed to be diagonal:
A=0' CO

1 is the identity matrix which satisfies:
I1=0" M ®

q(1) is the vector of modal applied loads:
g()=0" r(1)

q y () 1s the vector of modal forces from the nonlinear elements:
gy (=" [ry()-Ky u(0)]

a(t) is the vector of modal displacement amplitudes such that:
u(t)=o a(t)

and @ is the matrix of mode shapes.

It should be noted that, unlike linear dynamic analysis, the above modal equations
are coupled. In general the nonlinear forces, g (#), will couple the modes since
they are functions of the modal displacements, a(z).

It is important to recognize that the solution to these modal equations is dependent
on being able to adequately represent the nonlinear forces by the modal forces,
q y (2). This is not automatic, but requires the following special considerations:

* Mass and/or mass moments of inertia should be present at all nonlinear degrees
of freedom.

* The Ritz-vector method should be used to determine the Modes, unless a// pos-
sible structural Modes are found using eigenvector analysis

* The Ritz starting load vectors should include a nonlinear deformation load for
each independent nonlinear degree of freedom

* A sufficient number of Ritz-vectors should be sought to capture the deforma-
tion in the nonlinear elements completely

For more information:

» See Topic “Ritz-Vector Analysis” (page 297) in Chapter “Modal Analysis”.
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* See Chapter “The Link/Support Element—Basic” (page 213).

Modal Damping

As for linear modal time-history analysis, the damping in the structure is modeled
using uncoupled modal damping. Each mode has a damping ratio, damp, which is
measured as a fraction of critical damping and must satisfy:

0<damp<1

Modal damping has two different sources, which are described in the following.
Damping from these sources is added together. The program automatically makes
sure that the total is less than one.

Important note: For linear modal time-history analysis, the linear effective damp-
ing for the Link/Support elements is also used. However, it is not used for nonlinear
modal time-history analysis.

Modal Damping from the Load Case

For each nonlinear modal time-history Load Case, you may specify modal damping
ratios that are:

¢ Constant for all modes

* Linearly interpolated by period or frequency. You specify the damping ratio at
a series of frequency or period points. Between specified points the damping is
linearly interpolated. Outside the specified range, the damping ratio is constant
at the value given for the closest specified point.

* Mass and stiffness proportional. This mimics the proportional damping used
for direct-integration, except that the damping value is never allowed to exceed
unity.

In addition, you may optionally specify damping overrides. These are specific val-
ues of damping to be used for specific modes that replace the damping obtained by
one of the methods above. The use of damping overrides is rarely necessary.

It is also important to note that the assumption of modal damping is being made
with respect to the total stiffness matrix, K, which includes the effective stiffness
from the nonlinear elements. If non-zero modal damping is to be used, then the ef-
fective stiffness specified for these elements is important. The effective stiffness
should be selected such that the modes for which these damping values are speci-
fied are realistic.
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In general it is recommended that either the initial stiffness of the element be used
as the effective stiffness or the secant stiffness obtained from tests at the expected
value of the maximum displacement be used. Initially-open gap and hook elements
and all damper elements should generally be specified with zero effective stiffness.

Composite Modal Damping from the Materials

Modal damping ratios, if any, that have been specified for the Materials are con-
verted automatically to composite modal damping. Any cross coupling between the
modes is ignored. These modal-damping values will generally be different for each
mode, depending upon how much deformation each mode causes in the elements
composed of the different Materials.

Iterative Solution

The nonlinear modal equations are solved iteratively in each time step. The pro-
gram assumes that the right-hand sides of the equations vary linearly during a time
step, and uses exact, closed-form integration to solve these equations in each itera-
tion. The iterations are carried out until the solution converges. If convergence can-
not be achieved, the program divides the time step into smaller substeps and tries
again.

Several parameters are available for you to control the iteration process. In general,
the use of the default values is recommended since this will solve most problems. If
convergence cannot be achieved, inaccurate results are obtained, or the solution
takes too long, changing these control parameters may help. However, you should
first check that reasonable loads and properties have been specified, and that appro-
priate Modes have been obtained, preferably using the Ritz vector method.

The parameters that are available to control iteration and substepping are:

» The relative force convergence tolerance, ftol

» The relative energy convergence tolerance, etol

* The maximum allowed substep size, dtmax

¢ The minimum allowed substep size, dtmin

* The maximum number of force iterations permitted for small substeps, itmax
* The maximum number of force iterations permitted for large substeps, itmin
* The convergence factor, cf

These parameters are used in the iteration and substepping algorithm as described
in the following.
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Force Convergence Check

Each time step of length dt is divided into substeps as needed to achieve conver-
gence. In each substep, the solution is iterated until the change in the right-hand
side of the modal equations, expressed as a fraction of the right-hand side, becomes
less than the force tolerance, ftol. If this does not occur within the permitted number
of iterations, the substep size is halved and the iteration is tried again.

The default value for ftol is 107, It must satisfy ftol > 0.

Energy Convergence Check

If force convergence occurs within the permitted number of iterations, the work
done by the nonlinear forces is compared with the work done by all the other force
terms in the modal equilibrium equations. If the difference, expressed as a fraction
of the total work done, is greater than the energy tolerance, etol, the substep size is
halved and the iteration is tried again.

This energy check essentially measures how close to linear is the variation of the
nonlinear force over the time step. It is particularly useful for detecting sudden
changes in nonlinear behavior, such as the opening and closing of gaps or the onset
ofyielding and slipping. Setting etol greater than unity turns off this energy check.

The default value for etol is 107, It must satisfy etol > 0.

Maximum and Minimum Substep Sizes

If the substep meets both the force and energy convergence criteria, the results of
the substep are accepted, and the next substep is attempted using twice the previous
substep length. The substep size is never increased beyond dtmax.

When the substep size is halved because of failure to meet either the force or energy
convergence criteria, the resulting substep size will never be set less than dtmin. If
the failed substep size is already dtmin, the results for the remaining time steps in
the current History are set to zero and a warning message is issued.

The default value for dtmax is dt. The default value for dtmin is dtmax-10”. They
must satisfy 0 < dtmin < dtmax < dt.

Maximum Number of Iterations

The maximum number of iterations permitted for force iteration varies between
itmin and itmax. The actual number permitted for a given substep is chosen auto-
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matically by the program to achieve a balance between iteration and substepping.
The number of iterations permitted tends to be larger for smaller substeps.

The default values for itmin and itmax are 2 and 100, respectively. They must sat-
isfy 2 < itmin < itmax.

Convergence Factor

Under-relaxation of the force iteration may be used by setting the convergence fac-
tor, cf, to a value less than unity. Smaller values increase the stability of the itera-
tion, but require more iterations to achieve convergence. This is generally only
needed when Damper-type elements are present with nonlinear damping expo-
nents. Specifying cf to be greater than unity may reduce the number of iterations re-
quired for certain types of problems, but may cause instability in the iteration and is
not recommended.

The default value for cf is 1. It must satisfy ¢f > 0.

Static Period

Normally all modes are treated as being dynamic. In each time step, the response of
a dynamic mode has two parts:

» Forced response, which is directly proportional to the modal load

» Transient response, which is oscillatory, and which depends on the displace-

ments and velocities of the structure at the beginning of the time step

You may optionally specify that high-frequency (short period) modes be treated as
static, so that they follow the load without any transient response. This is done by
specifying a static period, tstat, such that all modes with periods less than tstat are
considered to be static modes. The default for tstat is zero, meaning that all modes
are considered to be dynamic.

Although tstat can be used for any nonlinear time-history analysis, it is of most use
for quasi-static analyses. If the default iteration parameters do not work for such an
analysis, you may try using the following parameters as a starting point:

* tstat greater than the longest period of the structure
* itmax = itmin > 1000
e dtmax = dtmin = dt

.« ftol<10°°
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* cf=0.1

This causes all modes to be treated as static, and uses iteration rather than
substepping to find a solution. The choice of parameters to achieve convergence is
very problem dependent, and you should experiment to find the best values to use
for each different model.

Nonlinear Direct-Integration Time-History Analysis
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Direct integration of the full equations of motion without the use of modal superpo-
sition is available in SAP2000. While modal superposition is usually more accurate
and efficient, direct-integration does offer the following advantages:

 Full damping that couples the modes can be considered

* Impact and wave propagation problems that might excite a large number of
modes may be more efficiently solved by direct integration

» All types of nonlinearity available in SAP2000 may be included in a nonlinear
direct integration analysis.

Direct integration results are extremely sensitive to time-step size in a way that is
not true for modal superposition. You should always run your direct-integration
analyses with decreasing time-step sizes until the step size is small enough that re-
sults are no longer affected by it.

Time Integration Parameters

See Topic “Linear Direct-Integration Time-History Analysis” (page 123) for infor-
mation about time-integration parameters. The same considerations apply here as
for linear analysis.

If your nonlinear analysis is having trouble converging, you may want to use the
HHT method with alpha = -1/3 to get an initial solution, then re-run the analysis
with decreasing time step sizes and alpha values to get more accurate results.

Nonlinearity

All material nonlinearity that has been defined in the model will be considered in a
nonlinear direct-integration time-history analysis.

You have a choice of the type of geometric nonlinearity to be considered:
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¢ None
e P-delta effects

» Large displacement effects

If you are continuing from a previous nonlinear analysis, it is strongly recom-
mended that you select the same geometric nonlinearity parameters for the current
case as for the previous case. See Chapter “Geometric Nonlinearity” (page 343) for
more information.

Initial Conditions

See Topic “Initial Conditions” (page 123) in this Chapter for a general discussion
of initial conditions.

You may continue a nonlinear direct-integration time-history analysis from a non-
linear static analysis or another direct-integration time-history nonlinear analysis.
It is strongly recommended that you select the same geometric nonlinearity param-
eters for the current case as for the previous case.

Damping

In direct-integration time-history analysis, the damping in the structure is modeled
using a full damping matrix. Unlike modal damping, this allows coupling between
the modes to be considered.

Direct-integration damping has two different sources, which are described in the
following. Damping from these sources is added together.

Important note: For linear direct-integration time-history analysis, the linear effec-
tive damping for the nonlinear Link/Support elements is also used. However, it is
not used for nonlinear direct-integration time-history analysis.

Proportional Damping from the Load Case

For each direct-integration time-history Load Case, you may specify proportional
damping coefficients that apply to the structure as a whole. The damping matrix is
calculated as a linear combination of the stiffness matrix scaled by a coefficient that
you specify, and the mass matrix scaled by a second coefficient that you specify.

You may specify these two coefficients directly, or they may be computed by spec-
ifying equivalent fractions of critical modal damping at two different periods or fre-
quencies.
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Stiffness proportional damping is linearly proportional to frequency. It is related to
the deformations within the structure. Stiffness proportional damping may exces-
sively damp out high frequency components.

Stiffness-proportional damping uses the current, tangent stiffness of the structure at
each time step. Thus a yielding element will have less damping than one which is
elastic. Likewise, a gap element will only have stiffness-proportional damping
when the gap is closed.

Mass proportional damping is linearly proportional to period. It is related to the
motion of the structure, as if the structure is moving through a viscous fluid. Mass
proportional damping may excessively damp out long period components.

Proportional Damping from the Materials

You may specify stiffness and mass proportional damping coefficients for individ-
ual materials. For example, you may want to use larger coefficients for soil materi-
als than for steel or concrete. The same interpretation of these coefficients applies
as described above for the Load Case damping.

Iterative Solution

The nonlinear equations are solved iteratively in each time step. This may require
re-forming and re-solving the stiffness and damping matrices. The iterations are
carried out until the solution converges. If convergence cannot be achieved, the
program divides the step into smaller substeps and tries again.

Several parameters are available for you to control the iteration and substepping
process. These are described in the following. We recommend that you use the de-
fault values of these parameters, except that you may want to vary the maximum
substep size for reasons of accuracy.

If you are having convergence difficulties, you may try varying the iteration control
parameters below. However, you should also consider that the model itself may
need improvement. Look for instabilities due to inadequate support, buckling, and
excessively large stiffnesses. If you have hinges that lose strength, make sure that
this behavior is really necessary and that the negative slopes are not unrealistically
too steep.

Maximum Substep Size

The analysis will always stop at every output time step, and at every time step
where one of the input time-history functions is defined. You may, in addition, set
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an upper limit on the step size used for integration. For example, suppose your out-
put time step size was 0.005, and your input functions were also defined at 0.005
seconds. If you set the Maximum Substep Size to 0.001, the program will internally
take five integration substeps for every saved output time step. The program may
automatically use even smaller substeps if necessary to achieve convergence when
iterating.

The accuracy of direct-integration methods is very sensitive to integration time
step, especially for stiff (high-frequency) response. You should try decreasing the
maximum substep size until you get consistent results. You can keep your output
time step size fixed to prevent storing excessive amounts of data.

Minimum Substep Size

When the nonlinear iteration cannot converge within the specified maximum num-
ber of iterations, the program automatically reduces the current step size and tries
again. You can limit the smallest substep size the program will use. If the program
tries to reduce the step size below this limit, it will stop the analysis and indicate
that convergence had failed.

Maximum Iterations Per Step

Iteration is used to make sure that equilibrium is achieved at each step of the analy-
sis. For each step, constant-stiffness iteration is tried first. If convergence is not
achieved, Newton-Raphson (tangent-stiffness) iteration is tried next. If both fail,
the step size is reduced, and the process is repeated.

You can separately control the number of constant-stiffness and Newton-Raphson
iterations allowed in each step. Setting either parameter to zero prevents that type
of iteration. Setting both to zero causes the program to automatically determine the
number and type of iterations to allow. Constant-stiffness iterations are faster than
Newton-Raphson iterations, but the latter are usually more effective, especially for
cables and geometric nonlinearity. The default values work well in many situa-
tions.

Iteration Convergence Tolerance

Iteration is used to make sure that equilibrium is achieved at each step of the analy-
sis. You can set the relative convergence tolerance that is used to compare the mag-
nitude of force error with the magnitude of the force acting on the structure.
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You may need to use significantly smaller values of convergence tolerance to get
good results for large-displacements problems than for other types of nonlinearity.
Try decreasing values until you get consistent results.

Line-Search Control

For each iteration, a line search is used to determine the optimum displacement in-
crement to apply. This increases the computation time for each iteration, but often
results in fewer iterations and better convergence behavior, with a net gain in effi-
ciency. The use of the line-search algorithm is a new feature, and may cause slight
changes in analysis results compared to previous versions.

You can control the following parameters:

* Maximum Line Searches per Iteration: Use this parameter to limit the number
of line searches allowed per iteration, usually in the range of 5 to 40. Set this
value to zero (0) to turn off line search.

* Line-Search Acceptance Tolerance (Relative): The solution increment is suc-
cessively reduced or increased until the minimum error is found, the maximum
number of line searches is reached, or the relative change in error from the pre-
vious trial is less than the acceptance tolerance set here. The practical range is
about 0.02 to 0.50. This value should not be to small, since the goal is only to
improve the next iteration.

e Line-search Step Factor: For each line-search trial, the solution increment is
successively reduced by the step factor specified here until the minimum error
is found, the maximum number of line searches is reached, or the acceptance
tolerance is satisfied. If reducing the increment does not decrease the error,
then the increment is instead increased by the step factor following the same
procedure. This factor must be greater than 1.0, and should usually be no more
than 2.0.

The default values are recommended.
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Frequency-Domain Analyses

Frequency-domain analysis is based upon the dynamical response of the structure
to harmonically varying load. Two types of frequency-domain Load Cases are cur-
rently available: deterministic Steady-State analysis and probabilistic Power-Spec-
tral-Density analysis.

Advanced Topics

Overview

Harmonic Motion

Frequency Domain

Damping

Loading

Frequency Steps

Steady-State Analysis
Power-Spectral-Density Analysis
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Overview

Frequency-domain analysis is based upon the dynamical response of the structure
to harmonically varying load. The analysis is performed at one or more frequencies
of vibration. At each frequency, the loading varies with time as sine and cosine
functions. Two types of frequency-domain Load Cases are currently available:
steady-state analysis and power-spectral-density analysis.

Steady-state analysis computes the deterministic response at each requested fre-
quency. The loading may have components at acting different phase angles. The
phase angles of the response are computed and may be displayed.

Power-spectral-density analysis is based on a probabilistic spectrum of loading.
The analysis computes a probabilistic spectrum for each response component. In
addition, a single probabilistic expected value for each response component is pre-
sented that is the root-mean-square (RMS) of the probabilistic spectrum. The load-
ing may have components at acting different phase angles, but the phase informa-
tion is not preserved for the probabilistic response.

Hysteretic and viscous damping may be specified. Frequency-dependent properties
for Link and Support elements, if defined, are considered in the analyses. All analy-
ses are performed in the complex domain.

Harmonic Motion

398

Harmonic loading is of the form r(#) = p0 cos(®t) + p90sin(wt), where o is the cir-
cular frequency of the excitation. This loading is assumed to exist for all time, so
that transient components of the response have vanished. In other words,
steady-state conditions have been achieved.

The spatial loading consists of two parts: the in-phase component p0, and the 90°
out-of-phase component p90. The spatial distributions do not vary as a function of
time.

The equilibrium equations for the structural system are of the following form:
Ku(t)+Cu(t)+ M ii(t)=r(t)= p0cos(wt)+ p90 sin(wt)

where K is the stiffness matrix, C is the viscous damping matrix, M is the diagonal
mass matrix, and u, &, and # are the joint displacements, velocities, and accelera-
tions, respectively.

Overview
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Frequency Domain

It is more convenient to re-write the equations in complex form. The loading is then
given by

r(t) = p exp(iot) = p (cos(wt) + i sin(wt))

where the overbar indicates a complex quantity. The real cosine term represents the
in-phase component, and the imaginary sine term represents the 90° out-of-phase
component.

The steady-state solution of this equation requires that the joint displacements be of
the same form:

u(t)=a exp(iot) =a (cos(wt) +isin(wt))
Substituting these into the equation of motion yields:
[K +ioC -0’ M la=p
We can define a complex impedance matrix
K=K-0"M +ioC

where the real part represents stiffness and inertial effects, and the imaginary part
represents damping effects. Note that the real part may be zero or negative. The
equations of motion can be written:

K(o)a (0)=p(o) (Eqn. 1)

where here we emphasize that the impedance matrix, the loading, and the displace-
ments are all functions of frequency.

The impedance matrix is a function of frequency not only because of the inertial
and damping terms, but also because frequency-dependent Link and Support ele-
ment properties are permitted. Thus

K(®) =K(®) -’ M +ioC(w)

Please see Topic “Frequency-Dependent Link/Support Properties” (page 259) in
Chapter “The Link/Support Element—Advanced” for more information.
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It is common for frequency-domain problems to specify a hysteretic (displace-
ment-based) damping matrix D rather than a viscous (velocity-based) damping ma-
trix C. These are related as:

D=0C

[As an aside, note that from this definition a nonzero value of hysteretic damping D
at © =0 (static conditions) results in an undefined value for viscous damping C.
This leads to considerations of the noncausality of hysteretic damping, as discussed
in Makris and Zhang (2000). However, this is usually ignored. ]

Hysteretic damping may be specified as a function of frequency, i.e., D = D(®), and
there is no restriction imposed on the value at ® = 0.

Using hysteretic damping, the complex impedance matrix becomes

K() =K(®) —o° M +iD(w)

Sources of Damping

In frequency-domain analysis, the damping matrix D(w) has four different sources
as described in the following. Damping from these sources is added together.

Hysteretic Damping from the Load Case

For each Steady-state or Power-spectral-density Load Case, you may specify pro-
portional damping coefficients that apply to the structure as a whole. The damping
matrix is calculated as a linear combination of the stiffness matrix scaled by a coef-
ficient, di, and the mass matrix scaled by a second coefficient, d;,. For most prac-
tical cases, d;; = 0and only d is used.

You may specify that these coefficients are constant for all frequencies, or they
may be linearly interpolated between values that you specify at different frequen-
cies. Thus the damping matrix becomes:

D(w) =d g (0K +d ()M

The stiffness matrix used here includes all elements in the structure except for any
Link or Support elements that have frequency-dependent properties.

Ifyou specify d;, = 0and d g (w) to linearly increase with frequency, this is equiva-
lent to viscous damping.

Damping
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You can approximate modal damping by setting d,, = 0and d x (®) = 2d(w), where
d(®) is the modal damping ratio. For example, if you typically use a constant 5%
modal damping for all modes, the equivalent hysteretic damping value is a constant
d g () =0.10. For each mode, this leads to approximately the same level of re-
sponse at resonance.

Hysteretic Damping from the Materials

You may specify stiffness and mass proportional damping coefficients for individ-
ual materials. For example, you may want to use larger coefficients for soil materi-
als than for steel or concrete. The same interpretation of these coefficients applies
as described above for the Load Case damping. Be sure not to double-count the
damping by including it in both the Load Case and the materials.

Hysteretic Damping from Frequency-Dependent Link/Support Elements

For any Link or Support elements that have frequency-dependent properties as-
signed to them, the frequency-dependent hysteretic damping values are added to
the damping matrix used.

Viscous Damping from the Link/Support Elements

For any Link or Support elements that do not have frequency-dependent properties
assigned to them, the linear effective-damping coefficients are multiplied by fre-
quency o and added to the damping matrix. The linear effective-damping values
are used regardless of whether or not nonlinear damping coefficients have been
specified.

Loading

The load, p(®), applied in a given Steady-state or Power-spectral-density case may
be an arbitrary function of space and frequency. It can be written as a finite sum of
spatial load vectors, p;, multiplied by frequency functions, f;(), as:

PO)=Y 5,0 p e =3 5,f(0) p,(cosb, +isin® ) (Ean. 2)
J J

Here s is a scale factor and 8 ; is the phase angle at which load p ; is applied.

The program uses Load Patterns and/or Acceleration Loads to represent the spatial
load vectors, p j»as described below.
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The frequency functions used here depend on the type of analysis. See Topics
“Steady-State Analysis” (page 403) and “Power-Spectral-Density Analysis” (page
405) in this Chapter for more information.

If Acceleration Loads are used, the displacements, velocities, and accelerations are
all measured relative to the ground. The frequency functions associated with the
Acceleration Loads m , m , and m_ are the corresponding components of uniform

ground acceleration, iy, iy, and i, .

See Topic “Functions” (page 298) in Chapter “Load Cases” for more information.

Defining the Spatial Load Vectors

To define the spatial load vector, p ;, for a single term of the loading sum of Equa-
tion 2, you may specify either:

* The label of a Load Pattern using the parameter load, or

* An Acceleration Load using the parameters csys, ang, and acc, where:

— csys is a fixed coordinate system (the default is zero, indicating the global
coordinate system)

— ang is a coordinate angle (the default is zero)
— accis the Acceleration Load (U1, U2, or U3) in the acceleration local coor-
dinate system as defined below

Each Acceleration Load in the loading sum may have its own acceleration local co-
ordinate system with local axes denoted 1, 2, and 3. The local 3 axis is always the
same as the Z axis of coordinate system csys. The local 1 and 2 axes coincide with
the X and Y axes of esys if angle ang is zero. Otherwise, ang is the angle from the X
axis to the local 1 axis, measured counterclockwise when the +Z axis is pointing to-
ward you. This is illustrated in Figure 71 (page 334).

The acceleration local axes are always referred to as 1, 2, and 3. The global Accel-
eration Loads m, m, and m_ are transformed to the local coordinate system for
loading.

It is generally recommended, but not required, that the same coordinate system be
used for all Acceleration Loads applied in a given Load Case.

Load Patterns and Acceleration Loads may be mixed in the loading sum.
For more information:

* See Chapter “Load Patterns” (page 273).
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* See Topic “Acceleration Loads” (page 286) in Chapter “Load Patterns”.

Frequency Steps

Frequency-domain analyses are performed at discrete frequency steps. For a
Steady-state or Power-spectral-density Load Case, you may request the response at
the following frequencies:

* A required range of equally spaced frequencies. This is defined by specifying
the first frequency, f] = 0; the last frequency, f5 > f}; and the number of incre-
ments, n> 0. This results in the following set of frequencies:

fl:fl +Afafl +2Af:"',f27

where Af =(f> — f1)/n.

* Optionally, at all frequencies calculated in a specified Modal Load Case. Only
frequencies that fall within the frequency range f; to f, will be used. See Chap-
ter “Modal Analysis” (page 305) for more information.

* Optionally, at specified fractional deviations from all frequencies calculated in
a specified Modal Load Case. For example, suppose you specify fractional de-
viations of 0.01 and -0.02. For each frequency f found by the Modal Load
Case, the frequency-domain analysis will be performed at 1.01/ and 0.98 f.
Only frequencies that fall within the frequency range f| to f, will be used.

* Optionally, at any number of directly specified frequencies f. Only frequen-
cies that fall within the frequency range f; to f, will be used.

Frequencies may be specified in Hz (cycles/second) or RPM (cycles/minute).
These will be converted to circular frequencies, m, by the program.

The use of modal frequencies and their fractional deviations can be very important
to capture resonant behavior in the structure. Any set of equally-spaced frequencies
could easily skip over the most significant response in a given frequency range. The
use of directly specified frequencies can be important when you are concerned
about sensitive equipment that may respond strongly at certain frequencies.

Steady-State Analysis

Steady-state analysis seeks the response of the structure at one or more frequencies
to loading of the form:
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P)= s,/ @) pe’ =3 s,f;(@)p,(cosd; +isin® )
j j

See Topic “Loading” (page 401) in this Chapter for more information about this
type of loading.

The frequency function, f';(®), is given directly by a steady-state function that you
define. It represents the magnitude of the load before scaling by s;. See Topic
“Functions” (page 298) in Chapter “Load Cases” for more information.

If you are interested in the response characteristics of the structure itself, a constant
function could be used, i.e., /() = 1. For loading that is caused by rotating ma-

chinery, f;(®)= o’ might be used.

Example

Suppose we have a machine with a spinning flywheel that has an eccentric mass.
The mass is m and the center of mass is eccentric by an amount e. The flywheel
spins about an axis parallel to the global Y axis. This machine is mounted on a
structure, and we are interested in the steady-state response of the structure to the
machine running at any speed in the range from 0 to 30Hz (1800 RPM).

The magnitude of the force from the eccentric mass that acts on the center of rota-

tion is given by emw”. This force rotates in the X-Z plane. To define the loading, we
need the following:

* A Load Pattern, say “ECCX”, in which a unit load in the +X direction is as-
signed to the joint that represents the center of the flywheel.

* Another Load Pattern, say “ECCZ”, in which a unit load in the +Z direction is
assigned to the same joint.

* A Steady-state Function, say “FSQUARED”, which varies as f;(®) = o’

* A Modal Load Case, say “MODAL”, which calculates all natural frequencies
in the range from 0 to 30Hz. This can be for eigen or Ritz vectors; if Ritz, use
the two Load Patterns “ECCX” and “ECCZ” as the starting load vectors.

We then define a Steady-state Load Case with the following features:

* The loads applied include the following two contributions:

— Load Pattern “ECCX”, Function “FSQUARED?”, a scale factor equal to
em, and a phase angle of 0°
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— Load Pattern “ECCZ”, Function “FSQUARED”, a scale factor equal to
em, and a phase angle of 90°

* Frequency range from 0 to 30Hz, with 15 increments (every 2Hz)
* Additional frequencies at the modal frequencies of Load Case “MODAL”

» Additional frequencies at the following fractional deviations from the modal
frequencies of Load Case “MODAL”: +0.01, —0.01, +0.02, —0.02, +0.03,
—0.03, +0.05, -0.05

+ Stiffness-proportional hysteretic damping with a coefficient of d;, = 0.04, cor-
responding to modal damping of 2%, which may be appropriate for small vi-
brations

After analysis, we can plot the deflected shape or force/stress response at any of the
requested frequencies and at any phase angle. For example, the response at phase
angle 0° primarily represents the behavior due to horizontal loading, plus a damp-
ing component due to vertical loading. We can instead plot the magnitude of the re-
sponse at any requested frequency, where the magnitude is given by the square-root
of the sum of the squares of the real (0°) and imaginary (90°) response components.

It is also possible to display plots of any response quantity as a function of fre-
quency, yielding a frequency spectrum. This can be done for the component at any
phase angle, or for the magnitude of the response.

Power-Spectral-Density Analysis

Power-spectral-density (PSD) analysis is similar to Steady-state analysis in that it
considers the harmonic behavior of the structure over a range of frequencies. How-
ever, the loading is considered to be probabilistic over the frequency range of the
analysis, and so too is the response. This probabilistic response can be integrated
over the frequency range to determine a single expected value. This can be useful,
for example, for fatigue design.

A PSD Load Case considers correlated loading of the form:
_ i0 j ..
p(o) =2sjfj(co)pje / =Zsjfj(oo)pj(cos@j +isin® ;)
J J
See Topic “Loading” (page 401) in this Chapter for more information about this

type of loading.
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The frequency function, f';(®), used in this sum is taken as the square root of a

Power-spectral-density function that you define.

To explain this further, PSD functions are specified as load-squared per unit of fre-
quency. In order to combine correlated loading algebraically, the square-root of
these functions are used. Normally one would expect that the same PSD function
would be used for all correlated loading terms, but this is not required. Note that us-
ing a scale factor s ; =2 in the sum here is the same as multiplying the PSD function
itself by a factor of four. See Topic “Functions” (page 298) in Chapter “Load
Cases” for more information.

The PSD curve for any response quantity (displacement, force, stress, etc.) is given
by the square of the magnitude of that calculated response, plotted at every re-
quested frequency step. The square-root of the integral under the PSD curve for a
given response quantity gives the probabilistic expected value for that quantity,
i.e., the root-mean-square (RMS) value. This will always be a positive number.

Because the PSD curves represent the square of the response, most of the integrated
area will be near resonant frequencies of the structure. For accuracy, it is very im-
portant to capture the response at frequency steps at and around the natural modes
of the structure.

Uncorrelated loading should be defined in separate PSD Load Cases, and then
combined using SRSS-types of Load Combinations. See Topic “Load Combina-
tions (Combos)” (page 299) in Chapter “Load Cases.”

Example

Consider the same example used in Topic “Steady-State Analysis” (page 403) of
this Chapter. Suppose that the machine is expected to operate 95% of the time in the
range of 20 to 25Hz, and 5% of the time at other frequencies from 0 to 30Hz.

The only difference between the definition of the two types of Load Cases for this
problem is in the functions. Now we will use a PSD Function, say “FPOWER”, de-
fined as follows:
0.05/25Hz, 0<wo<20Hz
Fi0)=0"1095/5Hz,  20<w<25Hz
{0.05 /25Hz, 25<w<30Hz
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Note that the ®” term is squared again. However, in the definition of the PSD Load
Case, the scale factor will still be em (not squared), since it was not included in the
PSD function itself.

The two loads, “ECCX” and “ECCZ”, must be combined in the same Load Case
because they are clearly correlated. However, if a second machine with its own in-
dependent functioning was mounted to the same structure, this should be analyzed
in a separate PSD Load Case and the two cases combined in an SRSS Load Combi-
nation.
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Bridge Analysis

Bridge Analysis can be used to compute influence lines and surfaces for traffic
lanes on bridge structures and to analyze these structures for the response due to ve-
hicle live loads.

Advanced Topics

Overview

BrIM — Bridge Information Modeler
Bridge Analysis Procedure
Lanes

Influence Lines and Surfaces
Vehicle Live Loads

General Vehicle

Vehicle Response Components
Standard Vehicles

Vehicle Classes

Moving Load Load Cases
Moving Load Response Control
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* Step-by-Step Analysis
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Bridge Analysis can be used to determine the response of bridge structures due to
the weight of Vehicle live loads. Considerable power and flexibility is provided for
determining the maximum and minimum displacements, forces, and stresses due to
multiple-lane loads on complex structures, such as highway interchanges. The ef-
fects of Vehicle live loads can be combined with static and dynamic loads, and en-
velopes of the response can be computed.

The bridge to be analyzed can be created using BrIM (the Bridge Information Mod-
eler inside SAP2000); built manually using Frame, Shell, Solid, and/or Link ele-
ments; or by combining these two approaches. The superstructure can be repre-
sented by a simple “spine” (or “spline”) model using Frame elements, or it can be
modeled in full 3-dimensional detail using Shell or Solid elements.

Lanes are defined that represent where the live loads can act on the superstructure.
Lanes may have width and can follow any straight or curved path. Multiple Lanes
need not be parallel nor of the same length, so that complex traffic patterns may be
considered. The program automatically determines how the Lanes load the super-
structure, even if they are eccentric to a spine model. Conventional influence lines
and surfaces due to the loading of each Lane can be displayed for any response

quantity.

You may select Vehicle live loads from a set of standard highway and railway Ve-
hicles, or you may create your own Vehicle live loads. Vehicles are grouped in Ve-
hicle Classes, such that the most severe loading of each Class governs.

Two types of live-load analysis can be considered:

* Influence-based enveloping analysis: Vehicles move in both directions along
each Lane of the bridge. Using the influence surface, Vehicles are automati-
cally located at such positions along the length and width of the Lanes to pro-
duce the maximum and minimum response quantities throughout the structure.
Each Vehicle may be allowed to act on every lane or be restricted to certain
lanes. The program can automatically find the maximum and minimum re-
sponse quantities throughout the structure due to placement of different Vehi-
cles in different Lanes. For each maximum or minimum extreme response
quantity, the corresponding values for the other components of response can
also be computed.

Overview
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» Step-by-step analysis: Any number of Vehicles can be run simultaneously on
the Lanes, each with its own starting time, position, direction and speed.
Step-by-step static or time-history analysis can be performed, with nonlinear
effects included if desired.

For most design purposes the enveloping-type analysis using Moving-Load Load
Cases is most appropriate. For special studies and unusual permit vehicles, the
step-by-step approach can be valuable.

Important Note:

BrIM (the Bridge Information Modeler) is required to take advantage of many
features described in the chapter. If you do not have a license for BriM, you can
still perform bridge analysis, but with the following restrictions:

* Bridge loads can only be applied to Frame elements. This means that spine
models are the most suitable, although you can also work with grillages, or
lay phantom Frame elements on Shell or Solid element decks.

* Lanes are defined by reference to a line (path) of Frame elements, and the
load will be applied to these elements. Lanes may be specified to be eccentric
to the Frame elements.

o Width effects for Lanes and Vehicles are not included.
* Influence lines, but not surfaces, are available

* Influence-based Moving-Load Load Cases are available, but step-by-step
analysis is not.

BrIM — Bridge Information Modeler

BrIM, the Bridge Information Modeler inside SAP2000, provides a powerful way
to create and manage simple or complex bridge models. The bridge is represented
parametrically with a set of high-level objects: layout (alignment) lines, bents (pier
supports), abutments (end supports), deck cross sections, prestress tendons, etc.

These objects are combined into a super object called a Bridge Object. Typically a
single Bridge Object represents the entire structure, although you may need multi-
ple Bridge Objects if you have parallel structures, or want to consider merges or
splits.

A BrIM Wizard is available within the Bridge Information Modeler to guide you
through the process of creating a bridge model, and help is available within the wiz-
ard itself.

BrIM — Bridge Information Modeler 41
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The important thing to understand here is that this parametric model of the bridge
exists independently from the discretization of the model into elements. You may
choose to discretize the Bridge Object as Frames (spine model), Shells, or Solids,
and you may choose the size of the elements to be used. You can change the
discretization at any time without affecting your parameterized bridge model.
When you do this, the previously generated elements are automatically deleted, and
new elements created.

You can add additional elements to the model to represent features of the bridge
that may not be provided by BrIM. These elements will not be affected by changes
to the Bridge Object or its discretization, although it may be necessary to move or
modify them if you change the geometry of the bridge.

You can make changes to the elements generated from a Bridge Object, such as as-
signing different properties or additional loads. These changes will survive regen-
eration of the model if a new element is generated in exactly the same location.
However, this may not occur if there are changes in bridge geometry or
discretization, so it is best to check a regenerated model and make your changes
again if necessary.

Bridge Analysis Procedure
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There are two types of live-load analysis that can be performed: influence-base en-
veloping analysis, and step-by-step analysis with full correspondence. The basic
steps required for these two types of analysis are as follows.

For both types of analysis:

(1) Create a structural model using BrIM and/or standard SAP2000 model-build-
ing techniques.

(2) Define Lanes that specify the location on the bridge where vehicles can travel.

(3) Define Vehicles that represent the live load acting in the Lanes.

For Influence-Based Analysis:

(4) Define Vehicle Classes that group together one or more Vehicles that should be
enveloped.

(5) Define Moving-Load Load Cases that specify which Vehicle Classes should be
moved on which Lanes to produce the enveloped response.

Bridge Analysis Procedure
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(6) Specify Bridge Response parameters that determine for which elements mov-
ing-load response should be calculated, and set other parameters that control
the influence-based analysis.

(7) After running the analysis, you may view influence lines for any element re-
sponse quantity in the structure, and envelopes of response for those elements
requested under Bridge Response.

For Step-by-Step Analysis:

(8) Define Load Patterns of type “Bridge Live” that specify which Vehicles move
on which Lanes, at what speed, and from what starting positions.

(9) Apply the Bridge-Live Load Patterns in Multi-Step Static Load Cases, or in
Time-History Load Cases if you are interested in dynamical effects.

(10) After running the analysis, you may view step-by-step response or envelopes
of response for any element in the structure. You may create a video showing
the step-by-step static or dynamic results. Influence lines are not available.

Both types of bridge analysis may exist in the same model. You may create addi-
tional Load Patterns and Load Cases, and combine the results of these with the re-
sults for either type of bridge analysis.

Lanes

The Vehicle live loads are considered to act in traffic Lanes transversely spaced
across the bridge roadway. The number of Lanes and their transverse spacing can
be chosen to satisfy the appropriate design-code requirements. For simple bridges
with a single roadway, the Lanes will usually be parallel and evenly spaced, and
will run the full length of the bridge structure.

For complex structures, such as interchanges, multiple roadways may be consid-
ered; these roadways can merge and split. Lanes need not be parallel nor be of the
same length. The number of Lanes across the roadway may vary along the length to
accommodate merges. Multiple patterns of Lanes on the same roadway may be cre-
ated to examine the effect of different lateral placement of the Vehicles.

Centerline and Direction

A traffic Lane is defined with respect to a reference line, which can be either a
bridge layout line or a line (path) of Frame elements. The transverse position of the
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Lane centerline is specified by its eccentricity relative to the reference line. Lanes
are said to “run” in a particular direction, namely from the first location on the ref-
erence line used to define the Lane to the last.

Eccentricity

Each Lane across the roadway width will usually refer to the same reference line,
but will typically have a different eccentricity. The eccentricity for a given Lane
may also vary along the length.

The sign of a Lane eccentricity is defined as follows: in an elevation view of the
bridge where the Lane runs from left to right, Lanes located in front of the roadway
elements have positive eccentricity. Alternatively, to a driver traveling on the road-
way in the direction that the Lane runs, a Lane to the right of the reference line has a
positive eccentricity. (Note that this is the opposite sign convention from older ver-
sions of SAP2000 before BrIM.) The best way to check eccentricities is to view
them graphically in the graphical user interface.

In a spine model, the use of eccentricities is primarily important for the determina-
tion of torsion in the bridge deck and transverse bending in the substructure. In
Shell and Solid models of the superstructure, the eccentricity determines where the
load is applied on the deck.

Width

You may specify a width for each Lane, which may be constant or variable along
the length of the Lane. When a Lane is wider than a Vehicle, each axle or distrib-
uted load of the Vehicle will be moved transversely in the Lane to maximum effect.
If the Lane is narrower than the Vehicle, the Vehicle is centered on the Lane and the
Vehicle width is reduced to the width of the Lane.

Interior and Exterior Edges

Certain AASHTO vehicles require that the wheel loads maintain a specified mini-
mum distance from the edge of the lane. This distance may be different depending
on whether the edge of the lane is at the edge of the roadway or is interior to the
roadway. For each lane, you may specify for the left and right edges whether they
are interior or exterior, with interior being the default. This only affects vehicles
which specify minimum distances for the wheel loads. By default, vehicle loads
may be placed transversely anywhere in the lane, i.e., the minimum distance is zero.

Lanes
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Left and right edges are as they would be viewed by a driver traveling in the direc-
tion the lane runs.

Discretization

A influence surface will be constructed for each Lane for the purpose of placing the
vehicles to maximum effect. This surface is interpolated from unit point loads,
called influence loads, placed along the width and length of the Lane. Using more
influence loads increases the accuracy of the analysis at the expense of more
computational time, memory, and disk storage.

You can control the number of influence loads by independently specifying the
discretization to be used along the length and across the width of each Lane.
Discretization is given as the maximum distance allowed between load points.
Transversely, it is usually sufficient to use half the lane width, resulting in load
points at the left, right, and center of the Lane. Along the length of the Lane, using
eight to sixteen points per span is often adequate.

As with analyses of any type, it is strongly recommended that you start with models
that run quickly, using coarser discretization, so that you can gain experience with
your model and perform reality checks. Later, you can increase the refinement until
you achieve the desired level of accuracy and obtain the detailed results that you
need.

Influence Lines and Surfaces

SAP2000 uses influence lines and surfaces to compute the response to vehicle live
loads. Influence lines and surfaces are also of interest in their own right for under-
standing the sensitivity of various response quantities to traffic loads.

Influence lines are computed for Lanes of zero width, while influence surfaces are
computed for Lanes having finite width.

An influence line can be viewed as a curve of influence values plotted at the load
points along a traffic Lane. For a given response quantity (force, displacement, or
stress) at a given location in the structure, the influence value plotted at a load point
is the value of that response quantity due to a unit concentrated downward force
acting at that load point. The influence line thus shows the influence upon the given
response quantity of a unit force moving along the traffic lane. Figure 75 (page 416)
shows some simple examples of influence lines. An influence surface is the exten-
sion of this concept into two dimensions across the width of the lane.
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(a) Influence Line for Vertical Shear at Center
of a Simple Span

A [

(b) Influence Line for Moment at Center of Left Span
of Two Continuous Spans

W

(c) Influence Line for Moment at Center Support
of Two Continuous Spans

Figure 75
Examples of Influence Lines for One-Span and Two-Span Beams

Influence lines and surfaces may exhibit discontinuities (jumps) at the location of
the response quantity when it is located at a load point on the traffic lane. Disconti-
nuities may also occur where the structure itself is not continuous (e.g., expansion
joints).

416 Influence Lines and Surfaces
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Influence lines and surfaces may be displayed in the graphical user interface for the
displacement, force, or stress response of any element in the structure. They are
plotted on the Lanes with the influence values plotted in the vertical direction. A
positive influence value due to gravity load is plotted upward. Influence values are
linearly interpolated between the known values at the load points.

Vehicle Live Loads

Any number of Vehicle live loads, or simply Vehicles, may be defined to act on the
traffic Lanes. You may use standard types of Vehicles known to the program, or de-
sign your own using the general Vehicle specification.

Direction of Loading

All vehicle live loads represent weight and are assumed to act downward, in the —Z
global coordinate direction.

See “Upward and Horizontal Directions” (page 13) in Chapter “Coordinate Sys-
tems.”

Distribution of Loads

Longitudinally, each Vehicle consists of one or more axle loads and/or one or more
uniform loads. Axle loads act at a single longitudinal location in the vehicle. Uni-
form loads may act between pairs of axles, or extend infinitely before the first axle
or after the last axle. The width of each axle load and each uniform load is inde-
pendently specified. These widths may be fixed or equal to the width of the Lane.

For Moving-Load Load Cases using the influence surface, both axle loads and uni-
form loads are used to maximum effect. For step-by-step analysis, only the axle
loads are used.

Axle Loads

Longitudinally, axle loads look like a point load. Transversely, axle loads may be
represented as one or more point (wheel) loads or as distributed (knife-edge) loads.
Knife-edge loads may be distributed across a fixed width or the full width of the
lane. Axle loads may be zero, which can be used to separate uniform loads of differ-
ent magnitude.
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Uniform Loads

Longitudinally, the uniform loads are constant between axles. Leading and trailing
loads may be specified that extend to infinity. Transversely, these loads may be dis-
tributed uniformly across the width of the lane, over a fixed width, or they may be
concentrated at the center line of the lane.

Minimum Edge Distances

Certain AASHTO vehicles require that the wheel loads maintain a specified mini-
mum distance from the edge of the lane. For any vehicle, you may specify a mini-
mum distance for interior edges of lanes, and another distance for exterior edges.
By default, these distances are zero. The specified distances apply equally to all
axle loads, but do not affect longitudinally-uniform loads. The definition of interior
and exterior edges is given in Subtopic “Lanes” (page 413).

Restricting a Vehicle to the Lane Length

When moving a vehicle along the length of the lane, the front of the vehicle starts at
one end of the lane, and the vehicle travels forward until the back of the vehicle ex-
its the other end of the lane. This means that all locations of the vehicle are consid-
ered, whether fully or partially on the lane

You have the option to specify that a vehicle must remain fully on the lane. This is
useful for cranes and similar vehicles that have stops at the end of their rails that
prevent them from leaving the lane. This setting only affects influence-surface
analysis, not step-by-step analysis where you can explicitly control where the
vehicle runs.

Application of Loads to the Influence Surface

The maximum and minimum values of a response quantity are computed using the
corresponding influence line or surface. Concentrated loads are multiplied by the
influence value at the point of application to obtain the corresponding response;
distributed loads are multiplied by the influence values and integrated over the
length and width of application.

By default, each concentrated or distributed load is considered to represent a range
of values from zero up to a specified maximum. When computing a response quan-
tity (force or displacement) the maximum value of load is used where it increases
the severity of the response, and zero is used where the load would have a relieving
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effect. Thus the specified load values for a given Vehicle may not always be ap-
plied proportionally. This is a conservative approach that accounts for Vehicles
that are not fully loaded. Thus the maximum response is always positive (or zero);
the minimum response is always negative (or zero).

You may override this conservative behavior as discussed in the next Subtopic,
“Option to Allow Reduced Response Severity”.

By way of example, consider the influence line for the moment at the center of the
left span shown in Figure 75(b) (page 416). Any axle load or portion of a distrib-
uted load that acts on the left span would contribute only to the positive maximum
value of the moment response. Loads acting on the right span would not decrease
this maximum, but would contribute to the negative minimum value of this moment
response.

Option to Allow Reduced Response Severity

You have the option to allow loads to reduce the severity of the response. If you
choose this option, all concentrated and uniform loads will be applied at full value
on the entire influence surface, regardless of whether or not that load reduces the
severity of the response. This is less conservative than the default method of load
application. The use of this option may be useful for routing special vehicles whose
loads are well known. However, for notional loads that represent a distribution or
envelope of unknown vehicle loadings, the default method may be more appropri-
ate.

Width Effects

Fixed-width loads will be moved transversely across the width of a Lane for maxi-
mum effect if the Lane is wider than the load. If the Lane is narrower than the load,
the load will be centered on the Lane and its width reduced to be equal to that of the
Lane, keeping the total magnitude of the load unchanged.

The load at each longitudinal location in the vehicle is independently moved across
the width of the Lane. This means that the front, back, and middle of the vehicle
may not occupy the same transverse location in the lane when placed for maximum
effect.

Length Effects

You may specify that the magnitude of the loading depends on lane length using
built-in or user-defined length functions. One function may be used to affect the
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concentrated (axle) loads, and another function may be used for the distributed
loads. These functions act as scale factors on the specified load values.

Concentrated (Axle) Loads

If you specify a length-effect function for the axle loads, all axle loads will be
scaled equally by the function, including floating axle loads. Built-in length-effect
functions include the AASHTO Standard Impact function and the JTG-D60 Lane
load function. You may define your own function.

The intent of this function is to scale the load according to span length. In a given
structure, there may not be a constant span length, so the program uses the influence
line to determine what span length to use. This may differ for each computed re-
sponse quantity, and may not always correspond to the obvious span length in the
global structure.

For a given reponse quantity, the maximum point on the influence line is found, and
the distance between the zero-crossings on either side of this maximum is taken to
be the span length. For the three influence lines of Figure 75 (page 416), this would
result in a span length of half the distance between the supports for the shear in (a),
and the full distance between the supports for the moments in (b) and (¢). For shear
near the support, the span length would be essentially the same as the distance be-
tween the support.

This approach generally works well for moments and for shear near the supports. A
shorter span length is computed for shear near midspan, but here the shear is
smaller anyway, so it is not usually of concern.

Distributed Loads

If you specify a length-effect function for the distributed loads, all distributed loads
will be scaled equally by the function. Built-in length-effect functions include the
AASHTO Standard Impact function and the British HA function. You may define
your own function.

The intent of this function is to scale the load according to the loaded length, but not
unconservatively. The influence line is used to determine the loaded length for each
individual response quantity. Only loaded lengths that increase the severity of the
response are considered.

To prevent long lengths of small influence from unconservatively reducing the re-
sponse, an iterative approach is used where the length considered is progressively
increased until the maximum response is computed. Any further increases in length
that reduce the response due to decreasing function value are ignored.

Vehicle Live Loads
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Application of Loads in Multi-Step Analysis

Vehicles can be moved in a multi-step analysis. This can use either Multi-Step
Static Load Cases or Time-History Load Cases, the latter of which can be linear or
nonlinear.

Influence surfaces are not used for this type of analysis. Rather, SAP2000 creates
many internal Load Patterns representing different positions of the vehicles along
the length of the lanes.

Only axle loads are considered; the uniform loads are not applied. In the case of a
variable axle spacing, the minimum distance is used. The transverse distribution of
the axle loads is considered. The vehicle is moved longitudinally along the center-
line of the lane; it is not moved transversely within the lane. To consider different
transverse positions, you can define additional lanes.

The full magnitude of the loads are applied, regardless of whether they increase or
decrease the severity of the response. Each step in the analysis corresponds to a spe-
cific position of each vehicle acting in its lane. All response at that step is fully cor-
related.

General Vehicle

The general Vehicle may represent an actual vehicle or a notional vehicle used by a
design code. Most trucks and trains can be modeled by the SAP2000 general Vehi-
cle.

The general Vehicle consists of n axles with specified distances between them.
Concentrated loads may exist at the axles. Uniform loads may exist between pairs
of axles, in front of the first axle, and behind the last axle. The distance between any
one pair of axles may vary over a specified range; the other distances are fixed. The
leading and trailing uniform loads are of infinite extent. Additional “floating” con-
centrated loads may be specified that are independent of the position of the axles.

By default for influence surface analysis, applied loads never decrease the severity
of the computed response, so the effect of a shorter Vehicle is captured by a longer
Vehicle that includes the same loads and spacings as the shorter Vehicle. Only the
longer Vehicle need be considered in such cases.

If you choose the option to allow loads to reduce the severity of response, then you
must consider the shorter and longer vehicles, if they both apply. This is also true
for step-by-step analysis.
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Specification

To define a Vehicle, you may specify:

n—1 positive distances, d, between the pairs of axles; one inter-axle distance
may be specified as a range from dmin to dmax, where 0 < dmin < dmax, and
dmax = 0 can be used to represent a maximum distance of infinity

n concentrated loads, p, at the axles, including the transverse load distribution
for each

n+1 uniform loads, w: the leading load, the inter-axle loads, and the trailing
load, including the transverse load distribution for each

Floating axle loads:

— Load pm for superstructure moments, including its transverse distribution.
You may specify whether or not to double this load for negative super-
structure moments over the supports, as described below

— Load pxm for all response quantities except superstructure moments, in-
cluding its transverse distribution

Whether or not this Vehicle is to be used for calculating:
— “Negative” superstructure moments over the supports
— Reaction forces at interior supports
— Response quantities other than the two types above

Minimum distances between the axle loads and the edges of the lane; by default
these distances are zero

Whether or not the vehicle must remain fully within the length of lane

Whether or not to automatically reduce the magnitude of the uniform loads
based on the loaded length of the lane according to the British code

The number of axles, n, may be zero, in which case only a single uniform load and
the floating concentrated loads can be specified.

These parameters are illustrated in Figure 76 (page 423). Some specific examples
are given in Topic “Standard Vehicles” (page 426). Additional detail is provided in
the following.

Moving the Vehicle

When a Vehicle is applied to a traffic Lane, the axles are moved along the length of
the lane to where the maximum and minimum values are produced for every re-
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(1) All loads are point loads or uniform line loads acting on the Lane center line
(2) Any of the point loads or uniform line loads may be zero

(8) The number of axles, n, may be zero or more

(4) One of the inter-axle spacings, dy through d,, may vary over a specified range

(5) The locations of loads pm and pxm are arbitrary

Figure 76
General Vehicle Definition

sponse quantity in every element. Usually this location will be different for each re-
sponse quantity. For asymmetric (front to back) Vehicles, both directions of travel
are considered.

Vehicle Response Components

Certain features of the AASHTO H, HS, and HL vehicular live loads (AASHTO,
2004) apply only to certain types of bridge response, such as negative moment in
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the superstructure or the reactions at interior supports. SAP2000 uses the concept
of vehicle response components to identify these response quantities. You select
the objects that need special treatment, and assign the appropriate vehicle response
components to them.

The different types of available vehicle response components are described in the
following subtopics.

Superstructure (Span) Moment

For AASHTO H and HS “Lane” loads, the floating axle load pm is used for calcu-
lating the superstructure moment. How this moment is represented depends on the
type of model used. For all other types of response, the floating axle load pxm is
used.

The general procedure is to select the elements representing the superstructure and
assign vehicle response components “H and HS Lane Loads — Superstructure Mo-
ment” to the desired response quantities, as described next.

For a spine (spline) model where the superstructure is modeled as a line of frame el-
ements, superstructure moment corresponds to frame moment M3 for elements
where the local-2 axis is in the vertical plane (the default.) Thus you would select
all frame elements representing the superstructure and assign the vehicle response
components to M3, indicating to “Use All Values” (i.e., positive and negative.)
Load pm will be used for computing M3 of these elements.

For a full-shell model of the superstructure, superstructure moment corresponds to
longitudinal stresses or membrane forces in the shell elements. Assuming the lo-
cal-1 axes of the shell elements are oriented along the longitudinal direction of the
bridge, you would select all shell elements representing the superstructure and as-
sign the vehicle response components to S11 and/or F11, indicating to “Use All
Values” (i.e., positive and negative.) You could also make this same assignment to
shell moments M11. Load pm will be used for computing any components you
have so assigned.

Negative Superstructure (Span) Moment

For AASHTO H and HS “Lane” loads, the floating axle load pm is applied in two
adjacent spans for calculating the negative superstructure moment over the
supports. Similarly, for AASHTO HL loads, a special double-truck vehicle is used
for calculating negative superstructure moment over interior supports. Negative
moment here means a moment that causes tension in the top of the superstructure,
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even if the sign of the SAP2000 response is positive due to a particular choice of lo-
cal axes.

The procedure for different types of structures is very similar to that described
above for superstructure moment: select the elements representing the superstruc-
ture, but now assign vehicle response components “H, HS and HL Lane Loads —
Superstructure Negative Moment over Supports” to the desired response quanti-
ties. However, we have to decide how to handle the sign.

There are two general approaches. Let's consider the case of the spine model with
frame moment M3 representing superstructure moment:

(1) You can select the entire superstructure, and assign the vehicle response com-
ponents to M3, indicating to “Use Negative Values”. Only negative values of
M3 will be computed using the double pm or double-truck load.

(2) Youcan select only that part of the superstructure within a pre-determined neg-
ative-moment region, such as between the inflection points under dead load.
Assign the vehicle response components to M3, indicating to “Use Negative
Values” or “Use All Values.”

The first approach may be slightly more conservative, giving negative moments
over a larger region. However, it does not require you to determine a negative-mo-
ment region.

The situation with the shell model is more complicated, since negative moments
correspond to positive membrane forces and stresses at the top of the superstruc-
ture, negative values at the bottom of the superstructure, and changing sign in be-
tween. For this reason, approach (2) above may be better: determine a negative-mo-
ment region, then assign the vehicle response components to the desired shell
stresses, membrane forces, and/or moments, indicating to “Use All Values.” This
avoids the problem of sign where it changes through the depth.

Reactions at Interior Supports

For AASHTO HL loads, a special double-truck vehicle is used for calculating the
reactions at interior supports. It is up to you to determine what response compo-
nents you want to be computed for this purpose. Choices could include:

» Vertical upward reactions, or all reactions, for springs and restraints at the base
of the columns

» Compressive axial force, or all forces and moments, in the columns
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» Compressive axial force, or all forces and moments, in link elements represent-
ing bearings

* Bending moments in outriggers at the columns

The procedure is as above for superstructure moment. Select the elements repre-
senting the interior supports and assign the vehicle response components “HL — Re-
actions at Interior Supports” to the desired response quantities. Carefully decide
whether you want to use all values, or only negative or positive values. You will
have to repeat this process for each type of element that is part of the interior sup-
ports: joints, frames, links, shells, and/or solids.

Standard Vehicles
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There are many standard vehicles available in SAP2000 to represent vehicular live
loads specified in various design codes. More are being added all the time. A few
examples are provided here for illustrative purposes. Only the longitudinal distri-
bution of loading is shown in the figures. Please see the graphical user interface for
all available types and further information.

Hn-44 and HSn-44

Vehicles specified with type = Hn-44 and type = HSn-44 represent the AASHTO
standard H and HS Truck Loads, respectively. The n in the type is an integer scale
factor that specifies the nominal weight of the Vehicle in tons. Thus H15-44 is a
nominal 15 ton H Truck Load, and HS20-44 is a nominal 20 ton HS Truck Load.
These Vehicles are illustrated in Figure 77 (page 427).

The effect of an H Vehicle is included in an HS Vehicle of the same nominal
weight. If you are designing for both H and HS Vehicles, only the HS Vehicle is
needed.

Hn-44L and HSn-44L

Vehicles specified with type = Hn-44L and type = HSn-44L represent the
AASHTO standard H and HS Lane Loads, respectively. The n in the type is an in-
teger scale factor that specifies the nominal weight of the Vehicle in tons. Thus
H15-44 is a nominal 15 ton H Lane Load, and HS20-44 is a nominal 20 ton HS
Lane Load. These Vehicles are illustrated in Figure 77 (page 427). The Hn-44L and
HSn-44L Vehicles are identical.

Standard Vehicles
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AASHTO Standard H and HS Vehicles
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AASHTO Standard HL Vehicles

428 Standard Vehicles



Chapter XXVl  Bridge Analysis

N
[«2)
=

48 k
P5 Permit Load

T

N
[«)]
=

i
L<_§

48 k
P7 Permit Load

T

N
[e)]
=

-
(o]
-
(o]

48 k

¢ P9 Permit Load

T

N
]

JF<—§ %4—2

N
[«
=

JF<—§ %4—5‘3 JF<—
JF<—§ JF<—§

P

48k 48k
k P11 Permit
Load
F— 18 18'—»&4— 18 '—4
P13 Permit
48k 48k 48k 48k 48k Load gy

T

!
e

-
-
-
-

Figure 79
Caltrans Standard Permit Vehicles
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AML

Vehicles specified with type = AML represent the AASHTO standard Alternate
Military Load. This Vehicle consists of two 24 kip axles spaced 4 ft apart.

HL-93K, HL-93M and HL-93S

Vehicles specified with type = HL-93K represent the AASHTO standard HL-93
Load consisting of the code-specified design truck and the design lane load.

Vehicles specified with type = HL-93M represent the AASHTO standard HL-93
Load consisting of the code-specified design tandem and the design lane load.

Vehicles specified with type = HL-93S represent the AASHTO standard HL-93
Load consisting of two code-specified design trucks and the design lane load, all
scaled by 90%. The axle spacing for each truck is fixed at 14 ft. The spacing be-
tween the rear axle of the lead truck and the lead axle of the rear truck varies from
50 ft to the length of the Lane. This vehicle is only used for negative superstructure
moment over supports and reactions at interior supports. The response will be zero
for all response quantities that do not have the appropriately assigned vehicle re-
sponse components.

A dynamic load allowance may be specified for each Vehicle using the parameter
im. This is the additive percentage by which the concentrated truck or tandem axle
loads will be increased. The uniform lane load is not affected. Thus if im = 33, all
concentrated axle loads for the vehicle will be multiplied by the factor 1.33.

These Vehicles are illustrated in Figure 78 (page 428) for im = 0.

PS5, P7, P9, PII, and PI3

Vehicles specified with type = P5, type = P7, type = P9, type = P11, and type =
P13 represent the Caltrans standard Permit Loads. These Vehicles are illustrated in
Figure 79 (page 429).

The effect of a shorter Caltrans Permit Load is included in any of the longer Permit
Loads. If you are designing for all of these permit loads, only the P13 Vehicle is
needed.

Cooper E 80

Vehicles specified with type = COOPERESO0 represent the AREA standard Cooper
E 80 train load. This Vehicle is illustrated in Figure 80 (page 431).

Standard Vehicles



Chapter XXVl  Bridge Analysis

4@80k 4@80k

4@52k 4@ 52k
40k 40 k

<€
<€
-
<€

vvvv 8 ki/ft

‘ 8 |5|5|5] 9 ‘5' 6'|5| 8 | 8 |5[5]5| 9 ‘5' 6'|5'|5 ¥
\ FT T \ [
Cooper E 80 Train Load
250 kN 250 kN 250 kN 250 kN

80 kKN/m v v v v 80 kKN/m

¥ 0.8 m 1.6 m 1.6 m 1.6 m 0.8 m ¥

UIC80 Train Load

200 kN
px

‘ 50 kN/m
| 25 kN/m 25 kN/m |

l ¥ 100 m ¥ l

RL Train Load

Figure 80
Standard Train Vehicles

Standard Vehicles 431



CSI Analysis Reference Manual

UiCn

Vehicles specified with type = UICn represent the European UIC (or British RU)
train load. The n in the type is an integer scale factor that specifies magnitude of the
uniform load in kN/m. Thus UICSO0 is the full UIC load with an 80 kN/m uniform
load, and UIC60 is the UIC load with an 60 kN/m uniform load. The concentrated
loads are not affected by n.

This Vehicle is illustrated in Figure 80 (page 431).

RL

Vehicles specified with type = RL represent the British RL train load. This Vehicle
is illustrated in Figure 80 (page 431).

Vehicle Classes

432

The designer is often interested in the maximum and minimum response of the
bridge to the most extreme of several types of Vehicles rather than the effect of the
individual Vehicles. For this purpose, Vehicle Classes are defined that may include
any number of individual Vehicles. The maximum and minimum force and dis-
placement response quantities for a Vehicle Class will be the maximum and mini-
mum values obtained for any individual Vehicle in that Class. Only one Vehicle
ever acts at a time.

For influence-based analyses, all Vehicle loads are applied to the traffic Lanes
through the use of Vehicle Classes. If it is desired to apply an individual Vehicle
load, you must define a Vehicle Class that contains only that single Vehicle. For
step-by-step analysis, Vehicle loads are applied directly without the use of Classes,
since no enveloping is performed.

For example, the you may need to consider the most severe of a Truck Load and the
corresponding Lane Load, say the HS20-44 and HS20-44L loads. A Vehicle Class
can be defined to contain these two Vehicles. Additional Vehicles, such as the Al-
ternate Military Load type AML, could be included in the Class as appropriate. Dif-
ferent members of the Class may cause the most severe response at different loca-
tions in the structure.

For HL-93 loading, you would first define three Vehicles, one each of the standard
types HL-93K, HL-93M, and HL-93S. You then could define a single Vehicle
Class containing all three Vehicles.

Vehicle Classes
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Moving Load Load Cases

The final step in the definition of the influence-based vehicle live loading is the ap-
plication of the Vehicle Classes to the traffic Lanes. This is done by creating inde-
pendent Moving-Load Load Cases.

A Moving-Load Load Case is a type of Load Case. Unlike most other Load Cases,
you cannot apply Load Patterns in a Moving-Load Load Case. Instead, each Mov-
ing-Load Load Case consists of a set of assignments that specify how the Classes
are assigned to the Lanes.

Each assignment in a Moving-Load Load Case requires the following data:

e A Vehicle Class, class
* A scale factor, sf, multiplying the effect of class (the default is unity)

* A list, lanes, of one or more Lanes in which class may act (the default is all
Lanes)

* The minimum number, Imin, of Lanes lanes in which class must act (the de-
fault is zero)

* The maximum number, Imax, of Lanes lanes in which class may act (the de-
fault is all of lanes)

The program looks at all of the assignments in a Moving-Load Load Case, and tries
every possible permutation of loading the traffic Lanes with Vehicle Classes that is
permitted by the assignments. No Lane is ever loaded by more than one Class at a
time.

You may specify multiple-lane scale factors, rfl, rf2, rf3, ..., for each Mov-
ing-Load Load Case that multiply the effect of each permutation depending upon
the number of loaded Lanes. For example, the effect of a permutation that loads two
Lanes is multiplied by rf2.

The maximum and minimum response quantities for a Moving-Load Load Case
will be the maximum and minimum values obtained for any permutation permitted
by the assignments. Usually the permutation producing the most severe response
will be different for different response quantities.

The concepts of assignment can be clarified with the help of the following exam-
ples.
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Example | — AASHTO HS Loading

Consider a four-lane bridge designed to carry AASHTO HS20-44 Truck and Lane
Loads, and the Alternate Military Load (AASHTO, 1996). Suppose that it is re-
quired that the number of Lanes loaded be that which produces the most severe re-
sponse in every member. Only one of the three Vehicle loads is allowed per lane.
Load intensities may be reduced by 10% and 25% when three or four Lanes are
loaded, respectively.

Generally, loading all of the Lanes will produce the most severe moments and
shears along the span and axial forces in the piers. However, the most severe torsion
of the bridge deck and transverse bending of the piers will usually be produced by
loading only those Lanes possessing eccentricities of the same sign.

Assume that the bridge structure and traffic Lanes have been defined. Three Vehi-
cles are defined:

* name = HSK, type = HS20-44

* name = HSL, type = HS20-44L

* name = AML, type = AML
where name is an arbitrary label assigned to each Vehicle. The three Vehicles are

assigned to a single Vehicle Class, with an arbitrary label of name = HS, so that the
most severe of these three Vehicle loads will be used for every situation.

A single Moving-Load Load Case is then defined that seeks the maximum and
minimum responses throughout the structure for the most severe of loading all four
Lanes, any three Lanes, any two Lanes or any single Lane. This can be accom-
plished using a single assignment. The parameters for the assignment are:

* class = HS

o sf=1

* lanes=1,2,3,4

* Imin=1

* Imax=4

The scale factors for the loading of multiple Lanes in the set of assignments are rfl
=1,rf2=1,rf3=0.9, and rf4 = 0.75.

There are fifteen possible permutations assigning the single Vehicle Class HS to
any one, two, three, or four Lanes. These are presented in the following table:

Moving Load Load Cases
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Permutation | Lane 1 Lane 2 Lane 3 Lane 4 | Scale Factor
1 HS 1.00
2 HS 1.00
3 HS 1.00
4 HS 1.00
5 HS HS 1.00
6 HS HS 1.00
7 HS HS 1.00
8 HS HS 1.00
9 HS HS 1.00
10 HS HS 1.00
11 HS HS HS 0.90
12 HS HS HS 0.90
13 HS HS HS 0.90
14 HS HS HS 0.90
15 HS HS HS HS 0.75

An “HS” in a Lane column of this table indicates application of Class HS; a blank
indicates that the Lane is unloaded. The scale factor for each permutation is deter-

mined by the number of Lanes loaded.

Example 2 — AASHTO HL Loading

Consider a four-lane bridge designed to carry AASHTO HL-93 loading
(AASHTO, 2004). The approach is the same as used for AASHTO HS loading in
the previous example. Only the multiple-lane scale factors and the Vehicles differ.

Three Vehicles are defined:

* name = HLK, type = HL-93K
* name = HLM, type = HL-93M
* name = HLS, type = HL-93S

Moving Load Load Cases
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where name is an arbitrary label assigned to each Vehicle.

The three Vehicles are assigned to a single Vehicle Class, with an arbitrary label of
name = HL, so that the most severe of these three Vehicle loads will be used for
every situation. By definition of the standard Vehicle type HL-93S, Vehicle HLS
will only be used when computing negative moments over supports or the reaction
at interior piers. The other two Vehicles will be considered for all response quanti-
ties.

A single Moving-Load Load Case is then defined that is identical to that of the pre-
vious example, except that class = HL, and the scale factors for multiple Lanes are
rfl = 1.2, rf2 = 1, rf3 =0.85, and rf4 = 0.65.

There are again fifteen possible permutations assigning the single Vehicle Class
HL to any one, two, three, or four Lanes. These are similar to the permutations of
the previous example, with the scale factors changed as appropriate.

Example 3 — Caltrans Permit Loading

Consider the four-lane bridge of the previous examples now subject to Caltrans
Combination Group I py (Caltrans, 1995). Here the permit load(s) are to be used
alone in a single traffic Lane, or in combination with one HS or Alternate Military
Load in a separate traffic lane, depending upon which is more severe.

Four Vehicles are defined:

* name = HSK, type = HS20-44
* name = HSL, type = HS20-44L
* name = AML, type = AML

* name = P13, type =P13

where name is an arbitrary label assigned to each Vehicle.

The first three Vehicles are assigned to a Vehicle Class that is given the label name
=HS, as in Example 1. The last Vehicle is assigned as the only member of a Vehicle
Class that is given the label name = P13. Note that the effects of SAP2000 Vehicle
types P5, P7, P9, and P11 are captured by Vehicle type P13.

Combination Group I p is then represented as a single Moving-Load Load Case
consisting of the assignment of Class P13 to any single Lane with or without Class
HS being assigned to any other single Lane. This can be accomplished using two
assignments. A scale factor of unity is used regardless of the number of loaded
Lanes.
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The first assignment assigns Class P13 to any single Lane:

e class=P13

o sf=1

e lanes=1,2,3,4
* Imin=1

* Imax=1
The second assignment assigns Class HS to any single Lane, or to no Lane at all:

* class =HS
« sf=1
e lanes=1,2,3,4
e Imin=0
* Imax=1
There are sixteen possible permutations for these two assignments such that no

Lane is loaded by more than one Class at a time. These are presented in the follow-
ing table:

Permutation | Lane 1 Lane 2 Lane 3 Lane 4 | Scale Factor
1 P 1.00
2 P HS 1.00
3 P HS 1.00
4 P HS 1.00
5 HS P 1.00
6 P 1.00
7 P HS 1.00
8 P HS 1.00
9 HS P 1.00
10 HS P 1.00
11 P 1.00
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Permutation | Lane 1 Lane 2 Lane 3 Lane 4 | Scale Factor
12 P HS 1.00
13 HS P 1.00
14 HS P 1.00
15 HS P 1.00
16 P 1.00

Example 4 — Restricted Caltrans Permit Loading

Consider the four-Lane bridge and the Caltrans permit loading of Example 3, but
subject to the following restrictions:

* The permit Vehicle is only allowed in Lane 1 or Lane 4

* The Lane adjacent to the Lane occupied by the permit Vehicle must be empty

Two Moving-Load Load Cases are required, each containing two assignments. A
scale factor of unity is used regardless of the number of loaded Lanes.

The first Moving-Load Load Case considers the case where the permit Vehicle oc-
cupies Lane 1. The first assignment assigns Class P13 to Lane 1

* class=P13
« sf=1

* lanes=1
* Imin=1

* Imax =1

The second assignment assigns Class HS to either Lane 3 or 4, or to no Lane at all:

* class =HS
« sf=1

* lanes=3,4
* Imin=0

e Imax=1

These assignments permits the following three permutations:
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Permutation Lane 1 Lane 2 Lane 3 Lane 4 Scale Factor
1 P 1.00
2 P HS 1.00
3 P HS 1.00

Similarly, the second Moving-Load Load Case considers the case where the permit
Vehicle occupies Lane 4. The first assignment assigns Class P13 to Lane 4

e class =P13

e sf=1
e lanes =4
e Imin=1

e Imax=1

The second assignment assigns Class HS to either Lane 1 or 2, or to no Lane at all:

¢ class = HS
o sf=1

e lanes=1,2

e Imin=0

e Imax=1

These assignments permits the following three permutations:

Permutation | Lane 1 Lane 2 Lane 3 Lane 4 | Scale Factor
1 P 1.00
2 HS P 1.00
3 HS P 1.00

An envelope-type Combo that includes only these two Moving-Load Load Cases
would produce the most severe response for the six permutations above.

See Topic “Load Combinations (Combos)” (page 299) in Chapter “Load Cases”
for more information.
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Several parameters are available for controlling influence-based Moving-Load
Load Cases. These have no effect on step-by-step analysis.

Bridge Response Groups

By default, no Moving Load response is calculated for any joint or element, since
this calculation is computationally intensive. You must explicitly request the Mov-
ing Load response that you want calculated.

For each of the following types of response, you may request a Group of elements
for which the response should be calculated:

* Joint displacements

* Joint reactions

* Frame forces and moments

 Shell stresses

* Shell resultant forces and moments

* Plane stresses

* Solid stresses

» Link/support forces and deformations
If the displacements, reactions, spring forces, or internal forces are not calculated
for a given joint or Frame element, no Moving Load response can be printed or

plotted for that joint or element. Likewise, no response can be printed or plotted for
any Combo that contains a Moving-Load Load Case.

Additional control is available as described in the following subtopics.

Correspondence

For each maximum or minimum Frame-element response quantity computed, the
corresponding values for the other five internal force and moment components may
be determined. For example, the shear, moment, and torque that occur at the same
time as the maximum axial force in a Frame element may be computed.

Similarly, corresponding displacements, stresses, forces and moments can be com-
puted for any response quantity of any element type. Only the corresponding values
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for each joint or element are computed. If you want to see the full corresponding
state of the structure, you must use step-by-step analysis.

By default, no corresponding quantities are computed since this significantly in-
creases the computation time for moving-load response.

Influence Line Tolerance

SAP2000 simplifies the influence lines used for response calculation in order to in-
crease efficiency. A relative tolerance is used to reduce the number of load points
by removing those that are approximately duplicated or that can be approximately
linearly-interpolated. The default value of this tolerance permits response errors on
the order 0f 0.01%. Setting the tolerance to zero will provide exact results to within
the resolution of the analysis.

Exact and Quick Response Calculation

For the purpose of moving a Vehicle along a lane, each axle is placed on every load
point in turn. When another axle falls between two load points, the effect of that
axle is determined by linear interpolation of the influence values. The effect of uni-
form loads is computed by integrating the linearly-interpolated segments of the in-
fluence line. This method is exact to within the resolution of the analysis, but is
computationally intensive if there are many load points.

A “Quick” method is available which may be much faster than the usual “Exact”
method, but it may also be less accurate. The Quick method approximates the influ-
ence line by using a limited number of load points in each “span.” For purposes of
this discussion, a span is considered to be a region where the influence line is all
positive or all negative.

The degree of approximation to be used is specified by the parameter quick, which
may be any non-negative integer. The default value is quick = 0, which indicates to
use the full influence line, i.e., the Exact method.

Positive values indicate increasing degrees of refinement for the Quick method. For
quick = 1, the influence line is simplified by using only the maximum or minimum
value in each span, plus the zero points at each end of the span. For quick =2, an
additional load point is used on either side of the maximum/minimum. Higher de-
grees of refinement use additional load points. The number of points used in a span
can be as many as 2"**+1, but not more than the number of load points available in
the span for the Exact method.
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It is strongly recommended that quick = 0 be used for all final analyses. For prelim-
inary analyses, quick = 1, 2, or 3 is usually adequate, with quick = 2 often provid-
ing a good balance between speed and accuracy. The effect of parameter quick
upon speed and accuracy is problem-dependent, and you should experiment to de-
termine the best value to use for each different model.

Step-By-Step Analysis
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Step-by-step analysis can consider any combination of Vehicles operating on the
Lanes. Multiple Vehicles can operate simultaneously, even in the same Lane if de-
sired. You define a Load Pattern of type “Bridge Live,” in which you specify one or
more sets of the following:

Vehicle type

Lane in which it is traveling
Starting position in the Lane
Starting time

Vehicle speed

Direction (forward or backward, relative to the Lane direction)

You also specify a time-step size and the total number of time steps to be consid-
ered. The total duration of loading is the product of these two. To get a finer spatial
discretization of loading, use smaller time steps, or reduce the speed of the vehicles.

Loading

This type of Load Pattern is multi-stepped. It automatically creates a different pat-
tern of loading for each time step. At each step, the load applied to the structure is
determined as follows:

The longitudinal position of each Vehicle in its Lane at the current time is de-
termined from its starting position, speed and direction.

The Vehicle is centered transversely in the Lane.

Axle loads are applied to the bridge deck. Concentrated axles loads are applied
as specified. Distributed axle loads are converted to four equivalent concen-
trated loads.

For each individual concentrated load, consistent joint loads are calculated at
the corners of any loaded shell or solid element on the deck. In a spine model, a
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concentrated force and eccentric moment is applied to the closest frame ele-
ment representing the superstructure.

» Variable axle spacing, if present, is fixed at the minimum distance.
» Longitudinally-uniform loads are not considered.

» Floating axle loads are not considered.

If you wish to consider different axle spacing, define additional Vehicles. If you
wish to consider different transverse placement of the Vehicles, define additional
Lanes.

Static Analysis

When a Load Pattern of type “Bridge Live” is applied in a Multi-Step Static Load
Case, there results a separate linear static solution step for each time step, starting at
time zero. Each solution is independent, representing the displacement and stress
state in the structure for the current position of the vehicles. You can plot these re-
sults in sequence, create a video showing the movement of the vehicles across the
structure along with the resulting displacements and/or stresses, or envelope the re-
sults for the Load Case.

Since the analysis is static, the speed of the Vehicles has no effect on the results,
other than determining the change in position from one load step to the next.

Time-History Analysis

When a Load Pattern of type “Bridge Live” is applied in a Time-History Load
Case, SAP2000 automatically creates a separate time function for each load pattern
that ramps the load up from zero to one over one time step, and back down to zero in
the succeeding time step. This is done regardless of what time function you may
specify. Thus at any given time within a time step, the applied load is a linear inter-
polation of the load pattern at the beginning and the end of the time step.

Direct integration is recommended. Modal superposition would require a very
large number of modes since the spatial distribution of the load is constantly chang-
ing.

Dynamical effects are important in a time-history analysis, and different results
may be expected depending upon the speed of the vehicle.

The Time-History Load Case may be linear or nonlinear. If you wish to consider
static nonlinearity, you should perform a quasi-static nonlinear time-history analy-
sis, i.e., at very slow speed with long time steps. The speed should be slow enough
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so that the time it takes to cross a span is significantly longer than the first period of
the structure.

Enveloping and Load Combinations

Results for each step-by-step Load Case may be displayed or printed for individual
steps, or as an envelope giving the maximum and minimum response. When in-
cluded in Load Combinations, envelope results will be used.

You can approximate an influence-based analysis by the following technique:

* Define one or more Load Patterns of type Bridge-Live, each of which moves a
single Vehicle in a single Lane in a single direction

» Foreach Load Pattern, create a corresponding Multi-Step Static Load Case that
applies only that Load Pattern

* For each Lane, define an envelope-type Load Combination of all Load Cases
defined for that Lane

* Define a single range-type Combo that includes all of the Lane envelope-type
Load Combinations

You can modify this procedure as needed for your particular application. The im-
portant thing is to be sure that in the final Load Combination, no Lane is ever
loaded by more than one Vehicle at a time, unless that is your intention.

Influence-based analysis is still more comprehensive, since it includes distributed
loads, transverse placement of the Vehicles in the Lanes, variable axle spacing, and
more accurate placement of the Vehicles for maximum effect.

See Topic “Load Combinations (Combos)” (page 299) in Chapter “Load Cases”
for more information.

Computational Considerations
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The computation of influence lines requires a moderate amount of computer time
and a large amount of disk storage compared with the execution of other typical
SAP2000 analyses. The amount of computer time is approximately proportional to
N’L, where N is the number of structure degrees-of-freedom, and L is the number of
load points. The amount of disk storage required is approximately proportional to
NL.
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The computation of Moving Load response may require a large amount of com-
puter time compared with the execution of other typical SAP2000 analyses. The
amount of disk storage needed (beyond the influence lines) is small.

The computation time for Moving Load response is proportional to the number of
response quantities requested. The computation time for Moving Load response is
also directly proportional to the number of Lanes.

For each Vehicle load, the computation time is approximately proportional to the
square of the number of axles. It is also proportional to L', the effective number of
load points. Larger values of the truck influence tolerance tend to produce smaller
values of L' compared to L. The value of L' will be different for each response quan-
tity; it tends to be smaller for structures with simple spans than with continuous
spans.

For step-by-step analysis, computational time is primarily affected by the number
of time steps used. Discretization of the Lanes, and the number and type of Vehicles
used has a secondary effect.
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Copyright Notice for TAUCS:

TAUCS Version 2.0, November 29, 2001. Copyright ©) 2001, 2002, 2003 by
Sivan Toledo, Tel-Aviv Univesity, stoledo@tau.ac.il. All Rights Reserved.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies that you
agree to this License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WAR-
RANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the
Copyright, this License, and the Availability of the original version is retained
on all copies. User documentation of any code that uses this code or any deriva-
tive code must cite the Copyright, this License, the Availability note, and
“Used by permission.” If this code or any derivative code is accessible from
within MATLAB, then typing “help taucs” must cite the Copyright, and “type
taucs” must also cite this License and the Availability note. Permission to mod-
ify the code and to distribute modified code is granted, provided the Copyright,
this License, and the Availability note are retained, and a notice that the code
was modified is included. This software is provided to you free of charge.

Availability:

As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped
(tgz), with or without binaries for external libraries. The bundled external li-
braries should allow you to build the test programs on Linux, Windows, and
MacOS X without installing additional software. We recommend that you
download the full distributions, and then perhaps replace the bundled libraries
by higher performance ones (e.g., with a BLAS library that is specifically opti-
mized for your machine). If you want to conserve bandwidth and you want to
install the required libraries yourself, download the lean distributions. The zip
and tgz files are identical, except that on Linux, Unix, and MacOS, unpacking
the tgz file ensures that the configure script is marked as executable (unpack
with tar zxvpf), otherwise you will have to change its permissions manually.

Used by permission.
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